1
|
Cano-Santiago A, Florencio-Martínez LE, Vélez-Ramírez DE, Romero-Chaveste AJ, Manning-Cela RG, Nepomuceno-Mejía T, Martínez-Calvillo S. Analyses of the essential C82 subunit uncovered some differences in RNA polymerase III transcription between Trypanosoma brucei and Leishmania major. Parasitology 2024:1-16. [PMID: 39523652 DOI: 10.1017/s0031182024000921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The 17-subunit RNA polymerase III (RNAP III) synthesizes essential untranslated RNAs such as tRNAs and 5S rRNA. In yeast and vertebrates, subunit C82 forms a stable subcomplex with C34 and C31 that is necessary for promoter-specific transcription initiation. Little is known about RNAP III transcription in trypanosomatid parasites. To narrow this knowledge gap, we characterized the C82 subunit in Trypanosoma brucei and Leishmania major. Bioinformatic analyses showed that the 4 distinctive extended winged-helix (eWH) domains and the coiled-coil motif are present in C82 in these microorganisms. Nevertheless, C82 in trypanosomatids presents certain unique traits, including an exclusive loop within the eWH1 domain. We found that C82 localizes to the nucleus and binds to RNAP III-dependent genes in the insect stages of both parasites. Knock-down of C82 by RNA interference significantly reduced the levels of tRNAs and 5S rRNA and led to the death of procyclic forms of T. brucei. Tandem affinity purifications with both parasites allowed the identification of several C82-interacting partners, including C34 and some genus-specific putative regulators of transcription. However, the orthologue of C31 was not found in trypanosomatids. Interestingly, our data suggest a strong association of C82 with TFIIIC subunits in T. brucei, but not in L. major.
Collapse
Affiliation(s)
- Andrés Cano-Santiago
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, México
| | - Luis E Florencio-Martínez
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, México
| | - Daniel E Vélez-Ramírez
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, México
| | - Adrián J Romero-Chaveste
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, México
| | - Rebeca G Manning-Cela
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México
| | - Tomás Nepomuceno-Mejía
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, México
| | - Santiago Martínez-Calvillo
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, México
| |
Collapse
|
2
|
Faria JRC. A nuclear enterprise: zooming in on nuclear organization and gene expression control in the African trypanosome. Parasitology 2021; 148:1237-1253. [PMID: 33407981 PMCID: PMC8311968 DOI: 10.1017/s0031182020002437] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 12/17/2022]
Abstract
African trypanosomes are early divergent protozoan parasites responsible for high mortality and morbidity as well as a great economic burden among the world's poorest populations. Trypanosomes undergo antigenic variation in their mammalian hosts, a highly sophisticated immune evasion mechanism. Their nuclear organization and mechanisms for gene expression control present several conventional features but also a number of striking differences to the mammalian counterparts. Some of these unorthodox characteristics, such as lack of controlled transcription initiation or enhancer sequences, render their monogenic antigen transcription, which is critical for successful antigenic variation, even more enigmatic. Recent technological developments have advanced our understanding of nuclear organization and gene expression control in trypanosomes, opening novel research avenues. This review is focused on Trypanosoma brucei nuclear organization and how it impacts gene expression, with an emphasis on antigen expression. It highlights several dedicated sub-nuclear bodies that compartmentalize specific functions, whilst outlining similarities and differences to more complex eukaryotes. Notably, understanding the mechanisms underpinning antigen as well as general gene expression control is of great importance, as it might help designing effective control strategies against these organisms.
Collapse
Affiliation(s)
- Joana R. C. Faria
- The Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, DundeeDD1 5EH, UK
| |
Collapse
|
3
|
Srivastava A, Badjatia N, Lee JH, Hao B, Günzl A. An RNA polymerase II-associated TFIIF-like complex is indispensable for SL RNA gene transcription in Trypanosoma brucei. Nucleic Acids Res 2019; 46:1695-1709. [PMID: 29186511 PMCID: PMC5829719 DOI: 10.1093/nar/gkx1198] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 11/17/2017] [Indexed: 12/23/2022] Open
Abstract
Trypanosomes are protistan parasites that diverged early in evolution from most eukaryotes. Their streamlined genomes are packed with arrays of tandemly linked genes that are transcribed polycistronically by RNA polymerase (pol) II. Individual mRNAs are processed from pre-mRNA by spliced leader (SL) trans splicing and polyadenylation. While there is no strong evidence that general transcription factors are needed for transcription initiation at these gene arrays, a RNA pol II transcription pre-initiation complex (PIC) is formed on promoters of SLRNA genes, which encode the small nuclear SL RNA, the SL donor in trans splicing. The factors that form the PIC are extremely divergent orthologues of the small nuclear RNA-activating complex, TBP, TFIIA, TFIIB, TFIIH, TFIIE and Mediator. Here, we functionally characterized a heterodimeric complex of unannotated, nuclear proteins that interacts with RNA pol II and is essential for PIC formation, SL RNA synthesis in vivo, SLRNA transcription in vitro, and parasite viability. These functional attributes suggest that the factor represents TFIIF although the amino acid sequences are too divergent to firmly make this conclusion. This work strongly indicates that early-diverged trypanosomes have orthologues of each and every general transcription factor, requiring them for the synthesis of SL RNA.
Collapse
Affiliation(s)
- Ankita Srivastava
- Department of Genetics and Genome Sciences, UConn Health, 400 Farmington Avenue, Farmington, CT 06030-6403, USA
| | - Nitika Badjatia
- Department of Genetics and Genome Sciences, UConn Health, 400 Farmington Avenue, Farmington, CT 06030-6403, USA
| | - Ju Huck Lee
- Department of Genetics and Genome Sciences, UConn Health, 400 Farmington Avenue, Farmington, CT 06030-6403, USA
| | - Bing Hao
- Department of Molecular Biology and Biophysics, UConn Health, 263 Farmington Avenue, Farmington, CT 06030-3305, USA
| | - Arthur Günzl
- Department of Genetics and Genome Sciences, UConn Health, 400 Farmington Avenue, Farmington, CT 06030-6403, USA
| |
Collapse
|
4
|
Martínez-Calvillo S, Florencio-Martínez LE, Nepomuceno-Mejía T. Nucleolar Structure and Function in Trypanosomatid Protozoa. Cells 2019; 8:cells8050421. [PMID: 31071985 PMCID: PMC6562600 DOI: 10.3390/cells8050421] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 04/26/2019] [Accepted: 04/28/2019] [Indexed: 12/12/2022] Open
Abstract
The nucleolus is the conspicuous nuclear body where ribosomal RNA genes are transcribed by RNA polymerase I, pre-ribosomal RNA is processed, and ribosomal subunits are assembled. Other important functions have been attributed to the nucleolus over the years. Here we review the current knowledge about the structure and function of the nucleolus in the trypanosomatid parasites Trypanosoma brucei, Trypanosoma cruzi and Leishmania ssp., which represent one of the earliest branching lineages among the eukaryotes. These protozoan parasites present a single nucleolus that is preserved throughout the closed nuclear division, and that seems to lack fibrillar centers. Trypanosomatids possess a relatively low number of rRNA genes, which encode rRNA molecules that contain large expansion segments, including several that are trypanosomatid-specific. Notably, the large subunit rRNA (28S-type) is fragmented into two large and four small rRNA species. Hence, compared to other organisms, the rRNA primary transcript requires additional processing steps in trypanosomatids. Accordingly, this group of parasites contains the highest number ever reported of snoRNAs that participate in rRNA processing. The number of modified rRNA nucleotides in trypanosomatids is also higher than in other organisms. Regarding the structure and biogenesis of the ribosomes, recent cryo-electron microscopy analyses have revealed several trypanosomatid-specific features that are discussed here. Additional functions of the nucleolus in trypanosomatids are also reviewed.
Collapse
Affiliation(s)
- Santiago Martínez-Calvillo
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios 1, Col. Los Reyes Iztacala, Tlalnepantla CP 54090, Estado de México, Mexico.
| | - Luis E Florencio-Martínez
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios 1, Col. Los Reyes Iztacala, Tlalnepantla CP 54090, Estado de México, Mexico.
| | - Tomás Nepomuceno-Mejía
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios 1, Col. Los Reyes Iztacala, Tlalnepantla CP 54090, Estado de México, Mexico.
| |
Collapse
|
5
|
Selective inhibition of RNA polymerase I transcription as a potential approach to treat African trypanosomiasis. PLoS Negl Trop Dis 2017; 11:e0005432. [PMID: 28263991 PMCID: PMC5354456 DOI: 10.1371/journal.pntd.0005432] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 03/16/2017] [Accepted: 02/23/2017] [Indexed: 02/06/2023] Open
Abstract
Trypanosoma brucei relies on an essential Variant Surface Glycoprotein (VSG) coat for survival in the mammalian bloodstream. High VSG expression within an expression site body (ESB) is mediated by RNA polymerase I (Pol I), which in other eukaryotes exclusively transcribes ribosomal RNA genes (rDNA). As T. brucei is reliant on Pol I for VSG transcription, we investigated Pol I transcription inhibitors for selective anti-trypanosomal activity. The Pol I inhibitors quarfloxin (CX-3543), CX-5461, and BMH-21 are currently under investigation for treating cancer, as rapidly dividing cancer cells are particularly dependent on high levels of Pol I transcription compared with nontransformed cells. In T. brucei all three Pol I inhibitors have IC50 concentrations for cell proliferation in the nanomolar range: quarfloxin (155 nM), CX-5461 (279 nM) or BMH-21 (134 nM) compared with IC50 concentrations in the MCF10A human breast epithelial cell line (4.44 μM, 6.89 μM or 460 nM, respectively). T. brucei was therefore 29-fold more sensitive to quarfloxin, 25-fold more sensitive to CX-5461 and 3.4-fold more sensitive to BMH-21. Cell death in T. brucei was due to rapid inhibition of Pol I transcription, as within 15 minutes treatment with the inhibitors rRNA precursor transcript was reduced 97-98% and VSG precursor transcript 91-94%. Incubation with Pol I transcription inhibitors also resulted in disintegration of the ESB as well as the nucleolus subnuclear structures, within one hour. Rapid ESB loss following the block in Pol I transcription argues that the ESB is a Pol I transcription nucleated structure, similar to the nucleolus. In addition to providing insight into Pol I transcription and ES control, Pol I transcription inhibitors potentially also provide new approaches to treat trypanosomiasis. Trypanosoma brucei is protected by an essential Variant Surface Glycoprotein (VSG) coat in the mammalian bloodstream. The active VSG gene is transcribed by RNA polymerase I (Pol I), which typically only transcribes rDNA. Pol I transcription inhibitors are under clinical trials for cancer chemotherapy. As T. brucei relies on Pol I for VSG transcription, we investigated its susceptibility to these drugs. We show that quarfloxin (CX-3543), CX-5461, and BMH-21 are effective against T. brucei at nanomolar concentrations. T. brucei death was due to rapid and specific inhibition of Pol I transcription. Incubation with Pol I transcription inhibitors also resulted in disappearance of Pol I subnuclear structures like the nucleolus and the VSG expression site body (ESB). Rapid ESB loss followed the Pol I transcription block, arguing that the ESB is nucleated by Pol I transcription. Pol I transcription inhibitors could therefore potentially function as novel drugs against trypanosomiasis.
Collapse
|
6
|
Alcolea PJ, Alonso A, Domínguez M, Parro V, Jiménez M, Molina R, Larraga V. Influence of the Microenvironment in the Transcriptome of Leishmania infantum Promastigotes: Sand Fly versus Culture. PLoS Negl Trop Dis 2016; 10:e0004693. [PMID: 27163123 PMCID: PMC4862625 DOI: 10.1371/journal.pntd.0004693] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 04/14/2016] [Indexed: 01/04/2023] Open
Abstract
Zoonotic visceral leishmaniasis is a vector-borne disease caused by Leishmania infantum in the Mediterranean Basin, where domestic dogs and wild canids are the main reservoirs. The promastigote stage replicates and develops within the gut of blood-sucking phlebotomine sand flies. Mature promastigotes are injected in the dermis of the mammalian host and differentiate into the amastigote stage within parasitophorous vacuoles of phagocytic cells. The major vector of L. infantum in Spain is Phlebotomus perniciosus. Promastigotes are routinely axenized and cultured to mimic in vitro the conditions inside the insect gut, which allows for most molecular, cellular, immunological and therapeutical studies otherwise inviable. Culture passages are known to decrease infectivity, which is restored by passage through laboratory animals. The most appropriate source of promastigotes is the gut of the vector host but isolation of the parasite is technically challenging. In fact, this option is not viable unless small samples are sufficient for downstream applications like promastigote cultures and nucleic acid amplification. In this study, in vitro infectivity and differential gene expression have been studied in cultured promastigotes at the stationary phase and in promastigotes isolated from the stomodeal valve of the sand fly P. perniciosus. About 20 ng RNA per sample could be isolated. Each sample contained L. infantum promastigotes from 20 sand flies. RNA was successfully amplified and processed for shotgun genome microarray hybridization analysis. Most differentially regulated genes are involved in regulation of gene expression, intracellular signaling, amino acid metabolism and biosynthesis of surface molecules. Interestingly, meta-analysis by hierarchical clustering supports that up-regulation of 22.4% of the differentially regulated genes is specifically enhanced by the microenvironment (i.e. sand fly gut or culture). The correlation between cultured and naturally developed promastigotes is strong but not very high (Pearson coefficient R2 = 0.727). Therefore, the influence of promastigote culturing should be evaluated case-by-case in experimentation. The protozoan parasite Leishmania infantum causes visceral leishmaniasis in humans and is responsible for a recent outbreak reported in central Spain. Domestic dogs and wild canids are the main reservoirs. The life cycle of the parasite involves two stages and two hosts. The motile promastigote stage differentiates within the gut of the sand fly vector host and develops into non-motile amastigotes within phagocytes of the mammalian host. Promastigotes are routinely cultured in liquid media because it is assumed that they mimic the conditions within the gut of the insect. Therefore, the culture model is used in most studies about the biology of the parasite, pathogenesis and development of vaccines and new compounds for treatment. Isolating promastigotes from the natural microenvironment (i.e. the vector host) is desirable but technically challenging. We were able to perform a high-throughput analysis of gene expression thanks to mRNA amplification. The over-expressed genes detected may influence life cycle progression depending on the promastigote microenvironment (i.e. culture or vector host). Upcoming studies based on these results may reveal new therapeutic targets or vaccine candidates. Our results suggest that evaluating the influence of cultures in experimentation is convenient.
Collapse
Affiliation(s)
- Pedro J. Alcolea
- Laboratorio de Parasitología Molecular, Departamento de Microbiología Molecular y Biología de las Infecciones, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- * E-mail:
| | - Ana Alonso
- Laboratorio de Parasitología Molecular, Departamento de Microbiología Molecular y Biología de las Infecciones, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Mercedes Domínguez
- Unidad de Inmunología Microbiana, Centro Nacional de Microbiología, Virología e Inmunología Sanitarias, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Víctor Parro
- Laboratorio de Ecología Molecular, Centro de Astrobiología, Instituto Nacional de Técnica Aeroespacial “Esteban Terradas”—Consejo Superior de Investigaciones Científicas, Torrejón de Ardoz, Madrid, Spain
| | - Maribel Jiménez
- Unidad de Entomología Médica, Servicio de Parasitología, Centro Nacional de Microbiología, Virología e Inmunología Sanitarias, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Ricardo Molina
- Unidad de Entomología Médica, Servicio de Parasitología, Centro Nacional de Microbiología, Virología e Inmunología Sanitarias, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Vicente Larraga
- Laboratorio de Parasitología Molecular, Departamento de Microbiología Molecular y Biología de las Infecciones, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
7
|
Parsons M, Ramasamy G, Vasconcelos EJR, Jensen BC, Myler PJ. Advancing Trypanosoma brucei genome annotation through ribosome profiling and spliced leader mapping. Mol Biochem Parasitol 2015; 202:1-10. [PMID: 26393539 DOI: 10.1016/j.molbiopara.2015.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 09/18/2015] [Accepted: 09/18/2015] [Indexed: 10/23/2022]
Abstract
Since the initial publication of the trypanosomatid genomes, curation has been ongoing. Here we make use of existing Trypanosoma brucei ribosome profiling data to provide evidence of ribosome occupancy (and likely translation) of mRNAs from 225 currently unannotated coding sequences (CDSs). A small number of these putative genes correspond to extra copies of previously annotated genes, but 85% are novel. The median size of these novels CDSs is small (81 aa), indicating that past annotation work has excelled at detecting large CDSs. Of the unique CDSs confirmed here, over half have candidate orthologues in other trypanosomatid genomes, most of which were not yet annotated as protein-coding genes. Nonetheless, approximately one-third of the new CDSs were found only in T. brucei subspecies. Using ribosome footprints, RNA-Seq and spliced leader mapping data, we updated previous work to definitively revise the start sites for 414 CDSs as compared to the current gene models. The data pointed to several regions of the genome that had sequence errors that altered coding region boundaries. Finally, we consolidated this data with our previous work to propose elimination of 683 putative genes as protein-coding and arrive at a view of the translatome of slender bloodstream and procyclic culture form T. brucei.
Collapse
Affiliation(s)
- Marilyn Parsons
- The Center for Infectious Disease Research (formerly Seattle Biomedical Research Institute), 307 Westlake Ave. N., Seattle, WA 98109, USA; Dept of Global Health, University of Washington, Seattle, WA 98195, USA.
| | - Gowthaman Ramasamy
- The Center for Infectious Disease Research (formerly Seattle Biomedical Research Institute), 307 Westlake Ave. N., Seattle, WA 98109, USA
| | - Elton J R Vasconcelos
- The Center for Infectious Disease Research (formerly Seattle Biomedical Research Institute), 307 Westlake Ave. N., Seattle, WA 98109, USA
| | - Bryan C Jensen
- The Center for Infectious Disease Research (formerly Seattle Biomedical Research Institute), 307 Westlake Ave. N., Seattle, WA 98109, USA
| | - Peter J Myler
- The Center for Infectious Disease Research (formerly Seattle Biomedical Research Institute), 307 Westlake Ave. N., Seattle, WA 98109, USA; Dept of Global Health, University of Washington, Seattle, WA 98195, USA; Dept of Biomedical Informatics and Medical Education, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
8
|
Ream TS, Haag JR, Pontvianne F, Nicora CD, Norbeck AD, Paša-Tolić L, Pikaard CS. Subunit compositions of Arabidopsis RNA polymerases I and III reveal Pol I- and Pol III-specific forms of the AC40 subunit and alternative forms of the C53 subunit. Nucleic Acids Res 2015; 43:4163-78. [PMID: 25813043 PMCID: PMC4417161 DOI: 10.1093/nar/gkv247] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 03/10/2015] [Indexed: 12/17/2022] Open
Abstract
Using affinity purification and mass spectrometry, we identified the subunits of Arabidopsis thaliana multisubunit RNA polymerases I and III (abbreviated as Pol I and Pol III), the first analysis of their physical compositions in plants. In all eukaryotes examined to date, AC40 and AC19 subunits are common to Pol I (a.k.a. Pol A) and Pol III (a.k.a. Pol C) and are encoded by single genes. Surprisingly, A. thaliana and related species express two distinct AC40 paralogs, one of which assembles into Pol I and the other of which assembles into Pol III. Changes at eight amino acid positions correlate with the functional divergence of Pol I- and Pol III-specific AC40 paralogs. Two genes encode homologs of the yeast C53 subunit and either protein can assemble into Pol III. By contrast, only one of two potential C17 variants, and one of two potential C31 variants were detected in Pol III. We introduce a new nomenclature system for plant Pol I and Pol III subunits in which the 12 subunits that are structurally and functionally homologous among Pols I through V are assigned equivalent numbers.
Collapse
Affiliation(s)
- Thomas S Ream
- Division of Biology and Biomedical Sciences, Washington University, St. Louis, MO 63130, USA
| | - Jeremy R Haag
- Division of Biology and Biomedical Sciences, Washington University, St. Louis, MO 63130, USA Department of Biology and Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
| | - Frederic Pontvianne
- Department of Biology and Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
| | - Carrie D Nicora
- Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Angela D Norbeck
- Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Ljiljana Paša-Tolić
- Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Craig S Pikaard
- Department of Biology and Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA Howard Hughes Medical Institute, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
9
|
Matthews KR. 25 years of African trypanosome research: From description to molecular dissection and new drug discovery. Mol Biochem Parasitol 2015; 200:30-40. [PMID: 25736427 PMCID: PMC4509711 DOI: 10.1016/j.molbiopara.2015.01.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 01/09/2015] [Accepted: 01/13/2015] [Indexed: 01/27/2023]
Abstract
The Molecular Parasitology conference was first held at the Marine Biological laboratory, Woods Hole, USA 25 years ago. Since that first meeting, the conference has evolved and expanded but has remained the showcase for the latest research developments in molecular parasitology. In this perspective, I reflect on the scientific discoveries focussed on African trypanosomes (Trypanosoma brucei spp.) that have occurred since the inaugural MPM meeting and discuss the current and future status of research on these parasites.
Collapse
Affiliation(s)
- Keith R Matthews
- Centre for Immunity, Infection and Evolution, Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, UK.
| |
Collapse
|
10
|
Hernández R, Cevallos AM. Ribosomal RNA gene transcription in trypanosomes. Parasitol Res 2014; 113:2415-24. [PMID: 24828347 DOI: 10.1007/s00436-014-3940-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 05/01/2014] [Indexed: 11/30/2022]
Abstract
Leishmania major, Trypanosoma cruzi and Trypanosoma brucei are pathogenic species from the order Kinetoplastida. The molecular and cellular studies of parasites, such as of the biosynthesis of essential macromolecules, are important in designing successful strategies for control. A major stage in ribosome biogenesis is the transcription of genes encoding ribosomal (r)RNA. These genes are transcribed in trypanosome cells by RNA polymerase I, similar to what occurs in all eukaryotes analysed to date. In addition, and most remarkably, the African species, T. brucei, transcribe their major cell surface protein genes using this class of polymerase. Since its discovery, the research interest in this phenomenon has been overwhelming; therefore, analysis of the canonical, yet essential, transcription of rRNA has been comparatively neglected. In this work, a review of rRNA gene transcription and data on gene promoter structures, transcription machineries and epigenetic conditions is presented for trypanosomatids. Because species-specific molecules represent potential targets for chemotherapy, their existence within trypanosomes is highlighted.
Collapse
Affiliation(s)
- Roberto Hernández
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Apartado Postal 70228, Ciudad Universitaria, 04510, México, D.F., Mexico,
| | | |
Collapse
|
11
|
Nguyen TN, Müller LSM, Park SH, Siegel TN, Günzl A. Promoter occupancy of the basal class I transcription factor A differs strongly between active and silent VSG expression sites in Trypanosoma brucei. Nucleic Acids Res 2013; 42:3164-76. [PMID: 24353315 PMCID: PMC3950698 DOI: 10.1093/nar/gkt1301] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Monoallelic expression within a gene family is found in pathogens exhibiting antigenic variation and in mammalian olfactory neurons. Trypanosoma brucei, a lethal parasite living in the human bloodstream, expresses variant surface glycoprotein (VSG) from 1 of 15 bloodstream expression sites (BESs) by virtue of a multifunctional RNA polymerase I. The active BES is transcribed in an extranucleolar compartment termed the expression site body (ESB), whereas silent BESs, located elsewhere within the nucleus, are repressed epigenetically. The regulatory mechanisms, however, are poorly understood. Here we show that two essential subunits of the basal class I transcription factor A (CITFA) predominantly occupied the promoter of the active BES relative to that of a silent BES, a phenotype that was maintained after switching BESs in situ. In these experiments, high promoter occupancy of CITFA was coupled to high levels of both promoter-proximal RNA abundance and RNA polymerase I occupancy. Accordingly, fluorescently tagged CITFA-7 was concentrated in the nucleolus and the ESB. Because a ChIP-seq analysis found that along the entire BES, CITFA-7 is specifically enriched only at the promoter, our data strongly indicate that monoallelic BES transcription is activated by a mechanism that functions at the level of transcription initiation.
Collapse
Affiliation(s)
- Tu N Nguyen
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, CT 06030, USA and Research Center for Infectious Diseases, University of Würzburg, 97080 Würzburg, Germany
| | | | | | | | | |
Collapse
|
12
|
Badjatia N, Nguyen TN, Lee JH, Günzl A. Trypanosoma brucei harbours a divergent XPB helicase paralogue that is specialized in nucleotide excision repair and conserved among kinetoplastid organisms. Mol Microbiol 2013; 90:1293-308. [PMID: 24134817 DOI: 10.1111/mmi.12435] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2013] [Indexed: 12/21/2022]
Abstract
Conserved from yeast to humans, TFIIH is essential for RNA polymerase II transcription and nucleotide excision repair (NER). TFIIH consists of a core that includes the DNA helicase Xeroderma pigmentosum B (XPB) and a kinase subcomplex. Trypanosoma brucei TFIIH harbours all core complex components and is indispensable for RNA polymerase II transcription of spliced leader RNA genes (SLRNAs). Kinetoplastid organisms, however, possess two highly divergent XPB paralogues with only the larger being identified as a TFIIH subunit in T. brucei. Here we show that a knockout of the gene for the smaller paralogue, termed XPB-R (R for repair) resulted in viable cultured trypanosomes that grew slower than normal. XPB-R depletion did not affect transcription in vivo or in vitro and XPB-R was not found to occupy the SLRNA promoter which assembles a RNA polymerase II transcription pre-initiation complex including TFIIH. However, XPB-R(-/-) cells were much less tolerant than wild-type cells to UV light- and cisplatin-induced DNA damage, which require NER. Since XPB-R(-/-) cells were not impaired in DNA base excision repair, XPB-R appears to function specifically in NER. Interestingly, several other protists possess highly divergent XPB paralogues suggesting that XPBs specialized in transcription or NER exist beyond the Kinetoplastida.
Collapse
Affiliation(s)
- Nitika Badjatia
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, 400 Farmington Avenue, Farmington, CT, 06030-6403, USA
| | | | | | | |
Collapse
|
13
|
Characterization of a novel class I transcription factor A (CITFA) subunit that is indispensable for transcription by the multifunctional RNA polymerase I of Trypanosoma brucei. EUKARYOTIC CELL 2012; 11:1573-81. [PMID: 23104567 DOI: 10.1128/ec.00250-12] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Trypanosoma brucei is the only organism known to have evolved a multifunctional RNA polymerase I (pol I) system that is used to express the parasite's ribosomal RNAs, as well as its major cell surface antigens, namely, the variant surface glycoprotein (VSG) and procyclin, which are vital for establishing successful infections in the mammalian host and the tsetse vector, respectively. Thus far, biochemical analyses of the T. brucei RNA pol I transcription machinery have elucidated the subunit structure of the enzyme and identified the class I transcription factor A (CITFA). CITFA binds to RNA pol I promoters, and its CITFA-2 subunit was shown to be absolutely essential for RNA pol I transcription in the parasite. Tandem affinity purification (TAP) of CITFA revealed the subunits CITFA-1 to -6, which are conserved only among kinetoplastid organisms, plus the dynein light chain DYNLL1. Here, by tagging CITFA-6 instead of CITFA-2, a complex was purified that contained all known CITFA subunits, as well as a novel proline-rich protein. Functional studies carried out in vivo and in vitro, as well as a colocalization study, unequivocally demonstrated that this protein is a bona fide CITFA subunit, essential for parasite viability and indispensable for RNA pol I transcription of ribosomal gene units and the active VSG expression site in the mammalian-infective life cycle stage of the parasite. Interestingly, CITFA-7 function appears to be species specific, because expression of an RNA interference (RNAi)-resistant CITFA-7 transgene from Trypanosoma cruzi could not rescue the lethal phenotype of silencing endogenous CITFA-7.
Collapse
|
14
|
Daniels JP, Gull K, Wickstead B. The trypanosomatid-specific N terminus of RPA2 is required for RNA polymerase I assembly, localization, and function. EUKARYOTIC CELL 2012; 11:662-72. [PMID: 22389385 PMCID: PMC3346432 DOI: 10.1128/ec.00036-12] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 02/23/2012] [Indexed: 11/20/2022]
Abstract
African trypanosomes are the only organisms known to use RNA polymerase I (pol I) to transcribe protein-coding genes. These genes include VSG, which is essential for immune evasion and is transcribed from an extranucleolar expression site body (ESB). Several trypanosome pol I subunits vary compared to their homologues elsewhere, and the question arises as to how these variations relate to pol I function. A clear example is the N-terminal extension found on the second-largest subunit of pol I, RPA2. Here, we identify an essential role for this region. RPA2 truncation leads to nuclear exclusion and a growth defect which phenocopies single-allele knockout. The N terminus is not a general nuclear localization signal (NLS), however, and it fails to accumulate unrelated proteins in the nucleus. An ectopic NLS is sufficient to reinstate nuclear localization of truncated RPA2, but it does not restore function. Moreover, NLS-tagged, truncated RPA2 has a different subnuclear distribution to full-length protein and is unable to build stable pol I complexes. We conclude that the RPA2 N-terminal extension does not have a role exclusive to the expression of protein-coding genes, but it is essential for all pol I functions in trypanosomes because it directs trypanosomatid-specific interactions with RPA1.
Collapse
Affiliation(s)
- Jan-Peter Daniels
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Keith Gull
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Bill Wickstead
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
- Centre for Genetics and Genomics, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
15
|
Park SH, Nguyen TN, Kirkham JK, Lee JH, Günzl A. Transcription by the multifunctional RNA polymerase I in Trypanosoma brucei functions independently of RPB7. Mol Biochem Parasitol 2011; 180:35-42. [PMID: 21816181 DOI: 10.1016/j.molbiopara.2011.06.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 06/10/2011] [Accepted: 06/13/2011] [Indexed: 10/18/2022]
Abstract
Trypanosoma brucei has a multifunctional RNA polymerase (pol) I that transcribes ribosomal gene units (RRNA) and units encoding its major cell surface proteins variant surface glycoprotein (VSG) and procyclin. Previous analysis of tandem affinity-purified, transcriptionally active RNA pol I identified ten subunits including an apparently trypanosomatid-specific protein termed RPA31. Another ortholog was identified in silico. No orthologs of the yeast subunit doublet RPA43/RPA14 have been identified yet. Instead, a recent report presented evidence that RPB7, the RNA pol II paralog of RPA43, is an RNA pol I subunit and essential for RRNA and VSG transcription in bloodstream form trypanosomes [18]. Revisiting this attractive hypothesis, we were unable to detect a stable interaction between RPB7 and RNA pol I in either reciprocal co-immunoprecipitation or tandem affinity purification. Furthermore, immunodepletion of RPB7 from extract virtually abolished RNA pol II transcription in vitro but had no effect on RRNA or VSG ES promoter transcription in the same reactions. Accordingly, chromatin immunoprecipitation analysis revealed cross-linking of RPB7 to known RNA pol II transcription units but not to the VSG ES promoter or to the 18S rRNA coding region. Interestingly, RPB7 did crosslink to the RRNA promoter but so did the RNA pol II-specific subunit RPB9 suggesting that RNA pol II is recruited to this promoter. Overall, our data led to the conclusion that RNA pol I transcription in T. brucei does not require the RNA pol II subunit RPB7.
Collapse
Affiliation(s)
- Sung Hee Park
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, CT 06030-6403, USA
| | | | | | | | | |
Collapse
|
16
|
Ersfeld K. Nuclear architecture, genome and chromatin organisation in Trypanosoma brucei. Res Microbiol 2011; 162:626-36. [PMID: 21392575 DOI: 10.1016/j.resmic.2011.01.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 01/29/2011] [Indexed: 11/29/2022]
Abstract
The nucleus of the human pathogen Trypanosoma brucei not only has unusual chromosomal composition, characterised by the presence of megabase, intermediate and minichromosomes, but also chromosome and gene organisation that is unique amongst eukaryotes. Here I provide an overview of current knowledge of nuclear structure, chromatin organisation and chromosome dynamics during interphase and mitosis. New technologies such as chromatin immunoprecipitation, in combination with new generation sequencing and proteomic analysis of subnuclear fractions, have led to novel insights into the organisation of the nucleus and chromatin. In particular, we are beginning to understand how universal mechanisms of chromatin modifications and nuclear position effects are deployed for parasite-specific functions and are centrally involved in genomic organisation and transcriptional regulation. These advances also have a major impact on progress in understanding the molecular basis of antigenic variation.
Collapse
Affiliation(s)
- Klaus Ersfeld
- Department of Biological Sciences and Hull York Medical School, University of Hull, Hull HU6 7RX, UK.
| |
Collapse
|
17
|
Elongator protein 3b negatively regulates ribosomal DNA transcription in african trypanosomes. Mol Cell Biol 2011; 31:1822-32. [PMID: 21357738 DOI: 10.1128/mcb.01026-10] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Eukaryotic cells limit ribosomal DNA (rDNA) transcription by RNA polymerase I (RNAP-I) to maintain genome integrity. African trypanosomes present an excellent model for studies on RNAP-I regulation because they possess a bifunctional RNAP-I and because RNAP-II transcription appears unregulated. Since Elp3, the catalytic component of Elongator, controls RNAP-II transcription in yeast and human cells, we predicted a role for a trypanosome Elp3-related protein, ELP3a or ELP3b, in RNAP-I regulation. elp3b null and conditional strains specifically exhibited resistance to a transcription elongation inhibitor, suggesting that ELP3b negatively impacts elongation. Nascent RNA analysis and expression of integrated reporter cassettes supported this interpretation and revealed negative control of rDNA transcription. ELP3b specifically localized to the nucleolus, and ELP3b loss rendered cells hypersensitive to DNA damage and to translation inhibition, suggesting that anti-Elongator function was important to maintain genome integrity rather than to modulate ribosome production. Finally, ELP3b displayed discrimination between RNAP-I compartments in the same cell. Our results establish ELP3b as a major negative regulator of rDNA transcription and extend the roles of the Elp3-related proteins to RNAP-I transcription units. ELP3b is also the first trypanosome protein shown to distinguish between rDNA and variant surface glycoprotein transcription within different RNAP-I compartments.
Collapse
|
18
|
Abstract
TAP (tandem affinity purification) allows rapid and clean isolation of a tagged protein along with its interacting partners from cell lysates. Initially developed in yeast, the TAP method has subsequently been adapted to other cells and organisms. In combination with MS analysis, this method has become an indispensable tool for systematic identification of target-associated protein complexes. The key feature of TAP is the use of a dual-affinity tag, which is fused to the protein of interest. The original TAP tag consisted of two IgG-binding units of Protein A of Staphylococcus aureus and the calmodulin-binding peptide. As the technique has been widely exploited, a number of alternative TAP tags based on other affinity handles have been developed. The present review gives an overview of the various tag combinations for TAP with a highlight on those alternatives that result in improved yields or unique features. The information provided should assist in the selection and development of TAP tags for specific applications.
Collapse
|
19
|
Gene expression in trypanosomatid parasites. J Biomed Biotechnol 2010; 2010:525241. [PMID: 20169133 PMCID: PMC2821653 DOI: 10.1155/2010/525241] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Accepted: 11/04/2009] [Indexed: 12/21/2022] Open
Abstract
The parasites Leishmania spp., Trypanosoma brucei, and Trypanosoma cruzi are the trypanosomatid protozoa that cause the deadly human diseases leishmaniasis, African sleeping sickness, and Chagas disease, respectively. These organisms possess unique mechanisms for gene expression such as constitutive polycistronic transcription of protein-coding genes and trans-splicing. Little is known about either the DNA sequences or the proteins that are involved in the initiation and termination of transcription in trypanosomatids. In silico analyses of the genome databases of these parasites led to the identification of a small number of proteins involved in gene expression. However, functional studies have revealed that trypanosomatids have more general transcription factors than originally estimated. Many posttranslational histone modifications, histone variants, and chromatin modifying enzymes have been identified in trypanosomatids, and recent genome-wide studies showed that epigenetic regulation might play a very important role in gene expression in this group of parasites. Here, we review and comment on the most recent findings related to transcription initiation and termination in trypanosomatid protozoa.
Collapse
|
20
|
Abstract
The eukaryotic flagellum is a highly conserved organelle serving motility, sensory, and transport functions. Although genetic, genomic, and proteomic studies have led to the identification of hundreds of flagellar and putative flagellar proteins, precisely how these proteins function individually and collectively to drive flagellum motility and other functions remains to be determined. In this chapter we provide an overview of tools and approaches available for studying flagellum protein function in the protozoan parasite Trypanosoma brucei. We begin by outlining techniques for in vitro cultivation of both T. brucei life cycle stages, as well as transfection protocols for the delivery of DNA constructs. We then describe specific assays used to assess flagellum function including flagellum preparation and quantitative motility assays. We conclude the chapter with a description of molecular genetic approaches for manipulating gene function. In summary, the availability of potent molecular tools, as well as the health and economic relevance of T. brucei as a pathogen, combine to make the parasite an attractive and integral experimental system for the functional analysis of flagellar proteins.
Collapse
|
21
|
Spliceosomal proteomics in Trypanosoma brucei reveal new RNA splicing factors. EUKARYOTIC CELL 2009; 8:990-1000. [PMID: 19429779 DOI: 10.1128/ec.00075-09] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In trypanosomatid parasites, spliced leader (SL) trans splicing is an essential nuclear mRNA maturation step which caps mRNAs posttranscriptionally and, in conjunction with polyadenylation, resolves individual mRNAs from polycistronic precursors. While all trypanosomatid mRNAs are trans spliced, intron removal by cis splicing is extremely rare and predicted to occur in only four pre-mRNAs. trans- and cis-splicing reactions are carried out by the spliceosome, which consists of U-rich small nuclear ribonucleoprotein particles (U snRNPs) and of non-snRNP factors. Mammalian and yeast spliceosome complexes are well characterized and found to be associated with up to 170 proteins. Despite the central importance of trans splicing in trypanosomatid gene expression, only the core RNP proteins and a few snRNP-specific proteins are known. To characterize the trypanosome spliceosomal protein repertoire, we conducted a proteomic analysis by tagging and tandem affinity-purifying the canonical core RNP protein SmD1 in Trypanosoma brucei and by identifying copurified proteins by mass spectrometry. The set of 47 identified proteins harbored nearly all spliceosomal snRNP factors characterized in trypanosomes thus far and 21 proteins lacking a specific annotation. A bioinformatic analysis combined with protein pull-down assays and immunofluorescence microscopy identified 10 divergent orthologues of known splicing factors, including the missing U1-specific protein U1A. In addition, a novel U5-specific, and, as we show, an essential splicing factor was identified that shares a short, highly conserved N-terminal domain with the yeast protein Cwc21p and was thus tentatively named U5-Cwc21. Together, these data strongly indicate that most of the identified proteins are components of the spliceosome.
Collapse
|
22
|
Thomas S, Green A, Sturm NR, Campbell DA, Myler PJ. Histone acetylations mark origins of polycistronic transcription in Leishmania major. BMC Genomics 2009; 10:152. [PMID: 19356248 PMCID: PMC2679053 DOI: 10.1186/1471-2164-10-152] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Accepted: 04/08/2009] [Indexed: 11/19/2022] Open
Abstract
Background Many components of the RNA polymerase II transcription machinery have been identified in kinetoplastid protozoa, but they diverge substantially from other eukaryotes. Furthermore, protein-coding genes in these organisms lack individual transcriptional regulation, since they are transcribed as long polycistronic units. The transcription initiation sites are assumed to lie within the 'divergent strand-switch' regions at the junction between opposing polycistronic gene clusters. However, the mechanism by which Kinetoplastidae initiate transcription is unclear, and promoter sequences are undefined. Results The chromosomal location of TATA-binding protein (TBP or TRF4), Small Nuclear Activating Protein complex (SNAP50), and H3 histones were assessed in Leishmania major using microarrays hybridized with DNA obtained through chromatin immunoprecipitation (ChIP-chip). The TBP and SNAP50 binding patterns were almost identical and high intensity peaks were associated with tRNAs and snRNAs. Only 184 peaks of acetylated H3 histone were found in the entire genome, with substantially higher intensity in rapidly-dividing cells than stationary-phase. The majority of the acetylated H3 peaks were found at divergent strand-switch regions, but some occurred at chromosome ends and within polycistronic gene clusters. Almost all these peaks were associated with lower intensity peaks of TBP/SNAP50 binding a few kilobases upstream, evidence that they represent transcription initiation sites. Conclusion The first genome-wide maps of DNA-binding protein occupancy in a kinetoplastid organism suggest that H3 histones at the origins of polycistronic transcription of protein-coding genes are acetylated. Global regulation of transcription initiation may be achieved by modifying the acetylation state of these origins.
Collapse
Affiliation(s)
- Sean Thomas
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA.
| | | | | | | | | |
Collapse
|
23
|
Peñate X, López-Farfán D, Landeira D, Wentland A, Vidal I, Navarro M. RNA pol II subunit RPB7 is required for RNA pol I-mediated transcription in Trypanosoma brucei. EMBO Rep 2009; 10:252-7. [PMID: 19165144 DOI: 10.1038/embor.2008.244] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Revised: 11/27/2008] [Accepted: 12/03/2008] [Indexed: 01/11/2023] Open
Abstract
In the protozoan parasite Trypanosoma brucei, the two main surface glycoprotein genes are transcribed by RNA polymerase I (pol I) instead of RNA pol II, the polymerase committed to the production of mRNA in eukaryotes. This unusual feature might be accomplished by the recruitment of specific subunits or cofactors that allow pol I to transcribe protein-coding RNAs. Here, we report that transcription mediated by pol I requires TbRPB7, a dissociable subunit of the pol II complex. TbRPB7 was found to interact with two pol I-specific subunits, TbRPA1 and TbRPB6z. Pol I-specific transcription was affected on depletion of TbRPB7 in run-on assays, whereas recombinant TbRPB7 increased transcription driven by a pol I promoter. These results represent a unique example of a functional RNA polymerase chimaera consisting of a core pol I complex that recruits a specific pol II subunit.
Collapse
Affiliation(s)
- Xenia Peñate
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas, CSIC (Spanish National Research Council), Avda. del Conocimiento s/n, 18100 Granada, Spain
| | | | | | | | | | | |
Collapse
|
24
|
Uzureau P, Daniels JP, Walgraffe D, Wickstead B, Pays E, Gull K, Vanhamme L. Identification and characterization of two trypanosome TFIIS proteins exhibiting particular domain architectures and differential nuclear localizations. Mol Microbiol 2008; 69:1121-36. [PMID: 18627464 PMCID: PMC2610381 DOI: 10.1111/j.1365-2958.2008.06348.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Nuclear transcription of Trypanosoma brucei displays unusual features. Most protein-coding genes are organized in large directional gene clusters, which are transcribed polycistronically by RNA polymerase II (pol II) with subsequent processing to generate mature mRNA. Here, we describe the identification and characterization of two trypanosome homologues of transcription elongation factor TFIIS (TbTFIIS1 and TbTFIIS2-1). TFIIS has been shown to aid transcription elongation by relieving arrested pol II. Our phylogenetic analysis demonstrated the existence of four independent TFIIS expansions across eukaryotes. While TbTFIIS1 contains only the canonical domains II and III, the N-terminus of TbTFIIS2-1 contains a PWWP domain and a domain I. TbTFIIS1 and TbTFIIS2-1 are expressed in procyclic and bloodstream form cells and localize to the nucleus in similar, but distinct, punctate patterns throughout the cell cycle. Neither TFIIS protein was enriched in the major pol II sites of spliced-leader RNA transcription. Single RNA interference (RNAi)-mediated knock-down and knockout showed that neither protein is essential. Double knock-down, however, impaired growth. Repetitive failure to generate a double knockout of TbTFIIS1 and TbTFIIS2-1 strongly suggests synthetical lethality and thus an essential function shared by the two proteins in trypanosome growth.
Collapse
Affiliation(s)
- Pierrick Uzureau
- Laboratoire de Parasitologie Moléculaire, ULB IBMM, rue des Pr Jeneer et Brachet 12, B-6041 Gosselies, Belgium
| | | | | | | | | | | | | |
Collapse
|
25
|
Multifunctional class I transcription in Trypanosoma brucei depends on a novel protein complex. EMBO J 2007; 26:4856-66. [PMID: 17972917 DOI: 10.1038/sj.emboj.7601905] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Accepted: 10/09/2007] [Indexed: 11/09/2022] Open
Abstract
The vector-borne, protistan parasite Trypanosoma brucei is the only known eukaryote with a multifunctional RNA polymerase I that, in addition to ribosomal genes, transcribes genes encoding the parasite's major cell-surface proteins-the variant surface glycoprotein (VSG) and procyclin. In the mammalian bloodstream, antigenic variation of the VSG coat is the parasite's means to evade the immune response, while procyclin is necessary for effective establishment of trypanosome infection in the fly. Moreover, the exceptionally high efficiency of mono-allelic VSG expression is essential to bloodstream trypanosomes since its silencing caused rapid cell-cycle arrest in vitro and clearance of parasites from infected mice. Here we describe a novel protein complex that recognizes class I promoters and is indispensable for class I transcription; it consists of a dynein light chain and six polypeptides that are conserved only among trypanosomatid parasites. In accordance with an essential transcriptional function of the complex, silencing the expression of a key subunit was lethal to bloodstream trypanosomes and specifically affected the abundance of rRNA and VSG mRNA. The complex was dubbed class I transcription factor A.
Collapse
|
26
|
|
27
|
Nguyen TN, Schimanski B, Günzl A. Active RNA polymerase I of Trypanosoma brucei harbors a novel subunit essential for transcription. Mol Cell Biol 2007; 27:6254-63. [PMID: 17606628 PMCID: PMC1952147 DOI: 10.1128/mcb.00382-07] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
A unique characteristic of the protistan parasite Trypanosoma brucei is a multifunctional RNA polymerase I which, in addition to synthesizing rRNA as in other eukaryotes, transcribes gene units encoding the major cell surface antigens variant surface glycoprotein and procyclin. Thus far, purification of this enzyme has revealed nine orthologues of known subunits but no active enzyme. Here, we have epitope tagged the specific subunit RPB6z and tandem affinity purified RNA polymerase I from crude extract. The purified enzyme was active in both a nonspecific and a promoter-dependent transcription assay and exhibited enriched protein bands with apparent sizes of 31, 29, and 27 kDa. p31 and its trypanosomatid orthologues were identified, but their amino acid sequences have no similarity to proteins of other eukaryotes, nor do they contain a conserved sequence motif. Nevertheless, p31 cosedimented with purified RNA polymerase I, and RNA interferance-mediated silencing of p31 was lethal, affecting the abundance of rRNA. Moreover, extract of p31-silenced cells exhibited a specific defect in transcription of class I templates, which was remedied by the addition of purified RNA polymerase I, and an anti-p31 serum completely blocked RNA polymerase I-mediated transcription. We therefore dubbed this novel functional component of T. brucei RNA polymerase I TbRPA31.
Collapse
Affiliation(s)
- Tu N Nguyen
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030-3301, USA
| | | | | |
Collapse
|
28
|
Takebe S, Witola WH, Schimanski B, Günzl A, Ben Mamoun C. Purification of components of the translation elongation factor complex of Plasmodium falciparum by tandem affinity purification. EUKARYOTIC CELL 2007; 6:584-91. [PMID: 17307963 PMCID: PMC1865644 DOI: 10.1128/ec.00376-06] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2006] [Accepted: 02/07/2007] [Indexed: 11/20/2022]
Abstract
Plasmodium falciparum is the causative agent of severe human malaria, responsible for over 2 million deaths annually. Of the 5,300 polypeptides predicted to control the parasite life cycle in mosquitoes and humans, 60% are of unknown function. A major challenge of malaria postgenomic biology is to understand how the 5,300 predicted proteins coexist and interact to perform the essential tasks that define the complex life cycle of the parasite. One approach to assign function to these proteins is by identifying their physiological partners. Here we describe the use of tandem affinity purification (TAP) and mass spectrometry for identification of native protein interactions and purification of protein complexes in P. falciparum. Transgenic parasites were generated which express the translation elongation factor PfEF-1beta harboring a C-terminal PTP tag which consists of the protein C epitope, a tobacco etch virus protease cleavage site, and two protein A domains. Purification of PfEF-1beta-PTP from crude extracts followed by mass spectrometric analysis revealed, in addition to the tagged protein itself, the presence of the native PfEF-1beta, the G-protein PfEF-1alpha, and two new proteins that we named PfEF-1gamma and PfEF-1delta based on their homology to other eukaryotic gamma and delta translation elongation factor subunits. These data, which constitute the first application of TAP for purification of a protein complex under native conditions in P. falciparum, revealed that the translation elongation complex in this organism contains at least two subunits of PfEF-1beta. The success of this approach will set the stage for a systematic analysis of protein interactions in this important human pathogen.
Collapse
Affiliation(s)
- Sachiko Takebe
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, Connecticut 06030-3301, USA
| | | | | | | | | |
Collapse
|
29
|
Devaux S, Kelly S, Lecordier L, Wickstead B, Perez-Morga D, Pays E, Vanhamme L, Gull K. Diversification of function by different isoforms of conventionally shared RNA polymerase subunits. Mol Biol Cell 2007; 18:1293-301. [PMID: 17267688 PMCID: PMC1838988 DOI: 10.1091/mbc.e06-09-0841] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Eukaryotic nuclei contain three classes of multisubunit DNA-directed RNA polymerase. At the core of each complex is a set of 12 highly conserved subunits of which five--RPB5, RPB6, RPB8, RPB10, and RPB12--are thought to be common to all three polymerase classes. Here, we show that four distantly related eukaryotic lineages (the higher plant and three protistan) have independently expanded their repertoire of RPB5 and RPB6 subunits. Using the protozoan parasite Trypanosoma brucei as a model organism, we demonstrate that these distinct RPB5 and RPB6 subunits localize to discrete subnuclear compartments and form part of different polymerase complexes. We further show that RNA interference-mediated depletion of these discrete subunits abolishes class-specific transcription and hence demonstrates complex specialization and diversification of function by conventionally shared subunit groups.
Collapse
Affiliation(s)
- Sara Devaux
- *Institute for Molecular Biology and Medicine, Université Libre de Bruxelles, 6041 Gosselies, Belgium; and
| | - Steven Kelly
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Laurence Lecordier
- *Institute for Molecular Biology and Medicine, Université Libre de Bruxelles, 6041 Gosselies, Belgium; and
| | - Bill Wickstead
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - David Perez-Morga
- *Institute for Molecular Biology and Medicine, Université Libre de Bruxelles, 6041 Gosselies, Belgium; and
| | - Etienne Pays
- *Institute for Molecular Biology and Medicine, Université Libre de Bruxelles, 6041 Gosselies, Belgium; and
| | - Luc Vanhamme
- *Institute for Molecular Biology and Medicine, Université Libre de Bruxelles, 6041 Gosselies, Belgium; and
| | - Keith Gull
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| |
Collapse
|
30
|
Lee JH, Nguyen TN, Schimanski B, Günzl A. Spliced leader RNA gene transcription in Trypanosoma brucei requires transcription factor TFIIH. EUKARYOTIC CELL 2007; 6:641-9. [PMID: 17259543 PMCID: PMC1865645 DOI: 10.1128/ec.00411-06] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Trypanosomatid parasites share a gene expression mode which differs greatly from that of their human and insect hosts. In these unicellular eukaryotes, protein-coding genes are transcribed polycistronically and individual mRNAs are processed from precursors by spliced leader (SL) trans splicing and polyadenylation. In trans splicing, the SL RNA is consumed through a transfer of its 5'-terminal part to the 5' end of mRNAs. Since all mRNAs are trans spliced, the parasites depend on strong and continuous SL RNA synthesis mediated by RNA polymerase II. As essential factors for SL RNA gene transcription in Trypanosoma brucei, the general transcription factor (GTF) IIB and a complex, consisting of the TATA-binding protein-related protein 4, the small nuclear RNA-activating protein complex, and TFIIA, were recently identified. Although T. brucei TFIIA and TFIIB are extremely divergent to their counterparts in other eukaryotes, their characterization suggested that trypanosomatids do form a class II transcription preinitiation complex at the SL RNA gene promoter and harbor orthologues of other known GTFs. TFIIH is a GTF which functions in transcription initiation, DNA repair, and cell cycle control. Here, we investigated whether a T. brucei TFIIH is important for SL RNA gene transcription and found that silencing the expression of the highly conserved TFIIH subunit XPD in T. brucei affected SL RNA gene synthesis in vivo, and depletion of this protein from extract abolished SL RNA gene transcription in vitro. Since we also identified orthologues of the TFIIH subunits XPB, p52/TFB2, and p44/SSL1 copurifying with TbXPD, we concluded that the parasite harbors a TFIIH which is indispensable for SL RNA gene transcription.
Collapse
Affiliation(s)
- Ju Huck Lee
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030-3301, USA
| | | | | | | |
Collapse
|
31
|
Martínez-Calvillo S, Saxena A, Green A, Leland A, Myler PJ. Characterization of the RNA polymerase II and III complexes in Leishmania major. Int J Parasitol 2006; 37:491-502. [PMID: 17275824 PMCID: PMC2939717 DOI: 10.1016/j.ijpara.2006.11.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2006] [Revised: 11/21/2006] [Accepted: 11/22/2006] [Indexed: 10/23/2022]
Abstract
Transcription of protein-coding genes in Leishmania major and other trypanosomatids differs from that in most eukaryotes and bioinformatic analyses have failed to identify several components of the RNA polymerase (RNAP) complexes. To increase our knowledge about this basic cellular process, we used tandem affinity purification (TAP) to identify subunits of RNAP II and III. Mass spectrometric analysis of the complexes co-purified with TAP-tagged LmRPB2 (encoded by LmjF31.0160) identified seven RNAP II subunits: RPB1, RPB2, RPB3, RPB5, RPB7, RPB10 and RPB11. With the exception of RPB10 and RPB11, and the addition of RPB8, these were also identified using TAP-tagged constructs of one (encoded by LmjF34.0890) of the two LmRPB6 orthologues. The latter experiments also identified the RNAP III subunits RPC1 (C160), RPC2 (C128), RPC3 (C82), RPC4 (C53), RPC5 (C37), RPC6 (C34), RPC9 (C17), RPAC1 (AC40) and RPAC2 (AC19). Significantly, the complexes precipitated by TAP-tagged LmRPB6 did not contain any RNAP I-specific subunits, suggesting that, unlike in other eukaryotes, LmRPB6 is not shared by all three polymerases but is restricted to RNAP II and III, while the LmRPB6z (encoded by LmjF25.0140) isoform is limited to RNAP I. Similarly, we identified peptides from only one (encoded by LmjF18.0780) of the two RPB5 orthologues and one (LmjF13.1120) of the two RPB10 orthologues, suggesting that LmRPB5z (LmjF18.0790) and LmRPB10z (LmjF13.1120) are also restricted to RNAP I. In addition to these RNAP subunits, we also identified a number of other proteins that co-purified with the RNAP II and III complexes, including a potential transcription factor, several histones, an ATPase involved in chromosome segregation, an endonuclease, four helicases, RNA splicing factor PTSR-1, at least two RNA binding proteins and several proteins of unknown function.
Collapse
Affiliation(s)
| | - Alka Saxena
- Seattle Biomedical Research Institute, 307 Westlake Ave. N., Seattle, WA 98109-5219 USA
| | - Amanda Green
- Seattle Biomedical Research Institute, 307 Westlake Ave. N., Seattle, WA 98109-5219 USA
| | - Aaron Leland
- Seattle Biomedical Research Institute, 307 Westlake Ave. N., Seattle, WA 98109-5219 USA
| | - Peter J. Myler
- Seattle Biomedical Research Institute, 307 Westlake Ave. N., Seattle, WA 98109-5219 USA
- Department of Pathobiology, University of Washington, Seattle, WA 98195 USA
- Department of Medical Education and Biomedical Informatics, University of Washington, Seattle, WA 98195 USA
- Corresponding author. Dr. Peter J. Myler, Seattle Biomedical Research Institute, 307 Westlake Ave. N, Seattle, WA, 98109-5219, USA, Tel.: +1 206 256 7332; fax: +1 206 256 7220. E-mail address:
| |
Collapse
|
32
|
Das A, Li H, Liu T, Bellofatto V. Biochemical characterization of Trypanosoma brucei RNA polymerase II. Mol Biochem Parasitol 2006; 150:201-10. [PMID: 16962183 DOI: 10.1016/j.molbiopara.2006.08.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2006] [Revised: 07/28/2006] [Accepted: 08/01/2006] [Indexed: 10/24/2022]
Abstract
In Trypanosoma brucei, transcription by RNA polymerase II accounts for the expression of the spliced leader (SL) RNA and most protein coding mRNAs. To understand the regulation of RNA polymerase II transcription in these parasites, we have purified a transcriptionally active enzyme through affinity chromatography of its essential subunit, RPB4. The enzyme preparation is active in both promoter-independent and promoter-dependent in vitro transcription assays. Importantly, the enzyme is sensitive to alpha-amanitin inhibition, a hallmark of eukaryotic RNA polymerase II enzymes. Using mass spectrometric analysis we have identified the previously unobserved RPB12 subunit of T. brucei RNA polymerase II. TbRPB12 contains a conserved CX(2)CX(10-15)CX(2)C zinc binding motif that is characteristic of other eukaryotic RPB12 polypeptides. We also identified seven proteins that associate with T. brucei RNA polymerase II. While both bioinformatics and biochemical analysis have focused on the subunit structure of trypanosome RNA polymerases, this is the first study that reveals a functional RNA polymerase II enzyme.
Collapse
Affiliation(s)
- Anish Das
- Department of Microbiology and Molecular Genetics, UMDNJ-New Jersey Medical School, International Center for Public Health, 225 Warren Street, Newark, NJ 07103, USA
| | | | | | | |
Collapse
|