1
|
Cazzaniga G, Del Carro F, Eccher A, Becker JU, Gambaro G, Rossi M, Pieruzzi F, Fraggetta F, Pagni F, L'Imperio V. Improving the Annotation Process in Computational Pathology: A Pilot Study with Manual and Semi-automated Approaches on Consumer and Medical Grade Devices. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2025; 38:1112-1119. [PMID: 39231887 PMCID: PMC11950598 DOI: 10.1007/s10278-024-01248-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/06/2024]
Abstract
The development of reliable artificial intelligence (AI) algorithms in pathology often depends on ground truth provided by annotation of whole slide images (WSI), a time-consuming and operator-dependent process. A comparative analysis of different annotation approaches is performed to streamline this process. Two pathologists annotated renal tissue using semi-automated (Segment Anything Model, SAM)) and manual devices (touchpad vs mouse). A comparison was conducted in terms of working time, reproducibility (overlap fraction), and precision (0 to 10 accuracy rated by two expert nephropathologists) among different methods and operators. The impact of different displays on mouse performance was evaluated. Annotations focused on three tissue compartments: tubules (57 annotations), glomeruli (53 annotations), and arteries (58 annotations). The semi-automatic approach was the fastest and had the least inter-observer variability, averaging 13.6 ± 0.2 min with a difference (Δ) of 2%, followed by the mouse (29.9 ± 10.2, Δ = 24%), and the touchpad (47.5 ± 19.6 min, Δ = 45%). The highest reproducibility in tubules and glomeruli was achieved with SAM (overlap values of 1 and 0.99 compared to 0.97 for the mouse and 0.94 and 0.93 for the touchpad), though SAM had lower reproducibility in arteries (overlap value of 0.89 compared to 0.94 for both the mouse and touchpad). No precision differences were observed between operators (p = 0.59). Using non-medical monitors increased annotation times by 6.1%. The future employment of semi-automated and AI-assisted approaches can significantly speed up the annotation process, improving the ground truth for AI tool development.
Collapse
Affiliation(s)
- Giorgio Cazzaniga
- Department of Medicine and Surgery, Pathology, IRCCS Fondazione San Gerardo Dei Tintori, University of Milano-Bicocca, Via Pergolesi, 33, 20900, Monza, Italy
| | - Fabio Del Carro
- Department of Medicine and Surgery, Pathology, IRCCS Fondazione San Gerardo Dei Tintori, University of Milano-Bicocca, Via Pergolesi, 33, 20900, Monza, Italy
| | - Albino Eccher
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, University Hospital of Modena, Modena, Italy
| | - Jan Ulrich Becker
- Institute of Pathology, University Hospital of Cologne, Cologne, Germany
| | - Giovanni Gambaro
- Division of Nephrology, Department of Medicine, University of Verona, Verona, Italy
| | - Mattia Rossi
- Division of Nephrology, Department of Medicine, University of Verona, Verona, Italy
| | - Federico Pieruzzi
- Clinical Nephrology, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Filippo Fraggetta
- Pathology Unit, Azienda Sanitaria Provinciale (ASP) Catania, "Gravina" Hospital, Caltagirone, Italy
| | - Fabio Pagni
- Department of Medicine and Surgery, Pathology, IRCCS Fondazione San Gerardo Dei Tintori, University of Milano-Bicocca, Via Pergolesi, 33, 20900, Monza, Italy
| | - Vincenzo L'Imperio
- Department of Medicine and Surgery, Pathology, IRCCS Fondazione San Gerardo Dei Tintori, University of Milano-Bicocca, Via Pergolesi, 33, 20900, Monza, Italy.
| |
Collapse
|
2
|
Aalam SW, Ahanger AB, Masoodi TA, Bhat AA, Akil ASAS, Khan MA, Assad A, Macha MA, Bhat MR. Deep learning-based identification of esophageal cancer subtypes through analysis of high-resolution histopathology images. Front Mol Biosci 2024; 11:1346242. [PMID: 38567100 PMCID: PMC10985197 DOI: 10.3389/fmolb.2024.1346242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/23/2024] [Indexed: 04/04/2024] Open
Abstract
Esophageal cancer (EC) remains a significant health challenge globally, with increasing incidence and high mortality rates. Despite advances in treatment, there remains a need for improved diagnostic methods and understanding of disease progression. This study addresses the significant challenges in the automatic classification of EC, particularly in distinguishing its primary subtypes: adenocarcinoma and squamous cell carcinoma, using histopathology images. Traditional histopathological diagnosis, while being the gold standard, is subject to subjectivity and human error and imposes a substantial burden on pathologists. This study proposes a binary class classification system for detecting EC subtypes in response to these challenges. The system leverages deep learning techniques and tissue-level labels for enhanced accuracy. We utilized 59 high-resolution histopathological images from The Cancer Genome Atlas (TCGA) Esophageal Carcinoma dataset (TCGA-ESCA). These images were preprocessed, segmented into patches, and analyzed using a pre-trained ResNet101 model for feature extraction. For classification, we employed five machine learning classifiers: Support Vector Classifier (SVC), Logistic Regression (LR), Decision Tree (DT), AdaBoost (AD), Random Forest (RF), and a Feed-Forward Neural Network (FFNN). The classifiers were evaluated based on their prediction accuracy on the test dataset, yielding results of 0.88 (SVC and LR), 0.64 (DT and AD), 0.82 (RF), and 0.94 (FFNN). Notably, the FFNN classifier achieved the highest Area Under the Curve (AUC) score of 0.92, indicating its superior performance, followed closely by SVC and LR, with a score of 0.87. This suggested approach holds promising potential as a decision-support tool for pathologists, particularly in regions with limited resources and expertise. The timely and precise detection of EC subtypes through this system can substantially enhance the likelihood of successful treatment, ultimately leading to reduced mortality rates in patients with this aggressive cancer.
Collapse
Affiliation(s)
- Syed Wajid Aalam
- Department of Computer Science, Islamic University of Science and Technology, Awantipora, India
| | - Abdul Basit Ahanger
- Department of Computer Science, Islamic University of Science and Technology, Awantipora, India
| | - Tariq A. Masoodi
- Human Immunology Department, Research Branch, Sidra Medicine, Doha, Qatar
| | - Ajaz A. Bhat
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Ammira S. Al-Shabeeb Akil
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | | | - Assif Assad
- Department of Computer Science and Engineering, Islamic University of Science and Technology, Awantipora, India
| | - Muzafar A. Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, India
| | - Muzafar Rasool Bhat
- Department of Computer Science, Islamic University of Science and Technology, Awantipora, India
| |
Collapse
|
3
|
Evans H, Snead D. Why do errors arise in artificial intelligence diagnostic tools in histopathology and how can we minimize them? Histopathology 2024; 84:279-287. [PMID: 37921030 DOI: 10.1111/his.15071] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/22/2023] [Accepted: 09/27/2023] [Indexed: 11/04/2023]
Abstract
Artificial intelligence (AI)-based diagnostic tools can offer numerous benefits to the field of histopathology, including improved diagnostic accuracy, efficiency and productivity. As a result, such tools are likely to have an increasing role in routine practice. However, all AI tools are prone to errors, and these AI-associated errors have been identified as a major risk in the introduction of AI into healthcare. The errors made by AI tools are different, in terms of both cause and nature, to the errors made by human pathologists. As highlighted by the National Institute for Health and Care Excellence, it is imperative that practising pathologists understand the potential limitations of AI tools, including the errors made. Pathologists are in a unique position to be gatekeepers of AI tool use, maximizing patient benefit while minimizing harm. Furthermore, their pathological knowledge is essential to understanding when, and why, errors have occurred and so to developing safer future algorithms. This paper summarises the literature on errors made by AI diagnostic tools in histopathology. These include erroneous errors, data concerns (data bias, hidden stratification, data imbalances, distributional shift, and lack of generalisability), reinforcement of outdated practices, unsafe failure mode, automation bias, and insensitivity to impact. Methods to reduce errors in both tool design and clinical use are discussed, and the practical roles for pathologists in error minimisation are highlighted. This aims to inform and empower pathologists to move safely through this seismic change in practice and help ensure that novel AI tools are adopted safely.
Collapse
Affiliation(s)
- Harriet Evans
- Histopathology Department, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
- Warwick Medical School, University of Warwick, Coventry, UK
| | - David Snead
- Histopathology Department, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
- Warwick Medical School, University of Warwick, Coventry, UK
| |
Collapse
|