1
|
Loureiro I, Faria J, Clayton C, Macedo-Ribeiro S, Santarém N, Roy N, Cordeiro-da-Siva A, Tavares J. Ribose 5-phosphate isomerase B knockdown compromises Trypanosoma brucei bloodstream form infectivity. PLoS Negl Trop Dis 2015; 9:e3430. [PMID: 25568941 PMCID: PMC4287489 DOI: 10.1371/journal.pntd.0003430] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 11/21/2014] [Indexed: 12/13/2022] Open
Abstract
Ribose 5-phosphate isomerase is an enzyme involved in the non-oxidative branch of the pentose phosphate pathway, and catalyzes the inter-conversion of D-ribose 5-phosphate and D-ribulose 5-phosphate. Trypanosomatids, including the agent of African sleeping sickness namely Trypanosoma brucei, have a type B ribose-5-phosphate isomerase. This enzyme is absent from humans, which have a structurally unrelated ribose 5-phosphate isomerase type A, and therefore has been proposed as an attractive drug target waiting further characterization. In this study, Trypanosoma brucei ribose 5-phosphate isomerase B showed in vitro isomerase activity. RNAi against this enzyme reduced parasites' in vitro growth, and more importantly, bloodstream forms infectivity. Mice infected with induced RNAi clones exhibited lower parasitaemia and a prolonged survival compared to control mice. Phenotypic reversion was achieved by complementing induced RNAi clones with an ectopic copy of Trypanosoma cruzi gene. Our results present the first functional characterization of Trypanosoma brucei ribose 5-phosphate isomerase B, and show the relevance of an enzyme belonging to the non-oxidative branch of the pentose phosphate pathway in the context of Trypanosoma brucei infection. Within the non-oxidative branch of the pentose phosphate pathway, ribose 5-phosphate isomerase catalyzes the inter-conversion of ribose 5-phosphate and ribulose 5-phosphate. There are two types of ribose 5-phosphate isomerase, namely A and B. The presence of type B in Trypanosoma brucei, and its absence in humans, make this protein a promising drug target. African sleeping sickness is a serious parasitic disease that relies on limited chemotherapeutic options for control. In our study, a functional characterization of Trypanosoma brucei ribose 5-phosphate isomerase B is reported. Biochemical studies confirmed enzyme isomerase activity and its downregulation by RNAi affected mainly parasites infectivity in vivo. Overall this study shows that ribose 5-phosphate isomerase depletion is detrimental for parasites infectivity under host pressure.
Collapse
Affiliation(s)
- Inês Loureiro
- Parasite Disease Group, Instituto de Biologia Molecular e Celular da Universidade do Porto, Porto, Portugal
| | - Joana Faria
- Parasite Disease Group, Instituto de Biologia Molecular e Celular da Universidade do Porto, Porto, Portugal
| | - Christine Clayton
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH cv Alliance, Heidelberg, Germany
| | - Sandra Macedo-Ribeiro
- Protein Crystallography Group, Instituto de Biologia Molecular e Celular da Universidade do Porto, Porto, Portugal
| | - Nuno Santarém
- Parasite Disease Group, Instituto de Biologia Molecular e Celular da Universidade do Porto, Porto, Portugal
| | - Nilanjan Roy
- Ashok & Rita Patel Institute of Integrated Study & Research in Biotechnology & Allied Sciences, New Vallabh Vidyanagar, Dist-Anand, Gujarat, India
| | - Anabela Cordeiro-da-Siva
- Parasite Disease Group, Instituto de Biologia Molecular e Celular da Universidade do Porto, Porto, Portugal
- Departamento de Ciências Biológicas, Faculdade de Farmácia da Universidade do Porto, Porto, Portugal
- * E-mail: (ACdS); (JT)
| | - Joana Tavares
- Parasite Disease Group, Instituto de Biologia Molecular e Celular da Universidade do Porto, Porto, Portugal
- * E-mail: (ACdS); (JT)
| |
Collapse
|
2
|
Pena AC, Pimentel MR, Manso H, Vaz-Drago R, Pinto-Neves D, Aresta-Branco F, Rijo-Ferreira F, Guegan F, Pedro Coelho L, Carmo-Fonseca M, Barbosa-Morais NL, Figueiredo LM. Trypanosoma brucei histone H1 inhibits RNA polymerase I transcription and is important for parasite fitness in vivo. Mol Microbiol 2014; 93:645-63. [PMID: 24946224 PMCID: PMC4285223 DOI: 10.1111/mmi.12677] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2014] [Indexed: 11/30/2022]
Abstract
Trypanosoma brucei is a unicellular parasite that causes sleeping sickness in humans. Most of its transcription is constitutive and driven by RNA polymerase II. RNA polymerase I (Pol I) transcribes not only ribosomal RNA genes, but also protein-encoding genes, including variant surface glycoproteins (VSGs) and procyclins. In T. brucei, histone H1 (H1) is required for VSG silencing and chromatin condensation. However, whether H1 has a genome-wide role in transcription is unknown. Here, using RNA sequencing we show that H1 depletion changes the expression of a specific cohort of genes. Interestingly, the predominant effect is partial loss of silencing of Pol I loci, such as VSG and procyclin genes. Labelling of nascent transcripts with 4-thiouridine showed that H1 depletion does not alter the level of labelled Pol II transcripts. In contrast, the levels of 4sU-labelled Pol I transcripts were increased by two- to sixfold, suggesting that H1 preferentially blocks transcription at Pol I loci. Finally, we observed that parasites depleted of H1 grow almost normally in culture but they have a reduced fitness in mice, suggesting that H1 is important for host-pathogen interactions.
Collapse
Affiliation(s)
- Ana C Pena
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, Edifício Egas Moniz, 1649-028, Lisboa, Portugal
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Salmon D, Vanwalleghem G, Morias Y, Denoeud J, Krumbholz C, Lhommé F, Bachmaier S, Kador M, Gossmann J, Dias FBS, De Muylder G, Uzureau P, Magez S, Moser M, De Baetselier P, Van Den Abbeele J, Beschin A, Boshart M, Pays E. Adenylate cyclases of Trypanosoma brucei inhibit the innate immune response of the host. Science 2012; 337:463-6. [PMID: 22700656 DOI: 10.1126/science.1222753] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The parasite Trypanosoma brucei possesses a large family of transmembrane receptor-like adenylate cyclases. Activation of these enzymes requires the dimerization of the catalytic domain and typically occurs under stress. Using a dominant-negative strategy, we found that reducing adenylate cyclase activity by about 50% allowed trypanosome growth but reduced the parasite's ability to control the early innate immune defense of the host. Specifically, activation of trypanosome adenylate cyclase resulting from parasite phagocytosis by liver myeloid cells inhibited the synthesis of the trypanosome-controlling cytokine tumor necrosis factor-α through activation of protein kinase A in these cells. Thus, adenylate cyclase activity of lyzed trypanosomes favors early host colonization by live parasites. The role of adenylate cyclases at the host-parasite interface could explain the expansion and polymorphism of this gene family.
Collapse
Affiliation(s)
- Didier Salmon
- Laboratory of Molecular Parasitology, Institute for Molecular Biology and Medicine, Université Libre de Bruxelles, 12, rue des Professeurs Jeener et Brachet, B6041 Gosselies, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Vigueira PA, Paul KS. Requirement for acetyl-CoA carboxylase in Trypanosoma brucei is dependent upon the growth environment. Mol Microbiol 2011; 80:117-32. [PMID: 21306439 DOI: 10.1111/j.1365-2958.2011.07563.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Trypanosoma brucei, the causative agent of human African trypanosomiasis, possesses two fatty acid synthesis pathways: a major de novo synthesis pathway in the ER and a mitochondrial pathway. The 2-carbon donor for both pathways is malonyl-CoA, which is synthesized from acetyl-CoA by Acetyl-CoA carboxylase (ACC). Here, we show that T. brucei ACC shares the same enzyme architecture and moderate ∼ 30% identity with yeast and human ACCs. ACC is cytoplasmic and appears to be distributed throughout the cell in numerous puncta distinct from glycosomes and other organelles. ACC is active in both bloodstream and procyclic forms. Reduction of ACC activity by RNA interference (RNAi) resulted in a stage-specific phenotype. In procyclic forms, ACC RNAi resulted in 50-75% reduction in fatty acid elongation and a 64% reduction in growth in low-lipid media. In bloodstream forms, ACC RNAi resulted in a minor 15% decrease in fatty acid elongation and no growth defect in culture, even in low-lipid media. However, ACC RNAi did attenuate virulence in a mouse model of infection. Thus the requirement for ACC in T. brucei is dependent upon the growth environment in two different life cycle stages.
Collapse
Affiliation(s)
- Patrick A Vigueira
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | | |
Collapse
|
5
|
Jetton N, Rothberg KG, Hubbard JG, Wise J, Li Y, Ball HL, Ruben L. The cell cycle as a therapeutic target against Trypanosoma brucei: Hesperadin inhibits Aurora kinase-1 and blocks mitotic progression in bloodstream forms. Mol Microbiol 2009; 72:442-58. [PMID: 19320832 DOI: 10.1111/j.1365-2958.2009.06657.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Aurora kinase family members co-ordinate a range of events associated with mitosis and cytokinesis. Anti-cancer therapies are currently being developed against them. Here, we evaluate whether Aurora kinase-1 (TbAUK1) from pathogenic Trypanosoma brucei might be targeted in anti-parasitic therapies as well. Conditional knockdown of TbAUK1 within infected mice demonstrated its essential contribution to infection. An in vitro kinase assay was developed which used recombinant trypanosome histone H3 as a substrate. Tandem mass spectroscopy identified a novel phosphorylation site in the carboxyl-tail of recombinant trypanosome histone H3. Hesperadin, an inhibitor of human Aurora B, prevented the phosphorylation of substrate with IC(50) of 40 nM. Growth of cultured bloodstream forms was also sensitive to Hesperadin (IC(50) of 50 nM). Hesperadin blocked nuclear division and cytokinesis but not other aspects of the cell cycle. Consequently, growth arrested cells accumulated multiple kinetoplasts, flagella and nucleoli, similar to the effects of RNAi-dependent knockdown of TbAUK1 in cultured bloodstream forms cells. Molecular models predicted high-affinity binding of Hesperadin to both conserved and novel sites in TbAUK1. Collectively, these data demonstrate that cell cycle progression is essential for infections with T. brucei and that parasite Aurora kinases can be targeted with small-molecule inhibitors.
Collapse
Affiliation(s)
- Neal Jetton
- Department of Biological Sciences, Southern Methodist University, Dallas, TX 75275, USA
| | | | | | | | | | | | | |
Collapse
|
6
|
Abdulla MH, O'Brien T, Mackey ZB, Sajid M, Grab DJ, McKerrow JH. RNA interference of Trypanosoma brucei cathepsin B and L affects disease progression in a mouse model. PLoS Negl Trop Dis 2008; 2:e298. [PMID: 18820745 PMCID: PMC2553486 DOI: 10.1371/journal.pntd.0000298] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Accepted: 08/22/2008] [Indexed: 11/19/2022] Open
Abstract
We investigated the roles played by the cysteine proteases cathepsin B and cathepsin L (brucipain) in the pathogenesis of Trypansoma brucei brucei in both an in vivo mouse model and an in vitro model of the blood–brain barrier. Doxycycline induction of RNAi targeting cathepsin B led to parasite clearance from the bloodstream and prevent a lethal infection in the mice. In contrast, all mice infected with T. brucei containing the uninduced Trypanosoma brucei cathepsin B (TbCatB) RNA construct died by day 13. Induction of RNAi against brucipain did not cure mice from infection; however, 50% of these mice survived 60 days longer than uninduced controls. The ability of T. b. brucei to cross an in vitro model of the human blood–brain barrier was also reduced by brucipain RNAi induction. Taken together, the data suggest that while TbCatB is the more likely target for the development of new chemotherapy, a possible role for brucipain is in facilitating parasite entry into the brain. African trypanosomiasis, or sleeping sickness, is caused by the single-cell parasite Trypanosoma brucei (T. brucei). Two parasite-derived enzyme proteins have been hypothesized to play an important role in the viability of the parasite or its ability to produce disease in the human host. Utilizing RNA interference that blocks the production of these proteins in the parasite, we show that elimination of parasite cathepsin B cures infection in mice. RNAi of the second enzyme protein, brucipain, results in the prolongation of life of half the infected mice, but does not cure. Further experiments carried out in a culture system show that brucipain facilitates the migration of parasites across a model of the blood–brain barrier. This suggests that while brucipain is not necessary for the viability of the organisms, it may play a role in infection by allowing parasites to reach the central nervous system and produce the severe second stage of sleeping sickness.
Collapse
Affiliation(s)
- Maha-Hamadien Abdulla
- Sandler Center for Basic Research in Parasitic Diseases, California Institute for Quantitative Biomedical Research, University of California San Francisco, San Francisco, California, USA.
| | | | | | | | | | | |
Collapse
|
7
|
Mallick B, Ghosh Z, Chakrabarti J. MicroRNA switches in Trypanosoma brucei. Biochem Biophys Res Commun 2008; 372:459-63. [DOI: 10.1016/j.bbrc.2008.05.084] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Accepted: 05/12/2008] [Indexed: 01/01/2023]
|
8
|
Mansfield JM, Paulnock DM. Genetic manipulation of African trypanosomes as a tool to dissect the immunobiology of infection. Parasite Immunol 2008; 30:245-53. [PMID: 18208450 DOI: 10.1111/j.1365-3024.2007.01003.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The variant surface glycoprotein (VSG) coat of African trypanosomes exhibits immunobiological functions distinct from its prominent role as a variant surface antigen. In order to address questions regarding immune stealth effects of VSG switch-variant coats, and the innate immune system activating effects of shed VSG substituents, several groups have genetically modified the ability of trypanosomes to express or release VSG during infection of the mammalian host. The role of mosaic surface coats expressed by VSG switch-variants (VSG double-expressors) in escaping early immune detection, and the role of VSG glycosylphosphatidylinositol (GPI) anchor substituents in regulating host immunity have been revealed, respectively, by stable co-expression of an exogenous VSG gene in trypanosomes expressing an endogenous VSG gene, and by knocking out the genetic locus for GPI-phospholipase C (PLC) that releases VSG from the membrane. Both approaches to genetic modification of African trypanosomes have suggested interesting and unexpected immunobiological effects associated with surface coat molecules.
Collapse
Affiliation(s)
- J M Mansfield
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | | |
Collapse
|
9
|
Abstract
Trypanosomatids are protozoan parasites, of interest due to both their disease burden and deeply divergent position within the eukaryotic lineage. The African trypanosome, Trypanosoma brucei, has emerged as a very amenable model system, with a considerable toolbox of methods available, including inducible overexpression, RNA interference, and a completed genome. Here we describe some of the special considerations that need to be addressed when studying trypanosome gene function, and in particular small GTPases; we provide protocols for transfection, RNA interference, overexpression and basic transport assays, in addition to an overview of available vectors, cell lines, and strategies.
Collapse
Affiliation(s)
- Mark C Field
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | | | | |
Collapse
|
10
|
Lecordier L, Devaux S, Uzureau P, Dierick JF, Walgraffe D, Poelvoorde P, Pays E, Vanhamme L. Characterization of a TFIIH homologue from Trypanosoma brucei. Mol Microbiol 2007; 64:1164-81. [PMID: 17542913 DOI: 10.1111/j.1365-2958.2007.05725.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Trypanosomes are protozoans showing unique transcription characteristics. We describe in Trypanosoma brucei a complex homologous to TFIIH, a multisubunit transcription factor involved in the control of transcription by RNA Pol I and RNA Pol II, but also in DNA repair and cell cycle control. Bioinformatics analyses allowed the detection of five genes encoding four putative core TFIIH subunits (TbXPD, TbXPB, Tbp44, Tbp52), including a novel XPB variant, TbXPBz. In all cases sequences known to be important for TFIIH functions were conserved. We performed a molecular analysis of this core complex, focusing on the two subunits endowed with a known enzymatic (helicase) activity, XPD and XPB. The involvement of these T. brucei proteins in a bona fide TFIIH core complex was supported by (i) colocalization by immunofluorescence in the nucleus, (ii) direct physical interaction of TbXPD and its interacting regulatory subunit Tbp44 as determined by double-hybrid assay and tandem affinity purification of the core TFIIH, (iii) involvement of the core proteins in a high molecular weight complex and (iv) occurrence of transcription, cell cycle and DNA repair phenotypes upon either RNAi knock-down or overexpression of essential subunits.
Collapse
Affiliation(s)
- Laurence Lecordier
- Laboratory of Molecular Parasitology, Institute of Molecular Biology and Medicine, Université Libre de Bruxelles, 12, rue des Professeurs Jeener et Brachet, B-6041 Gosselies, Belgium
| | | | | | | | | | | | | | | |
Collapse
|