1
|
Rastegar-Pouyani N, Farzin MA, Zafari J, Haji Abdolvahab M, Hassani S. Repurposing the anti-parasitic agent pentamidine for cancer therapy; a novel approach with promising anti-tumor properties. J Transl Med 2025; 23:258. [PMID: 40033361 DOI: 10.1186/s12967-025-06293-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 02/23/2025] [Indexed: 03/05/2025] Open
Abstract
Pentamidine (PTM) is an aromatic diamidine administered for infectious diseases, e.g. sleeping sickness, malaria, and Pneumocystis jirovecii pneumonia. Due to similarities of cellular mechanisms between human cells and such infections, PTM has also been proposed for repurposing in non-infectious diseases such as cancer. Indeed, by modulating different signaling pathways such as PI3K/AKT, MAPK/ERK, p53, PD-1/PD-L1, etc., PTM has been shown to inhibit different properties of cancer, including proliferation, invasion, migration, hypoxia, and angiogenesis, while inducing anti-tumor immune responses and apoptosis. Given the promising implications of PTM for cancer treatment, however, the clinical translation of PTM in cancer is not without certain challenges. In fact, clinical trials have shown that systemic administration of PTM can be concurrent with serious adverse effects, e.g. hypoglycemia. Therefore, to reduce the administered doses of PTM, lower the risk of adverse effects, and prevent any potential drug resistance, while maintaining the anti-tumor efficacy, two main strategies have been suggested. One is combination therapy that employs PTM in conjunction with other anti-cancer modalities, such as chemotherapy and radiotherapy, and attacks tumor cells with significant additive or synergistic anti-tumor effects. The other is developing PTM-loaded nanocarrier drug delivery systems e.g. pegylated liposomes, chitosan-coated niosomes, squalene-based nanoparticles, hyaluronated lipid-polymer hybrid nanoparticles, etc., that offer enhanced pharmacokinetic characteristics, including increased bioavailability, sit-targeting, and controlled/sustained drug release. This review highlights the anti-tumor properties of PTM that favor its repurposing for cancer treatment, as well as, PTM-based combination therapies and nanocarrier delivery systems which can enhance therapeutic efficacy and simultaneously reduce toxicity.
Collapse
Affiliation(s)
- Nima Rastegar-Pouyani
- Department of Pharmacology and Toxicology, Tehran University of Medical Sciences, Tehran, Iran.
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran.
| | - Mohammad Amin Farzin
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Jaber Zafari
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohadeseh Haji Abdolvahab
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Shokoufeh Hassani
- Toxicology and Diseases Specialty Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Arenas Velásquez AM, Patino Linares IA, Gaspers LD, Bartlett PJ, Velasques JM, Netto AVG, Thomas AP, Graminha MAS. The binuclear cyclopalladated complex CP2 is targeting ubiquinol-cytochrome c reductase (complex III) of Leishmania amazonensis. Int J Parasitol Drugs Drug Resist 2024; 27:100574. [PMID: 39746288 PMCID: PMC11748178 DOI: 10.1016/j.ijpddr.2024.100574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/29/2024] [Accepted: 12/13/2024] [Indexed: 01/04/2025]
Abstract
Leishmaniasis is a neglected disease that remains with a limited number of drugs available for chemotherapy and has an increased drug resistance that affects treatment outcomes. Metal-based drugs such as cyclopalladated complex [Pd(dmba)(μ-N3)]2 (CP2), a Leishmania topoisomerase IB inhibitor involved in calcium dysregulation and mitochondrial dysfunction of the parasite, had been an alternative to outline the appearance of chemoresistance. To identify new molecular targets and point out possible resistance mechanisms, a CP2-resistant Leishmania amazonensis (LaR) was selected by stepwise exposure to increasing drug pressure until a line capable of growth in 13.3 μM CP2. LaR IC50 value was 52.4 μM (4-fold higher than L. amazonensis-wild type, La). LaR promastigotes were cross-resistant to other DNA topoisomerase I inhibitors (camptothecin) and more susceptible to anti-leishmanial drugs pentamidine and miltefosine. A protective effect on cell viability was observed by pretreating the parasite with Ca2+ channel blockers followed by CP2 in La but not in LaR. Analyses of the cell viability of La and LaR using electron transport chain (ETC) inhibitors demonstrated that La is more sensitive than LaR. The studies of mitochondrial oxygen consumption demonstrated that LaR is less susceptible to complex III (ubiquinol-cytochrome c reductase - CcR) inhibitor, antimycin A (AA). CcR activities of La and LaR were equal for both strains in the absence of CP2 and significantly decreased, 69 % for La and 51 % for LaR, in the presence of CP2. This resistance is attributed to overexpression of CcR, confirmed by the RT-qPCR. CcR inhibition by CP2 leads the parasite to increase the reactive oxygen species (ROS) production, principally in La. Therefore, in this work, we suggested that CcR is the main target of CP2 in the mitochondria, acting to inhibit mitochondria respiratory, and the LaR mutant has increased activity of CcR, which reduces the formation of ROS.
Collapse
Affiliation(s)
- Angela Maria Arenas Velásquez
- São Paulo State University (Unesp), School of Pharmaceutical Sciences, Araraquara, São Paulo, Brazil; Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Irwin Alexander Patino Linares
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Lawrence D Gaspers
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Paula J Bartlett
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Jecika M Velasques
- São Paulo State University (Unesp), Institute of Chemistry, Araraquara, São Paulo, Brazil
| | - Adelino V G Netto
- São Paulo State University (Unesp), Institute of Chemistry, Araraquara, São Paulo, Brazil
| | - Andrew P Thomas
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA.
| | - Marcia A S Graminha
- São Paulo State University (Unesp), School of Pharmaceutical Sciences, Araraquara, São Paulo, Brazil.
| |
Collapse
|
3
|
Urdapilleta AAA, Santos Alfani ADO, Barroso DH, Vinecky F, Amaral Vaz Bandeira SDG, Andrade AC, Taquita JA, Bastos IMD, Sampaio RNR. Treatment of Refractory Mucosal Leishmaniasis Is Associated with Parasite Overexpression of HSP70 and ATPase and Reduced Host Hydrogen Peroxide Production (Brief Report). Biomedicines 2024; 12:2227. [PMID: 39457540 PMCID: PMC11504370 DOI: 10.3390/biomedicines12102227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Mucosal leishmaniasis (ML) is a deforming type of American Tegumentary Leishmaniasis caused by Leishmania (Viannia) braziliensis that frequently does not respond to treatment. Despite its relapsing clinical course, few parasites are usually found in mucosal lesions. Host and parasite factors may be responsible for this paradox in the pathogenesis of the disease, allowing for both a low parasite burden and the inability of the host to clear and eliminate the disease. METHODS AND RESULTS In this work, we present a clinical case of relapsing ML that was treated for 25 years without success with SbV, N-methyl glucamine, sodium stibogluconate, amphotericin B deoxycholate, gabromycin, antimonial plus thalidomide, liposomal amphotericin B, Leishvacin (a vaccine made in Brazil) and miltefosine. In a comparative analysis using nanoscale liquid chromatography coupled with tandem mass spectrometry of protein extracts of L. (V.) braziliensis promastigotes isolated from the patient and from the reference strain (MHOM/BR/94/M15176), we observed increases in ATPase and HSP70 protein levels in the parasite. We also observed an impairment in the production of hydrogen peroxide by peripheral mononuclear blood monocytes (PBMCs), as assessed by the horseradish peroxidase-dependent oxidation of phenol red. CONCLUSIONS We hypothesise that these parasite molecules may be linked to the impairment of host parasiticidal responses, resulting in Leishmania persistence in ML patients.
Collapse
Affiliation(s)
- Ada Amália Ayala Urdapilleta
- Post-Graduation Program in Clinical Medicine (PPGCM), Faculty of Medicine (FM), Campus Universitário Darcy Ribeiro, University of Brasília (UnB), UnB Área 1—Asa Norte, Brasilia 70910-900, DF, Brazil; (A.A.A.U.); (A.d.O.S.A.); (S.d.G.A.V.B.); (R.N.R.S.)
| | - Adriana de Oliveira Santos Alfani
- Post-Graduation Program in Clinical Medicine (PPGCM), Faculty of Medicine (FM), Campus Universitário Darcy Ribeiro, University of Brasília (UnB), UnB Área 1—Asa Norte, Brasilia 70910-900, DF, Brazil; (A.A.A.U.); (A.d.O.S.A.); (S.d.G.A.V.B.); (R.N.R.S.)
- Federal Institute of Brasília, Brasília 70910-900, DF, Brazil
| | - Daniel Holanda Barroso
- Post-Graduation Program in Clinical Medicine (PPGCM), Faculty of Medicine (FM), Campus Universitário Darcy Ribeiro, University of Brasília (UnB), UnB Área 1—Asa Norte, Brasilia 70910-900, DF, Brazil; (A.A.A.U.); (A.d.O.S.A.); (S.d.G.A.V.B.); (R.N.R.S.)
- Dermatology Service, University Hospital of Brasília, Faculty of Medicine, University of Brasília (UnB), Brasilia 70910-900, DF, Brazil
- Dermatomycology Laboratory, School of Medicine, University of Brasília (UnB), Brasilia 70910-900, DF, Brazil
| | - Felipe Vinecky
- Post-Graduation Program, Embrapa Cenargen, Brasilia 70910-900, DF, Brazil (J.A.T.)
| | - Suzana da Glória Amaral Vaz Bandeira
- Post-Graduation Program in Clinical Medicine (PPGCM), Faculty of Medicine (FM), Campus Universitário Darcy Ribeiro, University of Brasília (UnB), UnB Área 1—Asa Norte, Brasilia 70910-900, DF, Brazil; (A.A.A.U.); (A.d.O.S.A.); (S.d.G.A.V.B.); (R.N.R.S.)
| | - Alan Carvalho Andrade
- Molecular Genetics Laboratory (LGM-NTBio), Embrapa, Cenargen, Brasilia 70910-900, DF, Brazil;
| | - Jorge Alex Taquita
- Post-Graduation Program, Embrapa Cenargen, Brasilia 70910-900, DF, Brazil (J.A.T.)
- Molecular Genetics Laboratory (LGM-NTBio), Embrapa, Cenargen, Brasilia 70910-900, DF, Brazil;
- Embrapa Recursos Genéticos e Biotecnologia, Brasilia 70910-900, DF, Brazil
| | - Izabela Marques Dourado Bastos
- Pathogen–Interaction Laboratory, Department of Cell Biology, Institute of Biology, University of Brasília (UnB), Brasilia 70910-900, DF, Brazil;
| | - Raimunda Nonata Ribeiro Sampaio
- Post-Graduation Program in Clinical Medicine (PPGCM), Faculty of Medicine (FM), Campus Universitário Darcy Ribeiro, University of Brasília (UnB), UnB Área 1—Asa Norte, Brasilia 70910-900, DF, Brazil; (A.A.A.U.); (A.d.O.S.A.); (S.d.G.A.V.B.); (R.N.R.S.)
- Dermatology Service, University Hospital of Brasília, Faculty of Medicine, University of Brasília (UnB), Brasilia 70910-900, DF, Brazil
- Dermatomycology Laboratory, School of Medicine, University of Brasília (UnB), Brasilia 70910-900, DF, Brazil
- Post-Graduation Program in Health Sciences (PGHC), Faculty of Health Sciences, University of Brasilia (UnB), Brasilia 70910-900, DF, Brazil
| |
Collapse
|
4
|
Diel KAP, Santana Filho PC, Pitol Silveira P, Ribeiro RL, Teixeira PC, Rodrigues Júnior LC, Marinho LC, Romão PRT, von Poser GL. Antiprotozoal potential of Vismia species (Hypericaceae), medicinal plants used to fight cutaneous leishmaniasis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:118028. [PMID: 38492792 DOI: 10.1016/j.jep.2024.118028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/26/2024] [Accepted: 03/07/2024] [Indexed: 03/18/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Species of Vismia (Hypericaceae), known in Brazil as "lacre", are commonly used in traditional Amazonian medicine for the treatment of skin lesions, including those caused by Leishmania infection. AIM OF THE STUDY Hexane extracts from the leaves of Vismia cayennensis, V. gracilis, V. sandwithii and V. guianensis, as well as from the fruits of the latter, in addition to the anthraquinones vismiaquinone, physcion and chrysophanol isolated from these species were explored for their anti-promastigote and anti-amastigote activity on Leishmania amazonensis. MATERIALS AND METHODS Extracts were prepared by static maceration with n-hexane. The compounds, isolated by chromatographic techniques, were identified by spectroscopic methods (1H and 13C NMR). Promastigotes of L.amazonensis were incubated with hexane extracts (1-50 μg/mL) or anthraquinones (1-50 μM) and the parasite survival analyzed. The action of compounds on reactive oxygen species (ROS) production, mitochondrial membrane potential, and membrane integrity of promastigotes were evaluated by flow cytometer, and the cytotoxicity on mammalian cells using MTT assay. Furthermore, the activity of compounds against amastigotes and nitric oxide production were also investigated. RESULTS Vismiaquinone and physcion were obtained from the leaves of V. guianensis. Physcion, as well as chrysophanol, were isolated from V. sandwithii. Vismia cayennensis and V. gracilis also showed vismiaquinone, compound detected in lower quantity in the fruits of V. guianensis. All extracts were active against the parasite, corroborating the popular use. The greatest activity against promastigotes was achieved with V. guianensis extract (IC50 4.3 μg/mL), precisely the most used Vismia species for treating cutaneous leishmaniasis. Vismiaquinone and physcion exhibited relevant activity with IC50 12.6 and 2.6 μM, respectively. Moreover, all extracts and anthraquinones tested induced ROS production, mitochondrial dysfunction, membrane disruption and were able to kill intracellular amastigote forms, being worthy of further in vivo studies as potential antileishmanial drugs. CONCLUSIONS The overall data achieved in the current investigation scientifically validate the traditional use of Vismia species, mainly V. guianensis, as an anti-Leishmania agent. Furthermore, the promising results presented here indicate species of Vismia as potentially useful resources of Brazilian flora for the discovery of therapeutic solutions for neglected diseases.
Collapse
Affiliation(s)
- Kriptsan Abdon Poletto Diel
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Ciências Farmacêuticas, Avenida Ipiranga 2752, Santana, 90610-000, Porto Alegre, Rio Grande do Sul, Brazil
| | - Paulo Cesar Santana Filho
- Universidade Federal de Ciências da Saúde de Porto Alegre, Departamento de Ciências Básicas da Saúde, Rua Sarmento Leite 245, Centro Histórico, 90050-170, Porto Alegre, Rio Grande do Sul, Brazil
| | - Pablo Pitol Silveira
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Ciências Farmacêuticas, Avenida Ipiranga 2752, Santana, 90610-000, Porto Alegre, Rio Grande do Sul, Brazil
| | - Rafaela Laura Ribeiro
- Universidade Federal de Ciências da Saúde de Porto Alegre, Departamento de Ciências Básicas da Saúde, Rua Sarmento Leite 245, Centro Histórico, 90050-170, Porto Alegre, Rio Grande do Sul, Brazil
| | - Paula Coelho Teixeira
- Universidade Federal de Ciências da Saúde de Porto Alegre, Departamento de Ciências Básicas da Saúde, Rua Sarmento Leite 245, Centro Histórico, 90050-170, Porto Alegre, Rio Grande do Sul, Brazil
| | - Luiz Carlos Rodrigues Júnior
- Universidade Federal de Ciências da Saúde de Porto Alegre, Departamento de Ciências Básicas da Saúde, Rua Sarmento Leite 245, Centro Histórico, 90050-170, Porto Alegre, Rio Grande do Sul, Brazil
| | - Lucas C Marinho
- Universidade Federal do Maranhão, Departamento de Biologia, Avenida dos Portugueses 1966, Bacanga, 65080-805, São Luís, Maranhão, Brazil
| | - Pedro Roosevelt Torres Romão
- Universidade Federal de Ciências da Saúde de Porto Alegre, Departamento de Ciências Básicas da Saúde, Rua Sarmento Leite 245, Centro Histórico, 90050-170, Porto Alegre, Rio Grande do Sul, Brazil.
| | - Gilsane Lino von Poser
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Ciências Farmacêuticas, Avenida Ipiranga 2752, Santana, 90610-000, Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
5
|
González-Matos M, Aguado ME, Izquierdo M, Monzote L, González-Bacerio J. Compounds with potentialities as novel chemotherapeutic agents in leishmaniasis at preclinical level. Exp Parasitol 2024; 260:108747. [PMID: 38518969 DOI: 10.1016/j.exppara.2024.108747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/27/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
Leishmaniasis are neglected infectious diseases caused by kinetoplastid protozoan parasites from the genus Leishmania. These sicknesses are present mainly in tropical regions and almost 1 million new cases are reported each year. The absence of vaccines, as well as the high cost, toxicity or resistance to the current drugs determines the necessity of new treatments against these pathologies. In this review, several compounds with potentialities as new antileishmanial drugs are presented. The discussion is restricted to the preclinical level and molecules are organized according to their chemical nature, source and molecular targets. In this manner, we present antimicrobial peptides, flavonoids, withanolides, 8-aminoquinolines, compounds from Leish-Box, pyrazolopyrimidines, and inhibitors of tubulin polymerization/depolymerization, topoisomerase IB, proteases, pteridine reductase, N-myristoyltransferase, as well as enzymes involved in polyamine metabolism, response against oxidative stress, signaling pathways, and sterol biosynthesis. This work is a contribution to the general knowledge of these compounds as antileishmanial agents.
Collapse
Affiliation(s)
- Maikel González-Matos
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, Vedado, La Habana, Cuba
| | - Mirtha Elisa Aguado
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, Vedado, La Habana, Cuba
| | - Maikel Izquierdo
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, Vedado, La Habana, Cuba
| | - Lianet Monzote
- Department of Parasitology, Center for Research, Diagnosis and Reference, Tropical Medicine Institute "Pedro Kourí", Autopista Novia Del Mediodía Km 6½, La Lisa, La Habana, Cuba.
| | - Jorge González-Bacerio
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, Vedado, La Habana, Cuba; Department of Biochemistry, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, Vedado, La Habana, Cuba.
| |
Collapse
|
6
|
Müller J, Hemphill A. Toxoplasma gondii infection: novel emerging therapeutic targets. Expert Opin Ther Targets 2023; 27:293-304. [PMID: 37212443 PMCID: PMC10330558 DOI: 10.1080/14728222.2023.2217353] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 04/24/2023] [Indexed: 05/23/2023]
Abstract
INTRODUCTION Toxoplasmosis constitutes a challenge for public health, animal production, and welfare. So far, only a limited panel of drugs has been marketed for clinical applications. In addition to classical screening, the investigation of unique targets of the parasite may lead to the identification of novel drugs. AREAS COVERED Herein, the authors describe the methodology to identify novel drug targets in Toxoplasma gondii and review the literature with a focus on the last two decades. EXPERT OPINION Over the last two decades, the investigation of essential proteins of T. gondii as potential drug targets has fostered the hope of identifying novel compounds for the treatment of toxoplasmosis. Despite good efficacies in vitro, only a few classes of these compounds are effective in suitable rodent models, and none has cleared the hurdle to applications in humans. This shows that target-based drug discovery is in no way better than classical screening approaches. In both cases, off-target effects and adverse side effects in the hosts must be considered. Proteomics-driven analyses of parasite- and host-derived proteins that physically bind drug candidates may constitute a suitable tool to characterize drug targets, irrespectively of the drug discovery methods.
Collapse
Affiliation(s)
- Joachim Müller
- Department of Infectious Diseases and Pathobiology, Institute of Parasitology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Andrew Hemphill
- Department of Infectious Diseases and Pathobiology, Institute of Parasitology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
7
|
Paul A, Nanjunda R, Wilson WD. Binding to the DNA Minor Groove by Heterocyclic Dications: from AT Specific to GC Recognition Compounds. Curr Protoc 2023; 3:e729. [PMID: 37071034 DOI: 10.1002/cpz1.729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023]
Abstract
Compounds that bind in the DNA minor groove have provided critical information on DNA molecular recognition, have found extensive uses in biotechnology, and are providing clinically useful drugs against diseases as diverse as cancer and sleeping sickness. This review focuses on the development of clinically useful heterocyclic diamidine minor groove binders. These compounds show that the classical model for minor groove binding in AT DNA sequences must be expanded in several ways: compounds with nonstandard shapes can bind strongly to the groove, water can be directly incorporated into the minor groove complex in an interfacial interaction, compounds can be designed to recognize GC and mixed AT/GC base pair sequences, and stacked dimers can form to recognize specific sequences. © 2023 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Ananya Paul
- Department of Chemistry, Georgia State University, Atlanta, Georgia
| | - Rupesh Nanjunda
- Department of Chemistry, Georgia State University, Atlanta, Georgia
- Current Address: Biologics Drug Product Development and Delivery, Janssen Research and Development, Malvern, Pennsylvania
| | - W David Wilson
- Department of Chemistry, Georgia State University, Atlanta, Georgia
| |
Collapse
|
8
|
Oliveira CVB, da Silva PAG, Tintino SR, Coronel CC, Gomez MCV, Rolón M, da Cunha FAB, Morais-Braga MFB, Coutinho HDM, Siyadatpanah A, Wilairatana P, Kamdem JP, Barros LM, Duarte AE, Pereira PS. A Potential New Source of Therapeutic Agents for the Treatment of Mucocutaneous Leishmaniasis: The Essential Oil of Rhaphiodon echinus. Molecules 2022; 27:2169. [PMID: 35408565 PMCID: PMC9000529 DOI: 10.3390/molecules27072169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 03/17/2022] [Accepted: 03/24/2022] [Indexed: 11/16/2022] Open
Abstract
Weeds are an important source of natural products; with promising biological activity. This study investigated the anti-kinetoplastida potential (in vitro) to evaluate the cytotoxicity (in vitro) and antioxidant capacity of the essential oil of Rhaphiodon echinus (EORe), which is an infesting plant species. The essential oil was analyzed by GC/MS. The antioxidant capacity was evaluated by reduction of the DPPH radical and Fe3+ ion. The clone Trypanosoma cruzi CL-B5 was used to search for anti-epimastigote activity. Antileishmanial activity was determined using promastigotes of Leishmania braziliensis (MHOM/CW/88/UA301). NCTC 929 fibroblasts were used for the cytotoxicity test. The results showed that the main constituent of the essential oil was γ-elemene. No relevant effect was observed concerning the ability to reduce the DPPH radical; only at the concentration of 480 μg/mL did the essential oil demonstrate a high reduction of Fe3+ power. The oil was active against L. brasiliensis promastigotes; but not against the epimastigote form of T. cruzi. Cytotoxicity for mammalian cells was low at the active concentration capable of killing more than 70% of promastigote forms. The results revealed that the essential oil of R. echinus showed activity against L. brasiliensis; positioning itself as a promising agent for antileishmanial therapies.
Collapse
Affiliation(s)
- Carlos Vinicius Barros Oliveira
- Microscopy Laboratory, Regional University of Cariri (URCA), 1161 Cel. Antonio Luiz Avenue, Crato 63105-000, CE, Brazil; (C.V.B.O.); (P.A.G.d.S.); (J.P.K.); (L.M.B.); (A.E.D.)
| | - Patric Anderson Gomes da Silva
- Microscopy Laboratory, Regional University of Cariri (URCA), 1161 Cel. Antonio Luiz Avenue, Crato 63105-000, CE, Brazil; (C.V.B.O.); (P.A.G.d.S.); (J.P.K.); (L.M.B.); (A.E.D.)
| | - Saulo Relison Tintino
- Laboratory of Microbiology and Molecular Biology, Regional University of Cariri (URCA), 1161 Cel. Antonio Luiz Avenue, Crato 63105-000, CE, Brazil; (S.R.T.); (F.A.B.d.C.); (M.F.B.M.-B.)
| | - Cathia Cecília Coronel
- Centro Para El Desarrollo De La Investigación Científica (CEDIC), Fundación Moisés Bertoni/Laboratorios Dıáz Gill, Manduvira 635, Asunción CP. 1255, Paraguay; (C.C.C.); (M.C.V.G.); (M.R.)
| | - Maria Celeste Vega Gomez
- Centro Para El Desarrollo De La Investigación Científica (CEDIC), Fundación Moisés Bertoni/Laboratorios Dıáz Gill, Manduvira 635, Asunción CP. 1255, Paraguay; (C.C.C.); (M.C.V.G.); (M.R.)
| | - Mírian Rolón
- Centro Para El Desarrollo De La Investigación Científica (CEDIC), Fundación Moisés Bertoni/Laboratorios Dıáz Gill, Manduvira 635, Asunción CP. 1255, Paraguay; (C.C.C.); (M.C.V.G.); (M.R.)
| | - Francisco Assis Bezerra da Cunha
- Laboratory of Microbiology and Molecular Biology, Regional University of Cariri (URCA), 1161 Cel. Antonio Luiz Avenue, Crato 63105-000, CE, Brazil; (S.R.T.); (F.A.B.d.C.); (M.F.B.M.-B.)
| | - Maria Flaviana Bezerra Morais-Braga
- Laboratory of Microbiology and Molecular Biology, Regional University of Cariri (URCA), 1161 Cel. Antonio Luiz Avenue, Crato 63105-000, CE, Brazil; (S.R.T.); (F.A.B.d.C.); (M.F.B.M.-B.)
| | - Henrique Douglas Melo Coutinho
- Laboratory of Microbiology and Molecular Biology, Regional University of Cariri (URCA), 1161 Cel. Antonio Luiz Avenue, Crato 63105-000, CE, Brazil; (S.R.T.); (F.A.B.d.C.); (M.F.B.M.-B.)
| | - Abolghasem Siyadatpanah
- Ferdows School of Paramedical and Health, Birjand University of Medical Sciences, Birjand 9717853577, Iran
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Jean Paul Kamdem
- Microscopy Laboratory, Regional University of Cariri (URCA), 1161 Cel. Antonio Luiz Avenue, Crato 63105-000, CE, Brazil; (C.V.B.O.); (P.A.G.d.S.); (J.P.K.); (L.M.B.); (A.E.D.)
| | - Luiz Marivando Barros
- Microscopy Laboratory, Regional University of Cariri (URCA), 1161 Cel. Antonio Luiz Avenue, Crato 63105-000, CE, Brazil; (C.V.B.O.); (P.A.G.d.S.); (J.P.K.); (L.M.B.); (A.E.D.)
| | - Antonia Eliene Duarte
- Microscopy Laboratory, Regional University of Cariri (URCA), 1161 Cel. Antonio Luiz Avenue, Crato 63105-000, CE, Brazil; (C.V.B.O.); (P.A.G.d.S.); (J.P.K.); (L.M.B.); (A.E.D.)
| | - Pedro Silvino Pereira
- Microscopy Laboratory, Regional University of Cariri (URCA), 1161 Cel. Antonio Luiz Avenue, Crato 63105-000, CE, Brazil; (C.V.B.O.); (P.A.G.d.S.); (J.P.K.); (L.M.B.); (A.E.D.)
| |
Collapse
|
9
|
Zhang K. Balancing de novo synthesis and salvage of lipids by Leishmania amastigotes. Curr Opin Microbiol 2021; 63:98-103. [PMID: 34311265 PMCID: PMC8463422 DOI: 10.1016/j.mib.2021.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 11/24/2022]
Abstract
Leishmania parasites replicate as flagellated, extracellular promastigotes in the sand fly vector and then differentiate into non-flagellated, intracellular amastigotes in the vertebrate host. Promastigotes rely on de novo synthesis to produce the majority of their lipids including glycerophospholipids, sterols and sphingolipids. In contrast, amastigotes acquire most of their lipids from the host although they retain some capacity for de novo synthesis. The switch from de novo synthesis to salvage reflects the transition of Leishmania from fast-replicating promastigotes to slow-growing, metabolically quiescent amastigotes. Future studies will reveal the uptake and remodeling of host lipids by amastigotes at the cellular and molecular levels. Blocking the lipid transfer from host to parasites may present a novel strategy to control Leishmania growth.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA.
| |
Collapse
|
10
|
Nano-Leish-IL: A novel iron oxide-based nanocomposite drug platform for effective treatment of cutaneous leishmaniasis. J Control Release 2021; 335:203-215. [PMID: 34019947 DOI: 10.1016/j.jconrel.2021.05.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 04/27/2021] [Accepted: 05/17/2021] [Indexed: 01/03/2023]
Abstract
Kinetoplastids are infamous parasites that include trypanosomes and Leishmania species. Here, we developed an anti-Leishmania nano-drug using ultra-small functional maghemite (γ-Fe2O3) nanoparticles (NPs) that were surface-doped by [CeLn]3/4+ to enable effective binding of the polycationic polyethylenebyimine (PEI) polymer by coordinative chemistry. This resulting nano-drug is cytolytic in-vitro to both Trypanosoma brucei parasites, the causative agent of sleeping sickness, as well as to three Leishmania species. The nano-drug induces the rupture of the single lysosome present in these parasites attributed to the PEI, leading to cytolysis. To evaluate the efficacy of a "cream-based" version of the nano-drug, which was termed "Nano-Leish-IL" for topical treatment of cutaneous leishmaniasis (CL), we developed a rapid screening method utilizing T. brucei parasites involved in social motility and demonstrated that functional NPs arrested the migration of the parasites. This assay presents a surrogate system to rapidly examine the efficacy of "cream-based" drugs in topical preparations against leishmaniasis, and possibly other dermal infectious diseases. The resulting Nano-Leish-IL topical preparation eliminated L. major infection in mice. Thus, this study presents a novel efficient nano-drug targeting the single lysosome of kinetoplastid parasites.
Collapse
|
11
|
Rosa LB, Aires RL, Oliveira LS, Fontes JV, Miguel DC, Abbehausen C. A "Golden Age" for the discovery of new antileishmanial agents: Current status of leishmanicidal gold complexes and prospective targets beyond the trypanothione system. ChemMedChem 2021; 16:1681-1695. [PMID: 33615725 DOI: 10.1002/cmdc.202100022] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Indexed: 12/11/2022]
Abstract
Leishmaniasis is one of the most neglected diseases worldwide and is considered a serious public health issue. The current therapeutic options have several disadvantages that make the search for new therapeutics urgent. Gold compounds are emerging as promising candidates based on encouraging in vitro and limited in vivo results for several AuI and AuIII complexes. The antiparasitic mechanisms of these molecules remain only partially understood. However, a few studies have proposed the trypanothione redox system as a target, similar to the mammalian thioredoxin system, pointed out as the main target for several gold compounds with significant antitumor activity. In this review, we present the current status of the investigation and design of gold compounds directed at treating leishmaniasis. In addition, we explore potential targets in Leishmania parasites beyond the trypanothione system, taking into account previous studies and structure modulation performed for gold-based compounds.
Collapse
Affiliation(s)
- Leticia B Rosa
- Institute of Biology, University of Campinas UNICAMP, Campinas, SP, Brazil
| | - Rochanna L Aires
- Institute of Chemistry, University of Campinas, PO Box 6154, 13083-970, Campinas, SP, Brazil)
| | - Laiane S Oliveira
- Institute of Chemistry, University of Campinas, PO Box 6154, 13083-970, Campinas, SP, Brazil)
| | - Josielle V Fontes
- Institute of Chemistry, University of Campinas, PO Box 6154, 13083-970, Campinas, SP, Brazil)
| | - Danilo C Miguel
- Institute of Biology, University of Campinas UNICAMP, Campinas, SP, Brazil
| | - Camilla Abbehausen
- Institute of Chemistry, University of Campinas, PO Box 6154, 13083-970, Campinas, SP, Brazil)
| |
Collapse
|
12
|
J B, M BM, Chanda K. An Overview on the Therapeutics of Neglected Infectious Diseases-Leishmaniasis and Chagas Diseases. Front Chem 2021; 9:622286. [PMID: 33777895 PMCID: PMC7994601 DOI: 10.3389/fchem.2021.622286] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/14/2021] [Indexed: 12/20/2022] Open
Abstract
Neglected tropical diseases (NTDs) as termed by WHO include twenty different infectious diseases that are caused by bacteria, viruses, and parasites. Among these NTDs, Chagas disease and leishmaniasis are reported to cause high mortality in humans and are further associated with the limitations of existing drugs like severe toxicity and drug resistance. The above hitches have rendered researchers to focus on developing alternatives and novel therapeutics for the treatment of these diseases. In the past decade, several target-based drugs have emerged, which focus on specific biochemical pathways of the causative parasites. For leishmaniasis, the targets such as nucleoside analogs, inhibitors targeting nucleoside phosphate kinases of the parasite’s purine salvage pathway, 20S proteasome of Leishmania, mitochondria, and the associated proteins are reviewed along with the chemical structures of potential drug candidates. Similarly, in case of therapeutics for Chagas disease, several target-based drug candidates targeting sterol biosynthetic pathway (C14-ademethylase), L-cysteine protease, heme peroxidation, mitochondria, farnesyl pyrophosphate, etc., which are vital and unique to the causative parasite are discussed. Moreover, the use of nano-based formulations towards the therapeutics of the above diseases is also discussed.
Collapse
Affiliation(s)
- Brindha J
- Division of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Chennai, India
| | - Balamurali M M
- Division of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Chennai, India
| | - Kaushik Chanda
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
13
|
Mukherjee S, Moitra S, Xu W, Hernandez V, Zhang K. Sterol 14-α-demethylase is vital for mitochondrial functions and stress tolerance in Leishmania major. PLoS Pathog 2020; 16:e1008810. [PMID: 32817704 PMCID: PMC7462297 DOI: 10.1371/journal.ppat.1008810] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 09/01/2020] [Accepted: 07/14/2020] [Indexed: 11/18/2022] Open
Abstract
Sterol 14-α-demethylase (C14DM) is a key enzyme in the biosynthesis of sterols and the primary target of azoles. In Leishmania major, genetic or chemical inactivation of C14DM leads to accumulation of 14-methylated sterol intermediates and profound plasma membrane abnormalities including increased fluidity and failure to maintain ordered membrane microdomains. These defects likely contribute to the hypersensitivity to heat and severely reduced virulence displayed by the C14DM-null mutants (c14dm‾). In addition to plasma membrane, sterols are present in intracellular organelles. In this study, we investigated the impact of C14DM ablation on mitochondria. Our results demonstrate that c14dm‾ mutants have significantly higher mitochondrial membrane potential than wild type parasites. Such high potential leads to the buildup of reactive oxygen species in the mitochondria, especially under nutrient-limiting conditions. Consistent with these mitochondrial alterations, c14dm‾ mutants show impairment in respiration and are heavily dependent on glucose uptake and glycolysis to generate energy. Consequently, these mutants are extremely sensitive to glucose deprivation and such vulnerability can be rescued through the supplementation of glucose or glycerol. In addition, the accumulation of oxidants may also contribute to the heat sensitivity exhibited by c14dm‾. Finally, genetic or chemical ablation of C14DM causes increased susceptibility to pentamidine, an antimicrobial agent with activity against trypanosomatids. In summary, our investigation reveals that alteration of sterol synthesis can negatively affect multiple cellular processes in Leishmania parasites and make them vulnerable to clinically relevant stress conditions.
Collapse
Affiliation(s)
- Sumit Mukherjee
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, United States of America
| | - Samrat Moitra
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, United States of America
| | - Wei Xu
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, United States of America
| | - Veronica Hernandez
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, United States of America
| | - Kai Zhang
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, United States of America
- * E-mail:
| |
Collapse
|
14
|
Chandrakar P, Gunaganti N, Parmar N, Kumar A, Singh SK, Rashid M, Wahajuddin M, Mitra K, Narender T, Kar S. β-Amino acid derivatives as mitochondrial complex III inhibitors of L. donovani: A promising chemotype targeting visceral leishmaniasis. Eur J Med Chem 2019; 182:111632. [PMID: 31499363 DOI: 10.1016/j.ejmech.2019.111632] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/02/2019] [Accepted: 08/19/2019] [Indexed: 10/26/2022]
Abstract
β-amino acids and their analogues are gathering increased attention not only because of their antibacterial and antifungal activity, but also for their use in designing peptidomimetics with increased oral bioavailability and resistance to metabolic degradation. In this study, a series of α-phenyl substituted chalcones, α-phenyl, β-amino substituted dihydrochalcones and β-amino acid derivatives were synthesized and evaluated for their antileishmanial efficacy against experimental visceral leishmaniasis (VL). Among all synthesized derivatives, 10c showed promising antileishmanial efficacy against both extracellular promastigote and intracellular amastigote (IC50 8.2 μM and 20.5 μM respectively) of L. donovani with negligible cytotoxic effect towards J774 macrophages and Vero cells. 10c effectively reduced spleen and liver parasite burden (>90%) in both hamster and Balb/c model of VL without any hepatotoxicity. In vitro pharmacokinetic analysis showed that 10c was stable in gastric fluid and plasma of Balb/c mice at 10 μg/ml. Further analysis of the molecular mechanism revealed that 10c entered into the parasite by depolarizing the plasma membrane rather than forming nonspecific pores and induced molecular events like loss in mitochondrial membrane potential with a gradual decline in ATP production. This, in turn, did not induce programmed cell death of the parasite; rather 10c induced bioenergetic collapse of the parasite by decreasing ATP synthesis through specific inhibition of mitochondrial complex III activity. Altogether, our results allude to the therapeutic potential of β-amino acid derivatives as novel antileishmanials, identifying them as lead compounds for further exploration in the design of potent candidates for the treatment of visceral leishmaniasis.
Collapse
Affiliation(s)
- Pragya Chandrakar
- Parasitology Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, New Delhi, India
| | - Naresh Gunaganti
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Naveen Parmar
- Parasitology Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, New Delhi, India
| | - Ashok Kumar
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Sandeep Kumar Singh
- Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, New Delhi, India; Pharmacokinetics and Metabolism Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Mamunur Rashid
- Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, New Delhi, India; Pharmacokinetics and Metabolism Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - M Wahajuddin
- Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, New Delhi, India; Pharmacokinetics and Metabolism Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Kalyan Mitra
- Sophisticated Analytical Instrument Facility Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, New Delhi, India
| | - Tadigopula Narender
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, New Delhi, India.
| | - Susanta Kar
- Parasitology Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, New Delhi, India.
| |
Collapse
|
15
|
Capela R, Moreira R, Lopes F. An Overview of Drug Resistance in Protozoal Diseases. Int J Mol Sci 2019; 20:E5748. [PMID: 31731801 PMCID: PMC6888673 DOI: 10.3390/ijms20225748] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/11/2019] [Accepted: 11/13/2019] [Indexed: 01/14/2023] Open
Abstract
Protozoan diseases continue to be a worldwide social and economic health problem. Increased drug resistance, emerging cross resistance, and lack of new drugs with novel mechanisms of action significantly reduce the effectiveness of current antiprotozoal therapies. While drug resistance associated to anti-infective agents is a reality, society seems to remain unaware of its proportions and consequences. Parasites usually develops ingenious and innovative mechanisms to achieve drug resistance, which requires more research and investment to fight it. In this review, drug resistance developed by protozoan parasites Plasmodium, Leishmania, and Trypanosoma will be discussed.
Collapse
Affiliation(s)
- Rita Capela
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (R.M.); (F.L.)
| | | | | |
Collapse
|
16
|
Shah A, Gupta SS. Anti-leishmanial Nanotherapeutics: A Current Perspective. Curr Drug Metab 2019; 20:473-482. [DOI: 10.2174/1389200219666181022163424] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 08/23/2018] [Accepted: 08/29/2018] [Indexed: 11/22/2022]
Abstract
Background:
Leishmaniasis is a dreaded disease caused by protozoan parasites belonging to the genus
Leishmania which results in significant morbidity and mortality worldwide. There are no vaccines available currently
for the treatment of Leishmaniasis and chemotherapy still remains the mainstay for anti-leishmanial therapeutics.
However, toxicity, reduced bioavailability, high cost and chemoresistance are the principal problems which limit the
use of the available drugs. In this context, anti-leishmanial nanotherapeutics may show the way for effective treatment
of this dreaded disease.
Methods:
We carried out extensive literature search of bibliographic database using keywords strictly within the
scope of the present study for peer reviewed research articles. We focused specifically on articles related to the application
of nanotechnology in drug development, drug delivery and vaccine delivery for anti-leishmanial therapeutics.
Results:
This study shows the immense potential of the application of nanotechnology in the field of anti-leishmanial
therapeutics. This will aid the targeted delivery of different drugs which is expected to increase the bioavailability,
reduce toxicity and also address the problem of chemoresistance.
Conclusion:
We surmise that exciting research in the field of anti-leishmanial nanotherapeutics is already showing
the promise for effective applicability. Though direct use of nanoparticles as therapeutic agents does not seem to be a
good option, the application of nanotechnology in this field for vaccine development is still in its early days. The
nano based drug delivery system for anti-leishmanial therapeutics has evolved considerably over the past ten years
and holds the potential to drastically change the landscape of anti-leishmanial therapeutics.
Collapse
Affiliation(s)
- Aditi Shah
- Division of Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad, Gujarat -380009, India
| | - Souvik Sen Gupta
- Division of Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad, Gujarat -380009, India
| |
Collapse
|
17
|
Martins RC, Dorneles GP, Teixeira VON, Antonello AM, Couto JL, Rodrigues Júnior LC, Monteiro MC, Peres A, Schrekker HS, Romão PRT. Imidazolium salts as innovative agents against Leishmania amazonensis. Int Immunopharmacol 2018; 63:101-109. [DOI: 10.1016/j.intimp.2018.07.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 07/17/2018] [Accepted: 07/30/2018] [Indexed: 12/21/2022]
|
18
|
Valdivieso E, Mejías F, Torrealba C, Benaim G, Kouznetsov VV, Sojo F, Rojas-Ruiz FA, Arvelo F, Dagger F. In vitro 4-Aryloxy-7-chloroquinoline derivatives are effective in mono- and combined therapy against Leishmania donovani and induce mitocondrial membrane potential disruption. Acta Trop 2018; 183:36-42. [PMID: 29604246 DOI: 10.1016/j.actatropica.2018.03.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/27/2018] [Accepted: 03/24/2018] [Indexed: 10/17/2022]
Abstract
The present study evaluates in vitro the effect of two synthetic compounds of the 7-chloro-4-aryloxyquinoline series, QI (C17H12ClNO3) and QII (C18H15ClN4O2S), on Leishmania donovani parasites. The results obtained demonstrate that these compounds are able to inhibit the proliferation of L. donovani promastigotes in a dose-dependent way (QI IC50 = 13.03 ± 3.4 and QII IC50 = 7.90 ± 0.6 μM). Likewise, these compounds significantly reduced the percentage of macrophage infection by amastigotesand the number of amastigotes within macrophage phagolysosomes, the clinical relevant phase of these parasites. Compound QI showed an IC50 value of 0.66 ± 0.2 μM, while for derivative QII, the corresponding IC50 was 1.02 ± 0.17 μM. Interestingly, the amastigotes were more susceptible to the drug treatment when compared to promastigotes. Furthermore, no cytotoxic effect of these compounds was observed on the macrophage cell line at the concentrations tested. The combination of these compounds with miltefosine and amphotericin B on both parasite morphotypes was evaluated. The isobolograms showed a synergistic effect for both combinations; with a Fractional Inhibitory Concentration (FIC) Index lower than 1 for promastigotes and less than 0.3 for intracellular amastigotes. The effect of QI and QII on mitochondrial membrane potential was also studied. The combination of quinolone derivatives compounds with miltefosine and amphotericin B showed 5-8-fold stronger depolarization of membrane mitochondrial potential when compared to drugs alone. The present work validates the combination of drugs as an effective alternative to potentiate the action of anti-Leishmania agents and points to the quinoline compounds studied here as possible leishmanicidal drugs.
Collapse
|
19
|
Da Silva BJM, Hage AAP, Silva EO, Rodrigues APD. Medicinal plants from the Brazilian Amazonian region and their antileishmanial activity: a review. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2018; 16:211-222. [DOI: 10.1016/j.joim.2018.04.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 04/07/2018] [Indexed: 12/15/2022]
|
20
|
Phloroglucinol derivatives from Hypericum species trigger mitochondrial dysfunction in Leishmania amazonensis. Parasitology 2018; 145:1199-1209. [PMID: 29482667 DOI: 10.1017/s0031182018000203] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Bioactive molecules isolated from plants are promising sources for the development of new therapies against leishmaniasis. We investigated the leishmanicidal activity of cariphenone A (1), isouliginosin B (2) and uliginosin B (3) isolated from Hypericum species. Promastigotes and amastigotes of Leishmania amazonensis were incubated with compounds 1-3 at concentrations 1-100 µm for 48 h. The anti-promastigote effect of compounds was also tested in combinations. The cytotoxicity against macrophages and human erythrocytes were determined using the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) method and hemolysis assay, respectively. The compounds 1-3 showed high leishmanicidal activity against promastigotes, IC50 values of 10.5, 17.5 and 11.3 µm, respectively. Synergistic interactions were found to the associations of compounds 1 and 2 [Σ fractional inhibitory concentration (FIC) = 0.41], and 2 and 3 (ΣFIC = 0.28) on promastigotes. All Hypericum compounds induced mitochondrial hyperpolarization and reactive oxygen species production in promastigotes. The compounds showed low cytotoxicity toward mammalian cells, high selectivity index and killed intracellular amastigotes probably mediated by oxidative stress. These results indicate that these compounds are promising candidates for the development of drugs against leishmaniasis.
Collapse
|
21
|
Borsari C, Quotadamo A, Ferrari S, Venturelli A, Cordeiro-da-Silva A, Santarem N, Costi MP. Scaffolds and Biological Targets Avenue to Fight Against Drug Resistance in Leishmaniasis. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2018. [DOI: 10.1016/bs.armc.2018.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
22
|
Effects of a new antiprotozoal drug, N,N′ -diphenyl-4-methoxy-benzamidine, on energy-linked functions of rat liver mitochondria. Chem Biol Interact 2018; 279:34-42. [DOI: 10.1016/j.cbi.2017.11.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 11/03/2017] [Accepted: 11/07/2017] [Indexed: 11/21/2022]
|
23
|
Antileishmanial Mechanism of Diamidines Involves Targeting Kinetoplasts. Antimicrob Agents Chemother 2016; 60:6828-6836. [PMID: 27600039 DOI: 10.1128/aac.01129-16] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 08/28/2016] [Indexed: 02/08/2023] Open
Abstract
Leishmaniasis is a disease caused by pathogenic Leishmania parasites; current treatments are toxic and expensive, and drug resistance has emerged. While pentamidine, a diamidine-type compound, is one of the treatments, its antileishmanial mechanism of action has not been investigated in depth. Here we tested several diamidines, including pentamidine and its analog DB75, against Leishmania donovani and elucidated their antileishmanial mechanisms. We identified three promising new antileishmanial diamidine compounds with 50% effective concentrations (EC50s) of 3.2, 3.4, and 4.5 μM, while pentamidine and DB75 exhibited EC50s of 1.46 and 20 μM, respectively. The most potent antileishmanial inhibitor, compound 1, showed strong DNA binding properties, with a shift in the melting temperature (ΔTm) of 24.2°C, whereas pentamidine had a ΔTm value of 2.1°C, and DB75 had a ΔTm value of 7.7°C. Additionally, DB75 localized in L. donovani kinetoplast DNA (kDNA) and mitochondria but not in nuclear DNA (nDNA). For 2 new diamidines, strong localization signals were observed in kDNA at 1 μM, and at higher concentrations, the signals also appeared in nuclei. All tested diamidines showed selective and dose-dependent inhibition of kDNA, but not nDNA, replication, likely by inhibiting L. donovani topoisomerase IB. Overall, these results suggest that diamidine antileishmanial compounds exert activity by accumulating toward and blocking replication of parasite kDNA.
Collapse
|
24
|
DDX3 DEAD-box RNA helicase plays a central role in mitochondrial protein quality control in Leishmania. Cell Death Dis 2016; 7:e2406. [PMID: 27735940 PMCID: PMC5133982 DOI: 10.1038/cddis.2016.315] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 09/07/2016] [Accepted: 09/08/2016] [Indexed: 01/08/2023]
Abstract
DDX3 is a highly conserved member of ATP-dependent DEAD-box RNA helicases with multiple functions in RNA metabolism and cellular signaling. Here, we describe a novel function for DDX3 in regulating the mitochondrial stress response in the parasitic protozoan Leishmania. We show that genetic inactivation of DDX3 leads to the accumulation of mitochondrial reactive oxygen species (ROS) associated with a defect in hydrogen peroxide detoxification. Upon stress, ROS production is greatly enhanced, causing mitochondrial membrane potential loss, mitochondrial fragmentation, and cell death. Importantly, this phenotype is exacerbated upon oxidative stress in parasites forced to use the mitochondrial oxidative respiratory machinery. Furthermore, we show that in the absence of DDX3, levels of major components of the unfolded protein response as well as of polyubiquitinated proteins increase in the parasite, particularly in the mitochondrion, as an indicator of mitochondrial protein damage. Consistent with these findings, immunoprecipitation and mass-spectrometry studies revealed potential interactions of DDX3 with key components of the cellular stress response, particularly the antioxidant response, the unfolded protein response, and the AAA-ATPase p97/VCP/Cdc48, which is essential in mitochondrial protein quality control by driving proteosomal degradation of polyubiquitinated proteins. Complementation studies using DDX3 deletion mutants lacking conserved motifs within the helicase core support that binding of DDX3 to ATP is essential for DDX3's function in mitochondrial proteostasis. As a result of the inability of DDX3-depleted Leishmania to recover from ROS damage and to survive various stresses in the host macrophage, parasite intracellular development was impaired. Collectively, these observations support a central role for the Leishmania DDX3 homolog in preventing ROS-mediated damage and in maintaining mitochondrial protein quality control.
Collapse
|
25
|
Garcia-Salcedo JA, Unciti-Broceta JD, Valverde-Pozo J, Soriano M. New Approaches to Overcome Transport Related Drug Resistance in Trypanosomatid Parasites. Front Pharmacol 2016; 7:351. [PMID: 27733833 PMCID: PMC5039210 DOI: 10.3389/fphar.2016.00351] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 09/16/2016] [Indexed: 01/07/2023] Open
Abstract
Leishmania and Trypanosoma are members of the Trypanosomatidae family that cause severe human infections such as leishmaniasis, Chagas disease, and sleeping sickness affecting millions of people worldwide. Despite efforts to eradicate them, migrations are expanding these infections to developing countries. There are no vaccines available and current treatments depend only on chemotherapy. Drug resistance is a major obstacle for the treatment of these diseases given that existing drugs are old and limited, with some having severe side effects. Most resistance mechanisms developed by these parasites are related with a decreased uptake or increased efflux of the drug due to mutations or altered expression of membrane transporters. Different new approaches have been elaborated that can overcome these mechanisms of resistance including the use of inhibitors of efflux pumps and drug carriers for both active and passive targeting. Here we review new formulations that have been successfully applied to circumvent resistance related to drug transporters, opening alternative ways to solve drug resistance in protozoan parasitic diseases.
Collapse
Affiliation(s)
- Jose A Garcia-Salcedo
- Unidad de Enfermedades Infecciosas y Microbiología, Instituto de Investigación Biosanitaria, ibs.GRANADA, Hospitales Universitarios de Granada - Universidad de Granada, GranadaSpain; Centro de Genómica e Investigación Oncológica - Pfizer/Universidad de Granada/Junta de Andalucía, GranadaSpain
| | - Juan D Unciti-Broceta
- Unidad de Enfermedades Infecciosas y Microbiología, Instituto de Investigación Biosanitaria, ibs.GRANADA, Hospitales Universitarios de Granada - Universidad de Granada, Granada Spain
| | - Javier Valverde-Pozo
- Unidad de Enfermedades Infecciosas y Microbiología, Instituto de Investigación Biosanitaria, ibs.GRANADA, Hospitales Universitarios de Granada - Universidad de Granada, GranadaSpain; Centro de Genómica e Investigación Oncológica - Pfizer/Universidad de Granada/Junta de Andalucía, GranadaSpain
| | - Miguel Soriano
- Centro de Genómica e Investigación Oncológica - Pfizer/Universidad de Granada/Junta de Andalucía, GranadaSpain; Departamento de Agronomía, Universidad de Almería, AlmeríaSpain
| |
Collapse
|
26
|
An Aromatic Diamidine That Targets Kinetoplast DNA, Impairs the Cell Cycle in Trypanosoma cruzi, and Diminishes Trypomastigote Release from Infected Mammalian Host Cells. Antimicrob Agents Chemother 2016; 60:5867-77. [PMID: 27431229 DOI: 10.1128/aac.01595-15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 07/12/2016] [Indexed: 11/20/2022] Open
Abstract
Trypanosoma cruzi is the etiological agent of Chagas disease, affecting approximately 10 million people in the Americas and with some 40 million people at risk. The objective of this study was to evaluate the anti-T. cruzi activity of three new diamidines that have a 3,4-ethylenedioxy extension of the thiophene core, designated MB17, MB19, and MB38. All three diamidines exhibited dose-dependent inhibition of epimastigote replication. The mechanisms of action of these diamidines were investigated. Unlike MB17 and MB19, MB38 exhibited a significant increase in the number of annexin-propidium iodide double-labeled cells compared to levels in control parasites. As MB17 had shown a lower 50% inhibitory concentration (IC50) against epimastigote growth, the mechanism of action of this drug was studied in more detail. MB17 triggered a decrease in the intracellular ATP levels. As a consequence, MB17 affected the genomic DNA and kinetoplast DNA (kDNA) and impaired the parasite cell cycle. Moreover, MB17 caused DNA fragmentation, with a more severe effect on kDNA than on nuclear DNA, resulting in dyskinetoplastic cells. MB17 was tested for toxicity and effectiveness for the treatment of infected CHO-K1 cells, exhibiting a 50% cytotoxic concentration (CC50) of 13.47 ± 0.37 μM and an IC50 of 0.14 ± 0.12 μM against trypomastigote release. MB17 also diminished the infection index by 60% at 0.5 μM. In conclusion, despite belonging to the same family, these diamidines have different efficiencies. To summarize, MB17 was the most potent of these diamidines against epimastigotes, producing DNA damage preferentially in kDNA, impairing the parasite cell cycle, and decreasing the infection index and trypomastigote release from infected mammalian host cells, with a high selectivity index (SI) (<90). These data suggest that MB17 could be an interesting lead compound against T. cruzi.
Collapse
|
27
|
No JH. Visceral leishmaniasis: Revisiting current treatments and approaches for future discoveries. Acta Trop 2016; 155:113-23. [PMID: 26748356 DOI: 10.1016/j.actatropica.2015.12.016] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 12/24/2015] [Accepted: 12/25/2015] [Indexed: 12/12/2022]
Abstract
The current treatments for visceral leishmaniasis are old and toxic with limited routes of administration. The emergence of drug-resistant Leishmania threatens the efficacy of the existing reservoir of antileishmanials, leading to an urgent need to develop new treatments. It is particularly important to review and understand how the current treatments act against Leishmania in order to identify valid drug targets or essential pathways for next-generation antileishmanials. It is equally important to adapt newly emerging biotechnologies to facilitate the current research on the development of novel antileishmanials in an efficient fashion. This review covers the basic background of the current visceral leishmaniasis treatments with an emphasis on the modes of action. It briefly discusses the role of the immune system in aiding the chemotherapy of leishmaniasis, describes potential new antileishmanial drug targets and pathways, and introduces recent progress on the utilization of high-throughput phenotypic screening assays to identify novel antileishmanial compounds.
Collapse
Affiliation(s)
- Joo Hwan No
- Institut Pasteur Korea, Leishmania Research Laboratory, 696 Sampyeong-dong, Bundang-gu, Seongnam-si, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
28
|
Coelho AC, Trinconi CT, Senra L, Yokoyama-Yasunaka JKU, Uliana SRB. Leishmania is not prone to develop resistance to tamoxifen. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2015; 5:77-83. [PMID: 26150922 PMCID: PMC4486464 DOI: 10.1016/j.ijpddr.2015.05.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 05/26/2015] [Accepted: 05/28/2015] [Indexed: 01/27/2023]
Abstract
Tamoxifen, an antineoplastic agent, is active in vitro and in vivo against the parasitic protozoa Leishmania. As part of our efforts to unravel this drug's mechanisms of action against the parasite and understand how resistance could arise, we tried to select tamoxifen-resistant Leishmania amazonensis. Three different strategies to generate tamoxifen resistant mutants were used: stepwise increase in drug concentration applied to promastigote cultures, chemical mutagenesis followed by drug selection and treatment of infected mice followed by selection of amastigotes. For amastigote selection, we employed a method with direct plating of parasites recovered from lesions into semi-solid media. Tamoxifen resistant parasites were not rescued by any of these methods. Miltefosine was used as a control in selection experiments and both stepwise selection and chemical mutagenesis allowed successful isolation of miltefosine resistant mutants. These findings are consistent with a multi-target mode of action to explain tamoxifen's leishmanicidal properties. Considering that drug resistance is a major concern in anti-parasitic chemotherapy, these findings support the proposition of using tamoxifen as a partner in drug combination schemes for the treatment of leishmaniasis. Tamoxifen is effective in the treatment of cutaneous and visceral leishmaniasis. Resistance to tamoxifen was not found in promastigotes upon mutagenesis/selection. Resistance to tamoxifen was not detected in amastigotes after in vivo selection. Tamoxifen may be a good partner in drug combination schemes for leishmaniasis.
Collapse
Affiliation(s)
- Adriano C Coelho
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, 05508-900, SP, Brazil
| | - Cristiana T Trinconi
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, 05508-900, SP, Brazil
| | - Luisa Senra
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, 05508-900, SP, Brazil
| | - Jenicer K U Yokoyama-Yasunaka
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, 05508-900, SP, Brazil
| | - Silvia R B Uliana
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, 05508-900, SP, Brazil
| |
Collapse
|
29
|
Micale N, Piperno A, Mahfoudh N, Schurigt U, Schultheis M, Mineo PG, Schirmeister T, Scala A, Grassi G. A hyaluronic acid–pentamidine bioconjugate as a macrophage mediated drug targeting delivery system for the treatment of leishmaniasis. RSC Adv 2015. [DOI: 10.1039/c5ra18019h] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A new HA–Pent bioconjugate was synthetized and proposed as drug targeting delivery system for the treatment of leishmaniasis, exploiting the specific biological recognition of HA by the macrophage.
Collapse
Affiliation(s)
- N. Micale
- Department of Drug Sciences and Health Products
- University of Messina
- 98168 Messina
- Italy
| | - A. Piperno
- Department of Chemical Sciences
- University of Messina
- 98166 Messina
- Italy
| | - N. Mahfoudh
- Department of Medicinal and Organic Chemistry
- University of Granada
- Faculty of Pharmacy
- 18071 Granada
- Spain
| | - U. Schurigt
- Institute for Molecular Infection Biology
- University of Würzburg
- Würzburg 97074
- Germany
| | - M. Schultheis
- Institute for Molecular Infection Biology
- University of Würzburg
- Würzburg 97074
- Germany
| | - P. G. Mineo
- Department of Chemical Sciences
- University of Catania
- 95125 Catania
- Italy
| | - T. Schirmeister
- Institute of Pharmacy and Biochemistry
- University of Mainz
- D-55128 Mainz
- Germany
| | - A. Scala
- Department of Chemical Sciences
- University of Messina
- 98166 Messina
- Italy
| | - G. Grassi
- Department of Chemical Sciences
- University of Messina
- 98166 Messina
- Italy
| |
Collapse
|
30
|
Design, synthesis and anti-leishmanial activity of novel symmetrical bispyridinium cyclophanes. Eur J Med Chem 2015; 89:362-9. [DOI: 10.1016/j.ejmech.2014.10.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 09/12/2014] [Accepted: 10/12/2014] [Indexed: 11/16/2022]
|
31
|
Hussain H, Al-Harrasi A, Al-Rawahi A, Green IR, Gibbons S. Fruitful decade for antileishmanial compounds from 2002 to late 2011. Chem Rev 2014; 114:10369-428. [PMID: 25253511 DOI: 10.1021/cr400552x] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Hidayat Hussain
- UoN Chair of Oman's Medicinal Plants and Marine Natural Products, University of Nizwa , P.O. Box 33, Birkat Al Mauz, Nizwa 616, Sultanate of Oman
| | | | | | | | | |
Collapse
|
32
|
Elmahallawy EK, Jiménez-Aranda A, Martínez AS, Rodriguez-Granger J, Navarro-Alarcón M, Gutiérrez-Fernández J, Agil A. Activity of melatonin against Leishmania infantum promastigotes by mitochondrial dependent pathway. Chem Biol Interact 2014; 220:84-93. [PMID: 24973643 DOI: 10.1016/j.cbi.2014.06.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 06/06/2014] [Accepted: 06/16/2014] [Indexed: 10/25/2022]
Abstract
Visceral leishmaniasis, a potentially fatal disease, remains a major international health problem. Only a limited number of effective antileishmanial agents are available for chemotherapy, and many of them are expensive with severe side effects or have a markedly reduced effectiveness due to the development of drug resistance. Hence, there is a genuine need to develop a novel effective and less toxic antileishmanial drug. Melatonin, a neurohormone found in animals, plants, and microbes, can participate in various biological and physiological functions. Several in vitro or in vivo studies have reported the inhibitory effect of melatonin against many parasites via various mechanisms, including modulation of intracellular concentrations of calcium in the parasite and/or any other suggested mechanism. Importantly, many of available antileishmanial drugs have been reported to exert their effects by disrupting calcium homeostasis in the parasite. The objective of the present study was to test the efficacy of exogenous melatonin against Leishmania infantum promastigotes in vitro. Interestingly, melatonin not only demonstrated a significant antileishmanial activity of against promastigote viability in tested cultures but was also accompanied by an alteration of the calcium homeostasis of parasite mitochondrion, represented by earlier mitochondrial permeability transition pore opening, and by changes in some mitochondrial parameters are critical to parasite survival. These pioneering findings suggest that melatonin may be a candidate for the development of novel effective antileishmanial agents either alone or in associations with other drugs.
Collapse
Affiliation(s)
- Ehab Kotb Elmahallawy
- Department of Microbiology, Faculty of Medicine, University of Granada, Granada, Spain; Department of Zoonotic diseases, Faculty of Veterinary Medicine, Sohag University, Sohag, Egypt
| | - Aroa Jiménez-Aranda
- Department of Pharmacology and Neurosciences Institute (CIBM), Faculty of Medicine, University of Granada, Granada, Spain
| | | | - Javier Rodriguez-Granger
- Service of Microbiology and Parasitology, University Hospital Virgen de las Nieves, Granada, Spain
| | - Miguel Navarro-Alarcón
- Department of Nutrition and Food Science, School of Pharmacy, University of Granada, Granada, Spain
| | | | - Ahmad Agil
- Department of Pharmacology and Neurosciences Institute (CIBM), Faculty of Medicine, University of Granada, Granada, Spain.
| |
Collapse
|
33
|
Comparative analysis of the omics technologies used to study antimonial, amphotericin B, and pentamidine resistance in leishmania. J Parasitol Res 2014; 2014:726328. [PMID: 24900912 PMCID: PMC4036598 DOI: 10.1155/2014/726328] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 04/24/2014] [Accepted: 04/28/2014] [Indexed: 01/13/2023] Open
Abstract
Leishmaniasis is a serious threat in developing countries due to its endemic nature and debilitating symptoms. Extensive research and investigations have been carried out to learn about the mechanism of drug resistance in Leishmania but results obtained in the laboratory are not in agreement with those obtained from the field. Also the lack of knowledge about the mode of action for a number of drugs makes the study of drug resistance more complex. A major concern in recent times has been regarding the role of parasitic virulence in drug resistance for Leishmania. Researchers have employed various techniques to unravel the facts about resistance and virulence in Leishmania. With advent of advanced and more specific means of detection, further hints about probable mechanisms of conferring resistance are expected. This review aims to provide a consolidated picture along with a comparative account of the work done so far to study the mechanism of antimony, amphotericin B, and pentamidine resistance using various techniques.
Collapse
|
34
|
4-amino bis-pyridinium derivatives as novel antileishmanial agents. Antimicrob Agents Chemother 2014; 58:4103-12. [PMID: 24798287 DOI: 10.1128/aac.02481-13] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The antileishmanial activity of a series of bis-pyridinium derivatives that are analogues of pentamidine have been investigated, and all compounds assayed were found to display activity against promastigotes and intracellular amastigotes of Leishmania donovani and Leishmania major, with 50% effective concentrations (EC50s) lower than 1 μM in most cases. The majority of compounds showed similar behavior in both Leishmania species, being slightly more active against L. major amastigotes. However, compound VGP-106 {1,1'-(biphenyl-4,4'-diylmethylene)bis[4-(4-bromo-N-methylanilino)pyridinium] dibromide} exhibited significantly higher activity against L. donovani amastigotes (EC50, 0.86 ± 0.46 μM) with a lower toxicity in THP-1 cells (EC50, 206.54 ± 9.89 μM). As such, VGP-106 was chosen as a representative compound to further elucidate the mode of action of this family of inhibitors in promastigote forms of L. donovani. We have determined that uptake of VGP-106 in Leishmania is a temperature-independent process, suggesting that the compound crosses the parasite membrane by diffusion. Transmission electron microscopy analysis showed a severe mitochondrial swelling in parasites treated with compound VGP-106, which induces hyperpolarization of the mitochondrial membrane potential and a significant decrease of intracellular free ATP levels due to the inhibition of ATP synthesis. Additionally, we have confirmed that VGP-106 induces mitochondrial ROS production and an increase in intracellular Ca(2+) levels. All these molecular events can activate the apoptotic process in Leishmania; however, propidium iodide assays gave no indication of DNA fragmentation. These results underline the potency of compound VGP-106, which may represent a new avenue for the development of novel antileishmanial compounds.
Collapse
|
35
|
The double-edged sword in pathogenic trypanosomatids: the pivotal role of mitochondria in oxidative stress and bioenergetics. BIOMED RESEARCH INTERNATIONAL 2014; 2014:614014. [PMID: 24800243 PMCID: PMC3988864 DOI: 10.1155/2014/614014] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 02/17/2014] [Indexed: 11/17/2022]
Abstract
The pathogenic trypanosomatids Trypanosoma brucei, Trypanosoma cruzi, and Leishmania spp. are the causative agents of African trypanosomiasis, Chagas disease, and leishmaniasis, respectively. These diseases are considered to be neglected tropical illnesses that persist under conditions of poverty and are concentrated in impoverished populations in the developing world. Novel efficient and nontoxic drugs are urgently needed as substitutes for the currently limited chemotherapy. Trypanosomatids display a single mitochondrion with several peculiar features, such as the presence of different energetic and antioxidant enzymes and a specific arrangement of mitochondrial DNA (kinetoplast DNA). Due to mitochondrial differences between mammals and trypanosomatids, this organelle is an excellent candidate for drug intervention. Additionally, during trypanosomatids' life cycle, the shape and functional plasticity of their single mitochondrion undergo profound alterations, reflecting adaptation to different environments. In an uncoupling situation, the organelle produces high amounts of reactive oxygen species. However, these species role in parasite biology is still controversial, involving parasite death, cell signalling, or even proliferation. Novel perspectives on trypanosomatid-targeting chemotherapy could be developed based on better comprehension of mitochondrial oxidative regulation processes.
Collapse
|
36
|
Independence from Kinetoplast DNA maintenance and expression is associated with multidrug resistance in Trypanosoma brucei in vitro. Antimicrob Agents Chemother 2014; 58:2925-8. [PMID: 24550326 PMCID: PMC3993240 DOI: 10.1128/aac.00122-14] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
It is well known that several antitrypanosomatid drugs accumulate in the parasite's mitochondrion, where they often bind to the organellar DNA, the kinetoplast. To what extent this property relates to the mode of action of these compounds has remained largely unquantified. Here we show that single point mutations that remove the dependence of laboratory strains of the sleeping sickness parasite Trypanosoma brucei on a functional kinetoplast result in significant resistance to the diamidine and phenanthridine drug classes.
Collapse
|
37
|
Singh N, Mishra BB, Bajpai S, Singh RK, Tiwari VK. Natural product based leads to fight against leishmaniasis. Bioorg Med Chem 2013; 22:18-45. [PMID: 24355247 DOI: 10.1016/j.bmc.2013.11.048] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Revised: 11/18/2013] [Accepted: 11/23/2013] [Indexed: 11/16/2022]
Abstract
The growing incidence of parasitic resistance against generic pentavalent antimonials, specifically for visceral disease in Indian subcontinent, is a serious issue in Leishmania control. Notwithstanding the two treatment alternatives, that is amphotericin B and miltefosine are being effectively used but their high cost and therapeutic complications limit their use in endemic areas. In the absence of a vaccine candidate, identification, and characterization of novel drugs and targets is a major requirement of leishmanial research. This review describes current drug regimens, putative drug targets, numerous natural products that have shown promising antileishmanial activity alongwith some key issues and strategies for future research to control leishmaniasis worldwide.
Collapse
Affiliation(s)
- Nisha Singh
- Molecular Immunology Laboratory, Department of Biochemistry, Faculty of Science, Banaras Hindu University, Varanasi 221005, India
| | - Bhuwan B Mishra
- Department of Chemistry, Faculty of Science, Banaras Hindu University, Varanasi 221005, India
| | - Surabhi Bajpai
- Molecular Immunology Laboratory, Department of Biochemistry, Faculty of Science, Banaras Hindu University, Varanasi 221005, India
| | - Rakesh K Singh
- Molecular Immunology Laboratory, Department of Biochemistry, Faculty of Science, Banaras Hindu University, Varanasi 221005, India.
| | - Vinod K Tiwari
- Department of Chemistry, Faculty of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
38
|
Ejazi SA, Ali N. Developments in diagnosis and treatment of visceral leishmaniasis during the last decade and future prospects. Expert Rev Anti Infect Ther 2013; 11:79-98. [PMID: 23428104 DOI: 10.1586/eri.12.148] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Human visceral leishmaniasis (VL) continues to be a life-threatening neglected tropical disease, with close to 200 million people at risk of infection globally. Epidemics and resurgence of VL are associated with negligence by the policy makers, economic decline and population movements. Control of the disease is hampered by the lack of proficient vaccination, rapid diagnosis in a field setting and severe side effects of current drug therapies. The diagnosis of VL relied largely on invasive techniques of detecting parasites in splenic and bone marrow aspirates. rK39 and PCR, despite problems related to varying sensitivities and specificities and field adaptability, respectively, are considered the best options for VL diagnosis today. No single therapy of VL currently offers satisfactory efficacy along with safety. The field of VL research only recently shifted toward actively identifying new drugs for safe and affordable treatment. Oral miltefosine and safe AmBisome along with better use of amphotericin B have been rapidly implemented in the last decade. A combination therapy will substantially reduce the required dose and duration of drug administration and reduce the chance of the development of resistance. In addition, identification of asymptomatic cases, vector control and treatment of post-kala-azar dermal leishmaniasis would allow new perspectives in VL control and management.
Collapse
Affiliation(s)
- Sarfaraz Ahmad Ejazi
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700032, India
| | | |
Collapse
|
39
|
Rai S, Bhaskar, Goel SK, Nath Dwivedi U, Sundar S, Goyal N. Role of efflux pumps and intracellular thiols in natural antimony resistant isolates of Leishmania donovani. PLoS One 2013; 8:e74862. [PMID: 24069359 PMCID: PMC3775726 DOI: 10.1371/journal.pone.0074862] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 08/06/2013] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND In view of the recent upsurge in the phenomenon of therapeutic failure, drug resistance in Leishmania, developed under natural field conditions, has become a great concern yet little understood. Accordingly, the study of determinants of antimony resistance is urgently warranted. Efflux transporters have been reported in Leishmania but their role in clinical resistance is still unknown. The present study was designed to elucidate the mechanism of natural antimony resistance in L. donovani field isolates by analyzing the functionality of efflux pump(s) and expression profiles of known genes involved in transport and thiol based redox metabolism. METHODOLOGY/PRINCIPAL FINDINGS We selected 7 clinical isolates (2 sensitive and 5 resistant) in addition to laboratory sensitive reference and SbIII resistant mutant strains for the present study. Functional characterization using flow cytometry identified efflux pumps that transported substrates of both P-gp and MRPA and were inhibited by the calmodulin antagonist trifluoperazine. For the first time, verapamil sensitive efflux pumps for rhodamine 123 were observed in L. donovani that were differentially active in resistant isolates. RT-PCR confirmed the over-expression of MRPA in isolates with high resistance index only. Resistant isolates also exhibited consistent down regulation of AQP1 and elevated intracellular thiol levels which were accompanied with increased expression of ODC and TR genes. Interestingly, γ-GCS is not implicated in clinical resistance in L. donovani isolates. CONCLUSIONS/SIGNIFICANCE Here we demonstrate for the first time, the role of P-gp type plasma membrane efflux transporter(s) in antimony resistance in L. donovani field isolates. Further, decreased levels of AQP1 and elevated thiols levels have emerged as biomarkers for clinical resistance.
Collapse
Affiliation(s)
- Smita Rai
- Division of Biochemistry, CSIR-Central Drug Research Institute, Lucknow, India
| | - Bhaskar
- Division of Biochemistry, CSIR-Central Drug Research Institute, Lucknow, India
| | - Sudhir K. Goel
- Department of Biochemistry, All India Institute of Medical Sciences, Bhopal, India
| | | | - Shyam Sundar
- Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Neena Goyal
- Division of Biochemistry, CSIR-Central Drug Research Institute, Lucknow, India
| |
Collapse
|
40
|
Nanjunda R, Wilson WD. Binding to the DNA minor groove by heterocyclic dications: from AT-specific monomers to GC recognition with dimers. ACTA ACUST UNITED AC 2013; Chapter 8:Unit8.8. [PMID: 23255206 DOI: 10.1002/0471142700.nc0808s51] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Compounds that bind in the DNA minor groove have provided critical information on DNA molecular recognition, have found extensive uses in biotechnology, and are providing clinically useful drugs against diseases as diverse as cancer and sleeping sickness. This review focuses on the development of clinically useful heterocyclic diamidine minor groove binders. These compounds have shown us that the classical model for minor groove binding in AT DNA sequences must be expanded in several ways: compounds with nonstandard shapes can bind strongly to the groove, water can be directly incorporated into the minor groove complex in an interfacial interaction, and the compounds can form cooperative stacked dimers to recognize GC and mixed AT/GC base pair sequences.
Collapse
Affiliation(s)
- Rupesh Nanjunda
- Department of Chemistry, Georgia State University, Atlanta, Georgia, USA
| | | |
Collapse
|
41
|
Wickramasekara Rajapakshage BK, Yamasaki M, Hwang SJ, Sasaki N, Murakami M, Tamura Y, Lim SY, Nakamura K, Ohta H, Takiguchi M. Involvement of mitochondrial genes of Babesia gibsoni in resistance to diminazene aceturate. J Vet Med Sci 2012; 74:1139-48. [PMID: 22673639 DOI: 10.1292/jvms.12-0056] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The stability of the characteristics of the diminazene aceturate (DA)-resistant B. gibsoni isolate was initially determined in vitro. Part of the DA-resistant B. gibsoni isolate was cultured without DA for 4 weeks, and then newly exposed to 200 ng/ml DA. As a result, this isolate could proliferate the same as the DA-resistant isolate, indicating that the characteristic of DA resistance was stable in the DA-resistant isolate. Additionally, the level of parasitemia in the DA-resistant isolate was comparatively lower than in the wild-type, suggesting that the proliferation potential of the DA-resistant isolate would be lower than that of the wild-type. Subsequently, to investigate the involvement of mitochondrial DNA (mtDNA) in DA resistance in B. gibsoni, the nucleotide sequences and deduced amino acid sequences of mitochondrial genes such as COXI, COXIII, and CYTb genes of the DA-resistant isolate, were compared with those of the wild-type. As a result, these three genes were not altered in the DA-resistant B. gibsoni isolate. Moreover, the transcription levels of COXI, COXIII, and CYTb genes were observed by semi-quantitative RT-PCR. As a result, the gene transcription of those genes in the DA-resistant isolate was not significantly altered. These results indicated that DA did not affect mtDNA directly in DA-resistant B. gibsoni. Thus, it is suggested that mtDNA should not be deeply involved in DA resistance in B. gibsoni.
Collapse
Affiliation(s)
- Bandula Kumara Wickramasekara Rajapakshage
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Seke Etet PF, Mahomoodally MF. New insights in staging and chemotherapy of African trypanosomiasis and possible contribution of medicinal plants. ScientificWorldJournal 2012; 2012:343652. [PMID: 22593674 PMCID: PMC3349134 DOI: 10.1100/2012/343652] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 11/16/2011] [Indexed: 11/17/2022] Open
Abstract
Human African trypanosomiasis (HAT) is a fatal if untreated fly-borne neuroinflammatory disease caused by protozoa of the species Trypanosoma brucei (T.b.). The increasing trend of HAT cases has been reversed, but according to WHO experts, new epidemics of this disease could appear. In addition, HAT is still a considerable burden for life quality and economy in 36 sub-Saharan Africa countries with 15-20 million persons at risk. Following joined initiatives of WHO and private partners, the fight against HAT was re-engaged, resulting in considerable breakthrough. We present here what is known at this day about HAT etiology and pathogenesis and the new insights in the development of accurate tools and tests for disease staging and severity monitoring in the field. Also, we elaborate herein the promising progresses made in the development of less toxic and more efficient trypanocidal drugs including the potential of medicinal plants and related alternative drug therapies.
Collapse
Affiliation(s)
- Paul F Seke Etet
- Department of Neurological Sciences (DNNMMS), University of Verona, Via Delle Grazie 8, 37134 Verona, Italy
| | | |
Collapse
|
43
|
Mitochondria and Trypanosomatids: Targets and Drugs. Pharm Res 2011; 28:2758-70. [DOI: 10.1007/s11095-011-0586-3] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 09/07/2011] [Indexed: 01/20/2023]
|
44
|
Seifert K. Structures, targets and recent approaches in anti-leishmanial drug discovery and development. THE OPEN MEDICINAL CHEMISTRY JOURNAL 2011; 5:31-9. [PMID: 21629509 PMCID: PMC3103891 DOI: 10.2174/1874104501105010031] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Revised: 05/12/2010] [Accepted: 06/20/2010] [Indexed: 11/22/2022]
Abstract
Recent years have seen a significant improvement in available treatment options for leishmaniasis. Two new drugs, miltefosine and paromomycin, have been registered for the treatment of visceral leishmaniasis (VL) in India since 2002. Combination therapy is now explored in clinical trials as a new treatment approach for VL to reduce the length of treatment and potentially prevent selection of resistant parasites. However there is still a need for new drugs due to safety, resistance, stability and cost issues with existing therapies. The search for topical treatments for cutaneous leishmaniasis (CL) is ongoing. This review gives a brief overview of recent developments and approaches in anti-leishmanial drug discovery and development.
Collapse
Affiliation(s)
- Karin Seifert
- London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| |
Collapse
|
45
|
Ibrahim HMS, Al-Salabi MI, El Sabbagh N, Quashie NB, Alkhaldi AAM, Escale R, Smith TK, Vial HJ, de Koning HP. Symmetrical choline-derived dications display strong anti-kinetoplastid activity. J Antimicrob Chemother 2010; 66:111-25. [PMID: 21078603 DOI: 10.1093/jac/dkq401] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVES to investigate the anti-kinetoplastid activity of choline-derived analogues with previously reported antimalarial efficacy. METHODS from an existing choline analogue library, seven antimalarial compounds, representative of the first-, second- and third-generation analogues previously developed, were assessed for activity against Trypanosoma and Leishmania spp. Using a variety of techniques, the effects of choline analogue exposure on the parasites were documented and a preliminary investigation of their mode of action was performed. RESULTS the activities of choline-derived compounds against Trypanosoma brucei and Leishmania mexicana were determined. The compounds displayed promising anti-kinetoplastid activity, particularly against T. brucei, to which 4/7 displayed submicromolar EC(50) values for the wild-type strain. Low micromolar concentrations of most compounds cleared trypanosome cultures within 24-48 h. The compounds inhibit a choline transporter in Leishmania, but their entry may not depend only on this carrier; T. b. brucei lacks a choline carrier and the mode of uptake remains unclear. The compounds had no effect on the overall lipid composition of the cells, cell cycle progression or cyclic adenosine monophosphate production or short-term effects on intracellular calcium levels. However, several of the compounds, displayed pronounced effects on the mitochondrial membrane potential; this action was not associated with production of reactive oxygen species but rather with a slow rise of intracellular calcium levels and DNA fragmentation. CONCLUSIONS the choline analogues displayed strong activity against kinetoplastid parasites, particularly against T. b. brucei. In contrast to their antimalarial activity, they did not act on trypanosomes by disrupting choline salvage or phospholipid metabolism, instead disrupting mitochondrial function, leading to chromosomal fragmentation.
Collapse
Affiliation(s)
- Hasan M S Ibrahim
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Tafenoquine, an antiplasmodial 8-aminoquinoline, targets leishmania respiratory complex III and induces apoptosis. Antimicrob Agents Chemother 2010; 54:5344-51. [PMID: 20837758 DOI: 10.1128/aac.00790-10] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Tafenoquine (TFQ), an 8-aminoquinoline analogue of primaquine, which is currently under clinical trial (phase IIb/III) for the treatment and prevention of malaria, may represent an alternative treatment for leishmaniasis. In this work, we have studied the mechanism of action of TFQ against Leishmania parasites. TFQ impaired the overall bioenergetic metabolism of Leishmania promastigotes, causing a rapid drop in intracellular ATP levels without affecting plasma membrane permeability. TFQ induced mitochondrial dysfunction through the inhibition of cytochrome c reductase (respiratory complex III) with a decrease in the oxygen consumption rate and depolarization of mitochondrial membrane potential. This was accompanied by ROS production, elevation of intracellular Ca(2+) levels and concomitant nuclear DNA fragmentation. We conclude that TFQ targets Leishmania mitochondria, leading to an apoptosis-like death process.
Collapse
|
47
|
Nishikawa H, Yamada E, Shibata T, Uchihashi S, Fan H, Hayakawa H, Nomura N, Mitsuyama J. Uptake of T-2307, a novel arylamidine, in Candida albicans. J Antimicrob Chemother 2010; 65:1681-7. [PMID: 20513704 DOI: 10.1093/jac/dkq177] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES T-2307, a novel arylamidine synthesized at Toyama Chemical Co., Ltd, has in vitro and in vivo broad-spectrum activities against pathogenic fungi. T-2307 particularly exhibits potent in vitro and in vivo activity against Candida albicans, suggesting that its uptake might be mediated by a transport system. In this report, we studied the uptake of T-2307 in C. albicans. METHODS C. albicans cells and rat hepatocytes were exposed to 0.02 microM [(14)C]T-2307. After incubation, the reaction mixture was concentrated and layered on a silicon layer (mixture of silicon oil and liquid paraffin) inside a tube. The tube was then centrifuged to transfer cells into the bottom layer (sodium hydroxide) for solubilization. The bottom layer was neutralized and measured for radioactivity. RESULTS T-2307 was concentrated from the extracellular medium by C. albicans cells in 10 mM phosphate buffer solution supplemented with 1% glucose by 3200- to 5100-fold. The accumulation was approximately two orders of magnitude greater than that achieved with a rat hepatocyte preparation. T-2307 uptake was sensitive to temperature and extracellular pH, and was reduced in the presence of inhibitors of mitochondrial respiration, oxidative phosphorylation and plasma membrane proton pump, and by an uncoupler. Furthermore, T-2307 uptake was concentration dependent and an Eadie-Hofstee plot suggested the involvement of two transport systems. CONCLUSIONS The considerably higher concentrations of T-2307 were selectively accumulated in C. albicans via transporter-mediated systems, as compared with the concentrations in rat hepatocytes. This transporter-mediated uptake of T-2307 contributes to its potent anticandidal activity.
Collapse
Affiliation(s)
- Hiroshi Nishikawa
- Research Laboratories, Toyama Chemical Co., Ltd, 2-4-1 Shimookui, Toyama, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Acestor N, Panigrahi AK, Ogata Y, Anupama A, Stuart KD. Protein composition of Trypanosoma brucei mitochondrial membranes. Proteomics 2010; 9:5497-508. [PMID: 19834910 DOI: 10.1002/pmic.200900354] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Mitochondria consist of four compartments, outer membrane, intermembrane space, inner membrane, and matrix; each harboring specific functions and structures. In this study, we used LC-MS/MS to characterize the protein composition of Trypanosoma brucei mitochondrial (mt) membranes, which were enriched by different biochemical fractionation techniques. The analyses identified 202 proteins that contain one or more transmembrane domain(s) and/or positive GRAVY scores. Of these, various criteria were used to assign 72 proteins to mt membranes with high confidence, and 106 with moderate-to-low confidence. The sub-cellular localization of a selected subset of 13 membrane assigned proteins was confirmed by tagging and immunofluorescence analysis. While most proteins assigned to mt membrane have putative roles in metabolic, energy generating, and transport processes, approximately 50% have no known function. These studies result in a comprehensive profile of the composition and sub-organellar location of proteins in the T. brucei mitochondrion thus, providing useful information on mt functions.
Collapse
|
49
|
Sauvage V, Aubert D, Escotte-Binet S, Villena I. The role of ATP-binding cassette (ABC) proteins in protozoan parasites. Mol Biochem Parasitol 2009; 167:81-94. [PMID: 19464325 DOI: 10.1016/j.molbiopara.2009.05.005] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2009] [Revised: 05/11/2009] [Accepted: 05/12/2009] [Indexed: 10/20/2022]
Abstract
The ATP-binding cassette (ABC) superfamily is one of the largest protein families with representatives in all kingdoms of life. Members of this superfamily are involved in a wide variety of transport processes with substrates ranging from small ions to relatively large polypeptides and polysaccharides, but also in cellular processes such as DNA repair, translation or regulation of gene expression. For many years, the role of ABC proteins was mainly investigated for their implication in drug resistance. However, recent studies focused rather on their physiological functions for the parasite. In this review, we present an overview of ABC proteins in major protozoan parasites including Leishmania, Trypanosoma, Plasmodium, Toxoplasma, Cryptosporidium and Entamoeba species. We will also discuss the role of characterized ABC transporters in the biology of the parasite and in drug resistance.
Collapse
Affiliation(s)
- Virginie Sauvage
- Laboratoire de Parasitologie-Mycologie, EA 3800, IFR 53, UFR Médecine, Université de Reims Champagne-Ardenne, 51 rue Cognacq-Jay, 51095 Reims Cedex, France
| | | | | | | |
Collapse
|
50
|
Sarkar A, Mandal G, Singh N, Sundar S, Chatterjee M. Flow cytometric determination of intracellular non-protein thiols in Leishmania promastigotes using 5-chloromethyl fluorescein diacetate. Exp Parasitol 2009; 122:299-305. [PMID: 19393240 DOI: 10.1016/j.exppara.2009.04.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Revised: 04/09/2009] [Accepted: 04/14/2009] [Indexed: 11/19/2022]
Abstract
Leishmania parasites lack catalase and therefore, their anti-oxidant system hinges primarily upon non-protein thiols; accordingly, depletion of thiols could potentially serve as an effective drug target. We have developed a flow cytometry based assay using 5-chloromethyl fluorescein diacetate based upon its selective staining of non-protein thiols. Its specificity was confirmed using buthionine sulphoximine (a gamma-glutamyl cysteine synthetase inhibitor), diamide (an oxidizing agent of intracellular thiols) and N-ethylmaleimide (a covalent modifier of cysteine residues) as evidenced by reduction in fluorescence; furthermore, restoration of fluorescence by N-acetyl cysteine corroborated specificity of 5-chloromethyl fluorescein diacetate to measure non-protein thiols. Differences in basal level of thiols in antimony sensitive and antimony resistant Leishmania field isolates were detected. The depletion of non-protein thiols by conventional anti-leishmanial drugs e.g. antimony and miltefosine was demonstrated. Furthermore, fluorescence was unaffected by depletion of ATP in majority of the strains studied, indicating that 5-chloromethyl fluorescein diacetate is not a substrate for the pump operative in most Leishmania donovani strains. Taken together, measurement of 5-chloromethyl fluorescein diacetate fluorescence is an effective method for monitoring non-protein thiols in Leishmania promastigotes.
Collapse
Affiliation(s)
- Avijit Sarkar
- Department of Pharmacology, Institute of Post Graduate Medical Education and Research, Kolkata, 244B Acharya JC Bose Road, Kolkata-700 020, India
| | | | | | | | | |
Collapse
|