1
|
Njume FN, Razzauti A, Soler M, Perschin V, Fazeli G, Bourez A, Delporte C, Ghogomu SM, Poelvoorde P, Pichard S, Birck C, Poterszman A, Souopgui J, Van Antwerpen P, Stigloher C, Vanhamme L, Laurent P. A lipid transfer protein ensures nematode cuticular impermeability. iScience 2022; 25:105357. [PMID: 36339267 PMCID: PMC9626681 DOI: 10.1016/j.isci.2022.105357] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 07/20/2022] [Accepted: 10/11/2022] [Indexed: 11/19/2022] Open
Abstract
The cuticle of C. elegans is impermeable to chemicals, toxins, and pathogens. However, increased permeability is a desirable phenotype because it facilitates chemical uptake. Surface lipids contribute to the permeability barrier. Here, we identify the lipid transfer protein GMAP-1 as a critical element setting the permeability of the C. elegans cuticle. A gmap-1 deletion mutant increases cuticular permeability to sodium azide, levamisole, Hoechst, and DiI. Expressing GMAP-1 in the hypodermis or transiently in the adults is sufficient to rescue this gmap-1 permeability phenotype. GMAP-1 protein is secreted from the hypodermis to the aqueous fluid filling the space between collagen fibers of the cuticle. In vitro, GMAP-1 protein binds phosphatidylserine and phosphatidylcholine while in vivo, GMAP-1 sets the surface lipid composition and organization. Altogether, our results suggest GMAP-1 secreted by hypodermis shuttles lipids to the surface to form the permeability barrier of C. elegans. GMAP-1 is secreted by the hypodermis toward the cuticle of Caenorhabditis elegans GMAP-1 binds and shuttle phosphoglycerides GMAP-1 sets the lipid composition of the cuticle While healthy, gmap-1 mutant displays high cuticular permeability
Collapse
Affiliation(s)
- Ferdinand Ngale Njume
- Department of Molecular Biology, Institute of Biology and Molecular Medicine, IBMM, Université Libre de Bruxelles, Bruxelles, Belgium
- Molecular and Cell Biology Laboratory, Biotechnology Unit, University of Buea, Buea, Cameroon
- Laboratory of Neurophysiology, ULB Institute for Neuroscience, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Adria Razzauti
- Laboratory of Neurophysiology, ULB Institute for Neuroscience, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Miguel Soler
- Laboratory of Neurophysiology, ULB Institute for Neuroscience, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Veronika Perschin
- Imaging Core Facility, Biocenter, University of Würzburg, Würzburg, Germany
| | - Gholamreza Fazeli
- Imaging Core Facility, Biocenter, University of Würzburg, Würzburg, Germany
| | - Axelle Bourez
- RD3-Pharmacognosy, Bioanalysis and Drug Discovery and Analytical Platform of the Faculty of Pharmacy, Universite libre de Bruxelles, Bruxelles, Belgium
| | - Cedric Delporte
- RD3-Pharmacognosy, Bioanalysis and Drug Discovery and Analytical Platform of the Faculty of Pharmacy, Universite libre de Bruxelles, Bruxelles, Belgium
| | - Stephen M. Ghogomu
- Molecular and Cell Biology Laboratory, Biotechnology Unit, University of Buea, Buea, Cameroon
| | - Philippe Poelvoorde
- Department of Molecular Biology, Institute of Biology and Molecular Medicine, IBMM, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Simon Pichard
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | - Catherine Birck
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | - Arnaud Poterszman
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | - Jacob Souopgui
- Department of Molecular Biology, Institute of Biology and Molecular Medicine, IBMM, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Pierre Van Antwerpen
- RD3-Pharmacognosy, Bioanalysis and Drug Discovery and Analytical Platform of the Faculty of Pharmacy, Universite libre de Bruxelles, Bruxelles, Belgium
| | | | - Luc Vanhamme
- Department of Molecular Biology, Institute of Biology and Molecular Medicine, IBMM, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Patrick Laurent
- Laboratory of Neurophysiology, ULB Institute for Neuroscience, Université Libre de Bruxelles, Bruxelles, Belgium
- Corresponding author
| |
Collapse
|
2
|
Wu YZ, Jiang HS, Han HF, Li PH, Lu MR, Tsai IJ, Wu YC. C. elegans BLMP-1 controls apical epidermal cell morphology by repressing expression of mannosyltransferase bus-8 and molting signal mlt-8. Dev Biol 2022; 486:96-108. [DOI: 10.1016/j.ydbio.2022.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/17/2022] [Accepted: 03/29/2022] [Indexed: 11/26/2022]
|
3
|
Hotterbeekx A, Perneel J, Vieri MK, Colebunders R, Kumar-Singh S. The Secretome of Filarial Nematodes and Its Role in Host-Parasite Interactions and Pathogenicity in Onchocerciasis-Associated Epilepsy. Front Cell Infect Microbiol 2021; 11:662766. [PMID: 33996633 PMCID: PMC8113626 DOI: 10.3389/fcimb.2021.662766] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/13/2021] [Indexed: 12/16/2022] Open
Abstract
Filarial nematodes secrete bioactive molecules which are of interest as potential mediators for manipulating host biology, as they are readily available at the host-parasite interface. The adult parasites can survive for years in the mammalian host, due to their successful modulation of the host immune system and most of these immunomodulatory strategies are based on soluble mediators excreted by the parasite. The secretome of filarial nematodes is a key player in both infection and pathology, making them an interesting target for further investigation. This review summarises the current knowledge regarding the components of the excretory-secretory products (ESPs) of filarial parasites and their bioactive functions in the human host. In addition, the pathogenic potential of the identified components, which are mostly proteins, in the pathophysiology of onchocerciasis-associated epilepsy is discussed.
Collapse
Affiliation(s)
- An Hotterbeekx
- Molecular Pathology Group, Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium.,Global Health Institute, University of Antwerp, Antwerp, Belgium
| | - Jolien Perneel
- Molecular Pathology Group, Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium.,Global Health Institute, University of Antwerp, Antwerp, Belgium
| | - Melissa Krizia Vieri
- Molecular Pathology Group, Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium.,Global Health Institute, University of Antwerp, Antwerp, Belgium
| | | | - Samir Kumar-Singh
- Molecular Pathology Group, Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
4
|
Wu Z, Nagano I, Khueangchiangkhwang S, Maekawa Y. Proteomics of Trichinella. TRICHINELLA AND TRICHINELLOSIS 2021:103-183. [DOI: 10.1016/b978-0-12-821209-7.00009-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
5
|
Njume FN, Ghogomu SM, Shey RA, Gainkam LOT, Poelvoorde P, Humblet P, Kamgno J, Robert A, Mutesa L, Lelubre C, Edelweiss E, Poterszman A, Anheuser S, Vanhamme L, Souopgui J. Identification and characterization of the Onchocerca volvulus Excretory Secretory Product Ov28CRP, a putative GM2 activator protein. PLoS Negl Trop Dis 2019; 13:e0007591. [PMID: 31329585 PMCID: PMC6675134 DOI: 10.1371/journal.pntd.0007591] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 08/01/2019] [Accepted: 07/01/2019] [Indexed: 11/18/2022] Open
Abstract
Onchocerca volvulus is the nematode pathogen responsible for human onchocerciasis also known as "River blindness", a neglected tropical disease that affects up to 18 million people worldwide. Helminths Excretory Secretory Products (ESPs) constitute a rich repertoire of molecules that can be exploited for host-parasite relationship, diagnosis and vaccine studies. Here, we report, using a range of molecular techniques including PCR, western blot, recombinant DNA technology, ELISA, high performance thin-layer chromatography and mass spectrometry that the 28 KDa cysteine-rich protein (Ov28CRP) is a reliable component of the O. volvulus ESPs to address the biology of this parasite. We showed that (1) Ov28CRP is a putative ganglioside GM2 Activator Protein (GM2AP) conserved in nematode; (2) OvGM2AP gene is transcriptionally activated in all investigated stages of the parasitic life cycle, including larval and adult stages; (3) The full-length OvGM2AP was detected in in-vitro O. volvulus ESPs of adult and larval stages; (4) the mass expressed and purified recombinant OvGM2AP purified from insect cell culture medium was found to be glycosylated at asparagine 173 and lacked N-terminal signal peptide sequence; (5) the recombinant OvGM2AP discriminated serum samples of infected and uninfected individuals; (6) OvGM2AP competitively inhibits MUG degradation by recombinant β-hexosaminidase A but not MUGS, and could not hydrolyze the GM2 to GM3; (7) humoral immune responses to the recombinant OvGM2AP revealed a negative correlation with ivermectin treatment. Altogether, our findings suggest for the first time that OvGM2AP is an antigenic molecule whose biochemical and immunological features are important to gain more insight into our understanding of host-parasite relationship, as well as its function in parasite development at large.
Collapse
Affiliation(s)
- Ferdinand Ngale Njume
- Department of Molecular Biology, Institute of Biology and Molecular Medicine, IBMM, Université Libre de Bruxelles, Gosselies, Belgium
- Molecular and Cell Biology Laboratory, Biotechnology Unit, University of Buea, Buea, Cameroon
| | - Stephen Mbigha Ghogomu
- Molecular and Cell Biology Laboratory, Biotechnology Unit, University of Buea, Buea, Cameroon
| | - Robert Adamu Shey
- Department of Molecular Biology, Institute of Biology and Molecular Medicine, IBMM, Université Libre de Bruxelles, Gosselies, Belgium
- Molecular and Cell Biology Laboratory, Biotechnology Unit, University of Buea, Buea, Cameroon
| | - Lea Olive Tchouate Gainkam
- Department of Molecular Biology, Institute of Biology and Molecular Medicine, IBMM, Université Libre de Bruxelles, Gosselies, Belgium
| | - Philippe Poelvoorde
- Department of Molecular Biology, Institute of Biology and Molecular Medicine, IBMM, Université Libre de Bruxelles, Gosselies, Belgium
| | - Perrine Humblet
- École de santé publique, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Joseph Kamgno
- Department of Epidemiology, Centre for research on filariasis and other tropical diseases, Yaounde, Cameroon
| | - Annie Robert
- Faculté de santé publique, Institut de recherche expérimentale et clinique, Pôle d'épidémiologie et biostatistique, Université Catholique de Louvain, Clos Chapelle-aux-champs, Woluwe-Saint-Lambert, Belgium
| | - Leon Mutesa
- Center for Human Genetics, College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda
| | - Christophe Lelubre
- Laboratoire de Médecine Expérimentale, Université Libre de Bruxelles (ULB)—Unité 222, CHU Charleroi (Hôpital André Vésale), Rue de Gozée, Montigny-Le-Tilleul, Belgium
| | - Evelina Edelweiss
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de la Santé et de la Recherche Médicale, UMR7104, Illkirch, France
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, UMR7104, Illkirch, France
| | - Arnaud Poterszman
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de la Santé et de la Recherche Médicale, UMR7104, Illkirch, France
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, UMR7104, Illkirch, France
| | - Susi Anheuser
- LIMES Institute, Membrane Biology & Lipid Biochemistry Unit, c/o Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Bonn, Germany
| | - Luc Vanhamme
- Department of Molecular Biology, Institute of Biology and Molecular Medicine, IBMM, Université Libre de Bruxelles, Gosselies, Belgium
| | - Jacob Souopgui
- Department of Molecular Biology, Institute of Biology and Molecular Medicine, IBMM, Université Libre de Bruxelles, Gosselies, Belgium
| |
Collapse
|
6
|
Kolter T. Ganglioside biochemistry. ISRN BIOCHEMISTRY 2012; 2012:506160. [PMID: 25969757 PMCID: PMC4393008 DOI: 10.5402/2012/506160] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 10/09/2012] [Indexed: 01/21/2023]
Abstract
Gangliosides are sialic acid-containing glycosphingolipids. They occur especially on the cellular surfaces of neuronal cells, where they form a complex pattern, but are also found in many other cell types. The paper provides a general overview on their structures, occurrence, and metabolism. Key functional, biochemical, and pathobiochemical aspects are summarized.
Collapse
Affiliation(s)
- Thomas Kolter
- Program Unit Membrane Biology & Lipid Biochemistry, LiMES, University of Bonn, Gerhard-Domagk Straße 1, 53121 Bonn, Germany
| |
Collapse
|
7
|
Trichinella spiralis secreted enzymes regulate nucleotide-induced mast cell activation and release of mouse mast cell protease 1. Infect Immun 2012; 80:3761-7. [PMID: 22890994 DOI: 10.1128/iai.00411-12] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Extracellular nucleotides are important triggers of innate immunity, acting on a wide variety of cells via signaling through purinergic receptors. Mucosal mast cells contribute to expulsion of a number of gastrointestinal nematode parasites, and mouse mast cell protease 1 has been shown to have a critical role in clearance of Trichinella spiralis from the intestinal tract. We show here that adenosine, ADP, ATP, UDP, and UTP all stimulate calcium mobilization in bone marrow-derived mast cells with a mucosal phenotype. Secreted proteins from T. spiralis infective larvae inhibit nucleotide-induced mast cell activation, and that induced by ADP and UDP is specifically blocked by parasite secretory 5'-nucleotidase. Release of mouse mast cell protease 1 is stimulated by ADP and ATP. Both parasite secreted products and the 5'-nucleotidase inhibit ADP-induced release of mast cell protease, whereas that stimulated by ATP is partially inhibited by secreted products alone. This indicates that the 5'-nucleotidase contributes to but is not solely responsible for inhibition of nucleotide-mediated effects on mast cell function. Secretion of nucleotide-metabolizing enzymes by parasitic nematodes most likely evolved as a strategy for suppression of innate immune responses and is discussed in this context.
Collapse
|
8
|
Characterisation of the Trichinella spiralis deubiquitinating enzyme, TsUCH37, an evolutionarily conserved proteasome interaction partner. PLoS Negl Trop Dis 2011; 5:e1340. [PMID: 22013496 PMCID: PMC3186758 DOI: 10.1371/journal.pntd.0001340] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2011] [Accepted: 08/16/2011] [Indexed: 01/05/2023] Open
Abstract
Background Trichinella spiralis is a zoonotic parasitic nematode that causes trichinellosis, a disease that has been identified on all continents except Antarctica. During chronic infection, T. spiralis larvae infect skeletal myofibres, severely disrupting their differentiation state. Methodology and Results An activity-based probe, HA-Ub-VME, was used to identify deubiquitinating enzyme (DUB) activity in lysate of T. spiralis L1 larvae. Results were analysed by immuno-blot and immuno-precipitation, identifying a number of potential DUBs. Immuno-precipitated proteins were subjected to LC/MS/MS, yielding peptides with sequence homology to 5 conserved human DUBs: UCH-L5, UCH-L3, HAUSP, OTU 6B and Ataxin-3. The predicted gene encoding the putative UCH-L5 homologue, TsUCH37, was cloned and recombinant protein was expressed and purified. The deubiquitinating activity of this enzyme was verified by Ub-AMC assay. Co-precipitation of recombinant TsUCH37 showed that the protein associates with putative T. spiralis proteasome components, including the yeast Rpn13 homologue ADRM1. In addition, the UCH inhibitor LDN-57444 exhibited specific inhibition of recombinant TsUCH37 and reduced the viability of cultured L1 larvae. Conclusions This study reports the identification of the first T. spiralis DUB, a cysteine protease that is putatively orthologous to the human protein, hUCH-L5. Results suggest that the interaction of this protein with the proteasome has been conserved throughout evolution. We show potential for the use of inhibitor compounds to elucidate the role of UCH enzymes in T. spiralis infection and their investigation as therapeutic targets for trichinellosis. Trichinella spiralis is a parasitic nematode that infects mammals indiscriminately. Although the biggest impact of trichinellosis is observed in developing countries, the parasite is found on all continents except Antarctica. In humans, Trichinella infection contributes globally to helminth related morbidity and disability adjusted life years. In animals, infection is implicated as a serious agricultural problem and drug treatment is largely ineffective. During chronic infection, larvae invade skeletal muscle cells, forming a nurse cell complex in which they become encysted. The nurse cell is a product of the severe disruption of the host cell homeostasis. Proteins of the Ub/proteasome pathway are highly conserved throughout evolution, and considering their importance in the regulation of cell homeostasis, provide interesting and novel therapeutic targets for various diseases. In order to target this system in parasites, pathogen proteins that play a role in this pathway must be identified. We report the identification of the first T. spiralis deubiquitinating enzyme, and show evidence that the function of this protein as a proteasome interaction partner has been evolutionarily conserved. We show that members of this enzyme family are important for T. spiralis survival and that the use of inhibitor compounds may help elucidate their role in infection.
Collapse
|
9
|
Kolter T, Sandhoff K. Lysosomal degradation of membrane lipids. FEBS Lett 2009; 584:1700-12. [PMID: 19836391 DOI: 10.1016/j.febslet.2009.10.021] [Citation(s) in RCA: 201] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Accepted: 10/09/2009] [Indexed: 01/05/2023]
Abstract
The constitutive degradation of membrane components takes place in the acidic compartments of a cell, the endosomes and lysosomes. Sites of lipid degradation are intralysosomal membranes that are formed in endosomes, where the lipid composition is adjusted for degradation. Cholesterol is sorted out of the inner membranes, their content in bis(monoacylglycero)phosphate increases, and, most likely, sphingomyelin is degraded to ceramide. Together with endosomal and lysosomal lipid-binding proteins, the Niemann-Pick disease, type C2-protein, the GM2-activator, and the saposins sap-A, -B, -C, and -D, a suitable membrane lipid composition is required for degradation of complex lipids by hydrolytic enzymes.
Collapse
Affiliation(s)
- Thomas Kolter
- LiMES - Life and Medical Sciences Institute, Membrane Biology and Lipid Biochemistry Unit, c/o Kekulé-Institut für Organische Chemie und Biochemie, University of Bonn, Bonn, Germany
| | | |
Collapse
|
10
|
Nagano I, Wu Z, Takahashi Y. Functional genes and proteins of Trichinella spp. Parasitol Res 2008; 104:197-207. [PMID: 18987885 DOI: 10.1007/s00436-008-1248-1] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2008] [Accepted: 10/21/2008] [Indexed: 02/02/2023]
Abstract
Research of Trichinella proteins has been conducted with emphasis on excretory-secretory (E-S) products of muscle larvae because of two reasons. The first is that it has prominent and narrow specific antigenicity, and the second is that it may play some role in nurse cell formation after being secreted into host muscle cells. Proteomic analysis of E-S proteins was further advanced by the aid of new analytical methods such as gene cloning, matrix-assisted laser desorption-ionization time-of-flight mass spectrometry, and expressed sequence tags database analysis. As the research progressed, the interest of researchers moved to identification of function of E-S products, which has shed further light on the intriguing relationships between parasites and hosts. Major constituents of the E-S products include 43-, 53-, and 45-kDa glycoprotein derived from the stichosome. Many proteins were discovered in E-S products after the 43-, 53-, and 45-kDa proteins although the relationships among them remain unclear. Some of the new proteins were partially defined in terms of their function including nuclear antigens, MyoD-like protein, TsJ5 protein, etc. There are better-characterized proteins based on the gene molecular method, which allow easier identification of the function of proteins of interest. Such examples were demonstrated by proteinases, proteinase inhibitors, heat shock proteins, glycosidases, etc.
Collapse
Affiliation(s)
- Isao Nagano
- Department of Parasitology, Gifu University Graduate School of Medicine, Yanagido 1-1, Gifu 501-1194, Japan.
| | | | | |
Collapse
|
11
|
Guiliano DB, Oksov Y, Lustigman S, Gounaris K, Selkirk ME. Characterisation of novel protein families secreted by muscle stage larvae of Trichinella spiralis. Int J Parasitol 2008; 39:515-24. [PMID: 18992250 PMCID: PMC2680962 DOI: 10.1016/j.ijpara.2008.09.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2008] [Revised: 09/10/2008] [Accepted: 09/11/2008] [Indexed: 01/06/2023]
Abstract
Proteins secreted by Trichinella spiralis have a potential role in remodelling host skeletal muscle. However, whilst many parasite-secreted proteins have been identified, it has rarely been demonstrated that these are secreted into the nurse cell. Using an informatics-based analysis, we have searched the T. spiralis expressed sequence tag (EST) datasets for cDNAs encoding potential secreted proteins. Here we describe the characterisation of three of the top candidates isolated from our analysis, termed secreted from muscle stage larvae (SML)-1, -2 and -3. All three proteins were demonstrated to be secreted by muscle stage larvae, and immunohistochemical analysis established that SML-1 and -2 are secreted into developing nurse cells. We also show that SML-2 is processed from a precursor into smaller peptides by a metalloprotease contained within T. spiralis-secreted products. With the identification of these and other secreted proteins, we now have molecules to test in functional assays designed to dissect molecular features of the developing nurse cell.
Collapse
Affiliation(s)
- David B Guiliano
- Division of Cell and Molecular Biology, Department of Life Sciences, Imperial College London, London SW7 2AY, UK.
| | | | | | | | | |
Collapse
|