1
|
Rajan KS, Aryal S, Hiregange DG, Bashan A, Madmoni H, Olami M, Doniger T, Cohen-Chalamish S, Pescher P, Taoka M, Nobe Y, Fedorenko A, Bose T, Zimermann E, Prina E, Aharon-Hefetz N, Pilpel Y, Isobe T, Unger R, Späth GF, Yonath A, Michaeli S. Structural and mechanistic insights into the function of Leishmania ribosome lacking a single pseudouridine modification. Cell Rep 2024; 43:114203. [PMID: 38722744 PMCID: PMC11156624 DOI: 10.1016/j.celrep.2024.114203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 03/21/2024] [Accepted: 04/23/2024] [Indexed: 06/01/2024] Open
Abstract
Leishmania is the causative agent of cutaneous and visceral diseases affecting millions of individuals worldwide. Pseudouridine (Ψ), the most abundant modification on rRNA, changes during the parasite life cycle. Alterations in the level of a specific Ψ in helix 69 (H69) affected ribosome function. To decipher the molecular mechanism of this phenotype, we determine the structure of ribosomes lacking the single Ψ and its parental strain at ∼2.4-3 Å resolution using cryo-EM. Our findings demonstrate the significance of a single Ψ on H69 to its structure and the importance for its interactions with helix 44 and specific tRNAs. Our study suggests that rRNA modification affects translation of mRNAs carrying codon bias due to selective accommodation of tRNAs by the ribosome. Based on the high-resolution structures, we propose a mechanism explaining how the ribosome selects specific tRNAs.
Collapse
Affiliation(s)
- K Shanmugha Rajan
- Department of Chemical and Structural Biology, The Weizmann Institute of Science, Rehovot 76100001, Israel; The Mina and Everard Goodman Faculty of Life Sciences and Advanced and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Saurav Aryal
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Disha-Gajanan Hiregange
- Department of Chemical and Structural Biology, The Weizmann Institute of Science, Rehovot 76100001, Israel
| | - Anat Bashan
- Department of Chemical and Structural Biology, The Weizmann Institute of Science, Rehovot 76100001, Israel
| | - Hava Madmoni
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Mika Olami
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Tirza Doniger
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Smadar Cohen-Chalamish
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Pascal Pescher
- Institut Pasteur, Université Paris Cité, INSERM U1201, Unité de Parasitologie moléculaire et Signalisation, Paris, France
| | - Masato Taoka
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minami-osawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan
| | - Yuko Nobe
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minami-osawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan
| | - Aliza Fedorenko
- Department of Chemical and Structural Biology, The Weizmann Institute of Science, Rehovot 76100001, Israel
| | - Tanaya Bose
- Department of Chemical and Structural Biology, The Weizmann Institute of Science, Rehovot 76100001, Israel
| | - Ella Zimermann
- Department of Chemical and Structural Biology, The Weizmann Institute of Science, Rehovot 76100001, Israel
| | - Eric Prina
- Institut Pasteur, Université Paris Cité, INSERM U1201, Unité de Parasitologie moléculaire et Signalisation, Paris, France
| | - Noa Aharon-Hefetz
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Yitzhak Pilpel
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Toshiaki Isobe
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minami-osawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan
| | - Ron Unger
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Gerald F Späth
- Institut Pasteur, Université Paris Cité, INSERM U1201, Unité de Parasitologie moléculaire et Signalisation, Paris, France
| | - Ada Yonath
- Department of Chemical and Structural Biology, The Weizmann Institute of Science, Rehovot 76100001, Israel
| | - Shulamit Michaeli
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900, Israel.
| |
Collapse
|
2
|
Hieronimus K, Donauer T, Klein J, Hinkel B, Spänle JV, Probst A, Niemeyer J, Kibrom S, Kiefer AM, Schneider L, Husemann B, Bischoff E, Möhring S, Bayer N, Klein D, Engels A, Ziehmer BG, Stieβ J, Moroka P, Schroda M, Deponte M. A Modular Cloning Toolkit for the production of recombinant proteins in Leishmania tarentolae. MICROBIAL CELL (GRAZ, AUSTRIA) 2024; 11:128-142. [PMID: 38799406 PMCID: PMC11121976 DOI: 10.15698/mic2024.04.821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/20/2024] [Accepted: 03/28/2024] [Indexed: 05/29/2024]
Abstract
Modular Cloning (MoClo) is based on libraries of standardized genetic parts that can be directionally assembled via Golden Gate cloning in one-pot reactions into transcription units and multigene constructs. Here, a team of bachelor students established a MoClo toolkit for the protist Leishmania tarentolae in the frame of the international Genetically Engineered Machine (iGEM) competition. Our modular toolkit is based on a domesticated version of a commercial LEXSY expression vector and comprises 34 genetic parts encoding various affinity tags, targeting signals as well as fluorescent and luminescent proteins. We demonstrated the utility of our kit by the successful production of 16 different tagged versions of the receptor binding domain (RBD) of the SARS-CoV-2 spike protein in L. tarentolae liquid cultures. While highest yields of secreted recombinant RBD were obtained for GST-tagged fusion proteins 48 h post induction, C-terminal peptide tags were often degraded and resulted in lower yields of secreted RBD. Fusing secreted RBD to a synthetic O-glycosylation SP20 module resulted in an apparent molecular mass shift around 10 kDa. No disadvantage regarding the production of RBD was detected when the three antibiotics of the LEXSY system were omitted during the 48-h induction phase. Furthermore, the successful purification of secreted RBD from the supernatant of L. tarentolae liquid cultures was demonstrated in pilot experiments. In summary, we established a MoClo toolkit and exemplified its application for the production of recombinant proteins in L. tarentolae.
Collapse
Affiliation(s)
- Katrin Hieronimus
- Faculty of Biology, Molecular Biotechnology & Systems
Biology, RPTU Kaiserslautern, D-67663 Kaiserslautern, Germany
- Faculty of Chemistry, Comparative Biochemistry, RPTU
Kaiserslautern, D-67663 Kaiserslautern, Germany
| | - Tabea Donauer
- Faculty of Biology, Molecular Biotechnology & Systems
Biology, RPTU Kaiserslautern, D-67663 Kaiserslautern, Germany
- Faculty of Chemistry, Comparative Biochemistry, RPTU
Kaiserslautern, D-67663 Kaiserslautern, Germany
| | - Jonas Klein
- Faculty of Biology, Molecular Biotechnology & Systems
Biology, RPTU Kaiserslautern, D-67663 Kaiserslautern, Germany
| | - Bastian Hinkel
- Faculty of Biology, Molecular Biotechnology & Systems
Biology, RPTU Kaiserslautern, D-67663 Kaiserslautern, Germany
| | - Julia Vanessa Spänle
- Faculty of Biology, Molecular Biotechnology & Systems
Biology, RPTU Kaiserslautern, D-67663 Kaiserslautern, Germany
| | - Anna Probst
- Faculty of Biology, Molecular Biotechnology & Systems
Biology, RPTU Kaiserslautern, D-67663 Kaiserslautern, Germany
| | - Justus Niemeyer
- Faculty of Biology, Molecular Biotechnology & Systems
Biology, RPTU Kaiserslautern, D-67663 Kaiserslautern, Germany
| | - Salina Kibrom
- Faculty of Biology, Molecular Biotechnology & Systems
Biology, RPTU Kaiserslautern, D-67663 Kaiserslautern, Germany
| | - Anna Maria Kiefer
- Faculty of Biology, Molecular Biotechnology & Systems
Biology, RPTU Kaiserslautern, D-67663 Kaiserslautern, Germany
| | - Luzia Schneider
- Faculty of Chemistry, Comparative Biochemistry, RPTU
Kaiserslautern, D-67663 Kaiserslautern, Germany
| | - Britta Husemann
- Faculty of Chemistry, Comparative Biochemistry, RPTU
Kaiserslautern, D-67663 Kaiserslautern, Germany
| | - Eileen Bischoff
- Faculty of Chemistry, Comparative Biochemistry, RPTU
Kaiserslautern, D-67663 Kaiserslautern, Germany
| | - Sophie Möhring
- Faculty of Chemistry, Comparative Biochemistry, RPTU
Kaiserslautern, D-67663 Kaiserslautern, Germany
| | - Nicolas Bayer
- Faculty of Biology, Molecular Biotechnology & Systems
Biology, RPTU Kaiserslautern, D-67663 Kaiserslautern, Germany
| | - Dorothée Klein
- Faculty of Biology, Molecular Biotechnology & Systems
Biology, RPTU Kaiserslautern, D-67663 Kaiserslautern, Germany
| | - Adrian Engels
- Faculty of Biology, Molecular Biotechnology & Systems
Biology, RPTU Kaiserslautern, D-67663 Kaiserslautern, Germany
| | - Benjamin Gustav Ziehmer
- Faculty of Chemistry, Comparative Biochemistry, RPTU
Kaiserslautern, D-67663 Kaiserslautern, Germany
| | - Julian Stieβ
- Faculty of Computer Science, RPTU Kaiserslautern, D-67663
Kaiserslautern, Germany
| | - Pavlo Moroka
- Faculty of Biology, Molecular Biotechnology & Systems
Biology, RPTU Kaiserslautern, D-67663 Kaiserslautern, Germany
| | - Michael Schroda
- Faculty of Biology, Molecular Biotechnology & Systems
Biology, RPTU Kaiserslautern, D-67663 Kaiserslautern, Germany
| | - Marcel Deponte
- Faculty of Chemistry, Comparative Biochemistry, RPTU
Kaiserslautern, D-67663 Kaiserslautern, Germany
| |
Collapse
|
3
|
Abstract
Complex I (NADH dehydrogenase) is the first enzyme in the respiratory chain. It catalyses the electron transfer from NADH to ubiquinone that is associated with proton pumping out of the matrix. In this study, we characterized NADH dehydrogenase activity in seven monoxenous trypanosomatid species: Blechomonas ayalai, Herpetomonas tarakana, Kentomonas sorsogonicus, Leptomonas seymouri, Novymonas esmeraldas, Sergeia podlipaevi and Wallacemonas raviniae. We also investigated the subunit composition of the complex I in dixenous Phytomonas serpens, in which its presence and activity have been previously documented. In addition to P. serpens, the complex I is functionally active in N. esmeraldas and S. podlipaevi. We also identified 24-32 subunits of the complex I in individual species by using mass spectrometry. Among them, for the first time, we recognized several proteins of the mitochondrial DNA origin.
Collapse
|
4
|
Matzov D, Taoka M, Nobe Y, Yamauchi Y, Halfon Y, Asis N, Zimermann E, Rozenberg H, Bashan A, Bhushan S, Isobe T, Gray MW, Yonath A, Shalev-Benami M. Cryo-EM structure of the highly atypical cytoplasmic ribosome of Euglena gracilis. Nucleic Acids Res 2020; 48:11750-11761. [PMID: 33091122 PMCID: PMC7672448 DOI: 10.1093/nar/gkaa893] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/21/2020] [Accepted: 10/21/2020] [Indexed: 12/11/2022] Open
Abstract
Ribosomal RNA is the central component of the ribosome, mediating its functional and architectural properties. Here, we report the cryo-EM structure of a highly divergent cytoplasmic ribosome from the single-celled eukaryotic alga Euglena gracilis. The Euglena large ribosomal subunit is distinct in that it contains 14 discrete rRNA fragments that are assembled non-covalently into the canonical ribosome structure. The rRNA is substantially enriched in post-transcriptional modifications that are spread far beyond the catalytic RNA core, contributing to the stabilization of this highly fragmented ribosome species. A unique cluster of five adenosine base methylations is found in an expansion segment adjacent to the protein exit tunnel, such that it is positioned for interaction with the nascent peptide. As well as featuring distinctive rRNA expansion segments, the Euglena ribosome contains four novel ribosomal proteins, localized to the ribosome surface, three of which do not have orthologs in other eukaryotes.
Collapse
Affiliation(s)
- Donna Matzov
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Masato Taoka
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minami-osawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan
| | - Yuko Nobe
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minami-osawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan
| | - Yoshio Yamauchi
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minami-osawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan
| | - Yehuda Halfon
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Nofar Asis
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ella Zimermann
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Haim Rozenberg
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Anat Bashan
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Shashi Bhushan
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Toshiaki Isobe
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minami-osawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan
| | - Michael W Gray
- Department of Biochemistry and Molecular Biology and Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada B3H 1X5
| | - Ada Yonath
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Moran Shalev-Benami
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
5
|
de Oliveira TA, Silva WD, da Rocha Torres N, Badaró de Moraes JV, Senra RL, de Oliveira Mendes TA, Júnior AS, Bressan GC, Fietto JLR. Application of the LEXSY Leishmania tarentolae system as a recombinant protein expression platform: A review. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.08.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
6
|
Čermáková P, Kovalinka T, Ferenczyová K, Horváth A. Coenzyme Q 2 is a universal substrate for the measurement of respiratory chain enzyme activities in trypanosomatids. ACTA ACUST UNITED AC 2019; 26:17. [PMID: 30901308 PMCID: PMC6430614 DOI: 10.1051/parasite/2019017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/09/2019] [Indexed: 12/16/2022]
Abstract
The measurement of respiratory chain enzyme activities is an integral part of basic research as well as for specialized examinations in clinical biochemistry. Most of the enzymes use ubiquinone as one of their substrates. For current in vitro measurements, several hydrophilic analogues of native ubiquinone are used depending on the enzyme and the workplace. We tested five readily available commercial analogues and we showed that Coenzyme Q2 is the most suitable for the measurement of all tested enzyme activities. Use of a single substrate in all laboratories for several respiratory chain enzymes will improve our ability to compare data, in addition to simplifying the stock of chemicals required for this type of research.
Collapse
Affiliation(s)
- Petra Čermáková
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Tomáš Kovalinka
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Kristína Ferenczyová
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Anton Horváth
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| |
Collapse
|
7
|
Atomic resolution snapshot of Leishmania ribosome inhibition by the aminoglycoside paromomycin. Nat Commun 2017; 8:1589. [PMID: 29150609 PMCID: PMC5693986 DOI: 10.1038/s41467-017-01664-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 10/05/2017] [Indexed: 12/25/2022] Open
Abstract
Leishmania is a single-celled eukaryotic parasite afflicting millions of humans worldwide, with current therapies limited to a poor selection of drugs that mostly target elements in the parasite's cell envelope. Here we determined the atomic resolution electron cryo-microscopy (cryo-EM) structure of the Leishmania ribosome in complex with paromomycin (PAR), a highly potent compound recently approved for treatment of the fatal visceral leishmaniasis (VL). The structure reveals the mechanism by which the drug induces its deleterious effects on the parasite. We further show that PAR interferes with several aspects of cytosolic translation, thus highlighting the cytosolic rather than the mitochondrial ribosome as the primary drug target. The results also highlight unique as well as conserved elements in the PAR-binding pocket that can serve as hotspots for the development of novel therapeutics.
Collapse
|
8
|
Subramanian A, Sarkar RR. Comparison of codon usage bias across Leishmania and Trypanosomatids to understand mRNA secondary structure, relative protein abundance and pathway functions. Genomics 2015; 106:232-41. [DOI: 10.1016/j.ygeno.2015.05.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 05/27/2015] [Accepted: 05/28/2015] [Indexed: 11/25/2022]
|
9
|
Verner Z, Čermáková P, Škodová I, Kováčová B, Lukeš J, Horváth A. Comparative analysis of respiratory chain and oxidative phosphorylation in Leishmania tarentolae, Crithidia fasciculata, Phytomonas serpens and procyclic stage of Trypanosoma brucei. Mol Biochem Parasitol 2014; 193:55-65. [DOI: 10.1016/j.molbiopara.2014.02.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 02/05/2014] [Accepted: 02/06/2014] [Indexed: 10/25/2022]
|
10
|
Chajbullinova A, Votypka J, Sadlova J, Kvapilova K, Seblova V, Kreisinger J, Jirku M, Sanjoba C, Gantuya S, Matsumoto Y, Volf P. The development of Leishmania turanica in sand flies and competition with L. major. Parasit Vectors 2012; 5:219. [PMID: 23031344 PMCID: PMC3484061 DOI: 10.1186/1756-3305-5-219] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 09/14/2012] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND In Central Asian foci of zoonotic cutaneous leishmaniases, mixed infections of Leishmania turanica and L. major have been found in a reservoir host (the great gerbil, Rhombomys opimus) as well as in the sand fly vector Phlebotomus papatasi, but hybrids between these two Leishmania species have never been reported. In addition, the role of sand fly species other than P. papatasi in L. turanica circulation is not clear. METHODS In this work we compared the development of L. turanica in three sand fly species belonging to different subgenera. In addition, we studied experimental co-infections of sand flies by both Leishmania species using GFP transfected L. turanica (MRHO/MN/08/BZ18(GFP+)) and RFP transfected L. major (WHOM/IR/-/173-DsRED(RFP+)). The possibility of Leishmania genetic exchange during the vectorial part of the life cycle was studied using flow cytometry combined with immunofluorescent microscopy. RESULTS Late-stage infections of L. turanica with frequent colonization of the stomodeal valve were observed in the specific vector P. (Phlebotomus) papatasi and in the permissive vector P. (Adlerius) arabicus. On the other hand, in P. sergenti (the specific vector of L. tropica), L. turanica promatigotes were present only until the defecation of bloodmeal remnants. In their natural vector P. papatasi, L. turanica and L. major developed similarly, and the spatiotemporal dynamics of localization in the sand fly gut was the same for both leishmania species. Fluorescence microscopy in combination with FACS analyses did not detect any L. major / L. turanica hybrids in the experimental co-infection of P. papatasi and P. duboscqi. CONCLUSION Our data provide new insight into the development of different leishmania parasite species during a mixed infection in the sand fly gut. Despite the fact that both Leishmania species developed well in P. papatasi and P. duboscqi and did not outcompete each other, no genetic exchange was found. However, the ability of L. turanica to establish late-stage infections in these specific vectors of L. major suggests that the lipophosphoglycan of this species must be identical or similar to that of L. major.
Collapse
Affiliation(s)
- Alsu Chajbullinova
- Department of Parasitology, Fac. Sci, Charles University in Prague, Prague, Czech Republic
| | - Jan Votypka
- Department of Parasitology, Fac. Sci, Charles University in Prague, Prague, Czech Republic
- Biology Centre, Institute of Parasitology, Ceske Budejovice, Czech Republic
| | - Jovana Sadlova
- Department of Parasitology, Fac. Sci, Charles University in Prague, Prague, Czech Republic
| | - Katerina Kvapilova
- Department of Parasitology, Fac. Sci, Charles University in Prague, Prague, Czech Republic
| | - Veronika Seblova
- Department of Parasitology, Fac. Sci, Charles University in Prague, Prague, Czech Republic
| | - Jakub Kreisinger
- Department of Zoology, Fac. Sci, Charles University in Prague, Prague, Czech Republic
| | - Milan Jirku
- Biology Centre, Institute of Parasitology, Ceske Budejovice, Czech Republic
| | - Chizu Sanjoba
- Department of Molecular Immunology, University of Tokyo, Tokyo, Japan
| | - Sambuu Gantuya
- Department of Molecular Immunology, University of Tokyo, Tokyo, Japan
| | | | - Petr Volf
- Department of Parasitology, Fac. Sci, Charles University in Prague, Prague, Czech Republic
| |
Collapse
|
11
|
Elias CGR, Chagas MG, Souza-Gonçalves AL, Pascarelli BMO, d'Avila-Levy CM, Branquinha MH, Santos ALS. Differential expression of cruzipain- and gp63-like molecules in the phytoflagellate trypanosomatid Phytomonas serpens induced by exogenous proteins. Exp Parasitol 2011; 130:13-21. [PMID: 22033075 DOI: 10.1016/j.exppara.2011.10.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 10/07/2011] [Accepted: 10/07/2011] [Indexed: 12/14/2022]
Abstract
Phytomonas serpens synthesizes metallo- and cysteine-proteases that are related to gp63 and cruzipain, respectively, two virulence factors produced by pathogenic trypanosomatids. Here, we described the cellular distribution of gp63- and cruzipain-like molecules in P. serpens through immunocytochemistry and confocal fluorescence microscopy. Both proteases were detected in distinct cellular compartments, presenting co-localization in membrane domains and intracellular regions. Subsequently, we showed that exogenous proteins modulated the production of both protease classes, but in different ways. Regarding the metalloprotease, only fetal bovine serum (FBS) influenced the gp63 expression, reducing its surface exposition (≈30%). Conversely, the cruzipain-like molecule was differentially modulated according to the proteins: human and bovine albumins reduced its expression around 50% and 35%, respectively; mucin and FBS did not alter its production, while IgG and hemoglobin drastically enhanced its surface exposition around 7- and 11-fold, respectively. Additionally, hemoglobin induced an augmentation in the cell-associated cruzipain-like activity in a dose-dependent manner. A twofold increase of the secreted cruzipain-like protein was detected after parasite incubation with 1% hemoglobin compared to the parasites incubated in PBS-glucose. The results showed the ability of P. serpens in modulating the expression and the activity of proteolytic enzymes after exposition to exogenous proteins, with emphasis in its cruzipain-like molecules.
Collapse
Affiliation(s)
- Camila G R Elias
- Laboratório de Estudos Integrados em Bioquímica Microbiana, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Bloco E-subsolo, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Av Carlos Chagas Filho, 373 Cidade Universitária, Rio de Janeiro 21941-902, Brazil
| | | | | | | | | | | | | |
Collapse
|
12
|
Patakottu BR, Singh PK, Malhotra P, Chauhan VS, Patankar S. In vivo analysis of translation initiation sites in Plasmodium falciparum. Mol Biol Rep 2011; 39:2225-32. [PMID: 21643747 DOI: 10.1007/s11033-011-0971-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Accepted: 05/26/2011] [Indexed: 11/30/2022]
Abstract
Regulation of gene expression in the malaria parasite Plasmodium falciparum is tightly controlled and little is known about the many steps involved. One step i.e. translation initiation is also poorly understood and in P. falciparum, choice of the translation initiation site (TIS) is a critical decision largely due to the high frequency of AUGs in the relatively long 5' untranslated regions of parasite mRNAs. The sequences surrounding the TIS have a major role to play in translation initiation and this report evaluates these sequences by mutational analysis of the heat shock protein 86 gene, transient transfection and reporter assays in the parasite. We find that purines at the -3 and +4 positions are essential for efficient translation in P. falciparum, similar to other eukaryotes. Interestingly, a U at the -1 position results in 2.5-fold higher reporter activity compared to wild type. Certain classes of protein biosynthetic genes show higher frequencies of U at the -1 position, suggesting that these genes may exhibit higher levels of translation. This work defines the optimal sequences for TIS choice and has implications for the design of efficient expression vectors in an important human pathogen.
Collapse
Affiliation(s)
- Balakota Reddy Patakottu
- Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | | | | | | | | |
Collapse
|
13
|
Abstract
A variety of recombinant protein expression systems have been developed for heterologous genes in both prokaryotic and eukaryotic systems such as bacteria, yeast, mammals, insects, transgenic animals, and plants. Recently Leishmania tarentolae, a trypanosomatid protozoan parasite of the white-spotted wall gecko (Tarentola annularis), has been suggested as candidate for heterologous genes expression. Trypanosomatidae are rich in glycoproteins, which can account for more than 10% of total protein; the oligosaccharide structures are similar to those of mammals with N-linked galactose, and fucose residues. To date several heterologous proteins have been expressed in L. tarentolae including both cytoplasmic enzymes and membrane receptors. Significant advances in the development of new strains and vectors, improved techniques, and the commercial availability of those tools coupled with a better understanding of the biology of Leishmania species will lead to value and power in commercial and research labs alike.
Collapse
|
14
|
Foldynová-Trantirková S, Matulová J, Dötsch V, Löhr F, Cirstea I, Alexandov K, Breitling R, Lukes J, Trantírek L. A cost-effective amino-acid-type selective isotope labeling of proteins expressed in Leishmania tarentolae. J Biomol Struct Dyn 2009; 26:755-61. [PMID: 19385703 DOI: 10.1080/07391102.2009.10507287] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
We report a cost efficient approach for amino-acid-type selective isotope labeling of proteins expressed in Leishmania tarentolae. The method provides an economically advantageous alternative to recently established protocol for isotopic labeling using expensive synthetic media. The method is based on cultivation of the L. tarentolae expression strain in a cheap complex medium supplemented with labeled amino acid(s). In this protocol, a labeled amino acid is deliberately diluted in the medium of undefined composition, which leads to a low-level isotope enrichment upon protein over-expression. The economic advantage of the protocol is achieved by avoiding large volumes of expensive synthetic medium. Decreased sensitivity of a NMR experiment due to low-level isotope enrichment is compensated by a five- to seven-fold increase of the yield of the recombinant protein in complex medium as compared to that in the synthetic medium. In addition, the decreased sensitivity can be compensated by using a higher magnetic field, cryo-detection system or higher number of transients during the NMR data acquisition. We show that enrichment as low as 5% does not compromise a NMR experiment and makes preparation of the recombinant proteins over-expressed in L. tarentolae economically viable. The method is demonstrated by selective labeling of the approximately 27 kDa enhanced green fluorescent protein (EGFP) with 15N-labeled valine.
Collapse
|
15
|
Abanades DR, Ramírez L, Iborra S, Soteriadou K, González VM, Bonay P, Alonso C, Soto M. Key role of the 3' untranslated region in the cell cycle regulated expression of the Leishmania infantum histone H2A genes: minor synergistic effect of the 5' untranslated region. BMC Mol Biol 2009; 10:48. [PMID: 19460148 PMCID: PMC2691400 DOI: 10.1186/1471-2199-10-48] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Accepted: 05/21/2009] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Histone synthesis in Leishmania is tightly coupled to DNA replication by a post-transcriptional mechanism operating at the level of translation. RESULTS In this work we have analyzed the implication of the 5' and 3' untranslated regions (UTR) in the cell cycle regulated expression of the histone H2A in Leishmania infantum. For that purpose, L. infantum promastigotes were stably transfected with different plasmid constructs in which the CAT coding region used as a reporter was flanked by the 5' and 3' UTR regions of the different H2A genes. We report that in spite of their sequence differences, histone H2A 5' and 3' UTRs conferred a cell cycle dependent pattern of expression on the CAT reporter since de novo synthesis of CAT increased when parasites enter the S phase. Using one established L. infantum cell line we showed that CAT expression is controlled by the same regulatory events that control the endogenous histone gene expression. Thus, although we did not detect changes in the level of CAT mRNAs during cell cycle progression, a drastic change in the polysome profiles of CAT mRNAs was observed during the progression from G1 to S phase. In the S phase CAT mRNAs were on polyribosomal fractions, but in the G1 phase the association of CAT transcripts with ribosomes was impaired. Furthermore, it was determined that the addition of just the H2A 3' UTR to the CAT reporter gene is sufficient to achieve a similar pattern of post-transcriptional regulation indicating that this region contains the major regulatory sequences involved in the cell cycle dependent expression of the H2A genes. On the other hand, although CAT transcripts bearing the H2A 5' alone were translated both in the G1 and S phase, higher percentages of transcripts were detected on polyribosomes in the S phase correlating with an increase in the de novo synthesis of CAT. Thus, it can be concluded that this region also contributes, although to a minor extent than the 3' UTR, in the enhancement of translation in the S phase relative to the G1 phase. CONCLUSION Our findings indicate that both, the 5' and the 3' UTRs contain sequence elements that contribute to the cell cycle expression of L. infantum H2A. The 3' UTR region is essential for cell cycle dependent translation of the L. infantum H2A transcripts whereas the 5' UTR has a minor contribution in their S phase dependent translation.
Collapse
Affiliation(s)
- Daniel R Abanades
- Centro de Biología Molecular Severo Ochoa, Departamento de Biología Molecular, Universidad Autónoma de Madrid, CSIC-UAM, Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Laura Ramírez
- Centro de Biología Molecular Severo Ochoa, Departamento de Biología Molecular, Universidad Autónoma de Madrid, CSIC-UAM, Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Salvador Iborra
- Unidad de Inmunología Viral, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Crta. Pozuelo Km 2, 28220 Majadahonda, Madrid, Spain
| | - Ketty Soteriadou
- Laboratory of Molecular Parasitology, Hellenic Pasteur Institute, 127 Vas. Sophias, 115 21 Athens, Greece
| | - Victor M González
- Departamento de Bioquímica-Investigación, Hospital Ramón y Cajal, 28034 Madrid, Spain
| | - Pedro Bonay
- Centro de Biología Molecular Severo Ochoa, Departamento de Biología Molecular, Universidad Autónoma de Madrid, CSIC-UAM, Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Carlos Alonso
- Centro de Biología Molecular Severo Ochoa, Departamento de Biología Molecular, Universidad Autónoma de Madrid, CSIC-UAM, Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Manuel Soto
- Centro de Biología Molecular Severo Ochoa, Departamento de Biología Molecular, Universidad Autónoma de Madrid, CSIC-UAM, Nicolás Cabrera 1, 28049 Madrid, Spain
| |
Collapse
|
16
|
Gile GH, Faktorová D, Castlejohn CA, Burger G, Lang BF, Farmer MA, Lukes J, Keeling PJ. Distribution and phylogeny of EFL and EF-1alpha in Euglenozoa suggest ancestral co-occurrence followed by differential loss. PLoS One 2009; 4:e5162. [PMID: 19357788 PMCID: PMC2664479 DOI: 10.1371/journal.pone.0005162] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Accepted: 03/18/2009] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The eukaryotic elongation factor EF-1alpha (also known as EF1A) catalyzes aminoacyl-tRNA binding by the ribosome during translation. Homologs of this essential protein occur in all domains of life, and it was previously thought to be ubiquitous in eukaryotes. Recently, however, a number of eukaryotes were found to lack EF-1alpha and instead encode a related protein called EFL (for EF-Like). EFL-encoding organisms are scattered widely across the tree of eukaryotes, and all have close relatives that encode EF-1alpha. This intriguingly complex distribution has been attributed to multiple lateral transfers because EFL's near mutual exclusivity with EF-1alpha makes an extended period of co-occurrence seem unlikely. However, differential loss may play a role in EFL evolution, and this possibility has been less widely discussed. METHODOLOGY/PRINCIPAL FINDINGS We have undertaken an EST- and PCR-based survey to determine the distribution of these two proteins in a previously under-sampled group, the Euglenozoa. EF-1alpha was found to be widespread and monophyletic, suggesting it is ancestral in this group. EFL was found in some species belonging to each of the three euglenozoan lineages, diplonemids, kinetoplastids, and euglenids. CONCLUSIONS/SIGNIFICANCE Interestingly, the kinetoplastid EFL sequences are specifically related despite the fact that the lineages in which they are found are not sisters to one another, suggesting that EFL and EF-1alpha co-occurred in an early ancestor of kinetoplastids. This represents the strongest phylogenetic evidence to date that differential loss has contributed to the complex distribution of EFL and EF-1alpha.
Collapse
Affiliation(s)
- Gillian H Gile
- Department of Botany, Canadian Institute for Advanced Research, University of British Columbia, Vancouver, British Columbia, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Developmental regulation of gene expression in trypanosomatid parasitic protozoa. Curr Opin Microbiol 2008; 10:569-77. [PMID: 18177626 DOI: 10.1016/j.mib.2007.10.001] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2007] [Revised: 10/02/2007] [Accepted: 10/03/2007] [Indexed: 12/21/2022]
Abstract
Kinetoplastids branched early from the eukaryotic lineage and include several parasitic protozoan species. Up to several hundred kinetoplastid genes are co-transcribed into polycistronic RNAs and individual mRNAs are resolved by coupled co-transcriptional trans-splicing of a universal splice-leader RNA (SL-RNA) and 3'-end maturation processes. Protein-coding genes lack RNA polymerase II promoters. Consequently, most of gene regulation in these organisms occurs post-transcriptionally. Over the last few years, many more genes that are regulated at the mRNA stability level and a few at the translation level have been reported. Almost all major trypanosome homologues of yeast/mammalian mRNA degradation enzymes have been functionally characterized and major pathways identified. Novel paradigms have also recently emerged: regulated post-transcriptional processing of cytoplasmic RNAs, SL-RNA transcriptional silencing-mediated global stress response, and Leishmania-specific large-scale modulation of post-transcriptional gene expression via inactive degenerated retroelements. Several of these developments have greatly benefited from the recently completed genomic sequences and functional genomic studies.
Collapse
|
18
|
Folgueira C, Requena JM. Pitfalls of the CAT reporter gene for analyzing translational regulation in Leishmania. Parasitol Res 2007; 101:1449-52. [PMID: 17676404 DOI: 10.1007/s00436-007-0640-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2007] [Revised: 04/18/2007] [Accepted: 06/13/2007] [Indexed: 10/23/2022]
Abstract
Heterologous reporter genes are widely used for the characterization of gene expression in many organisms. Particularly, constructs bearing reporter genes have greatly contributed to our understanding of gene regulation in kinetoplastids. In some specific circumstances, however, such heterologous reporter has a risk of resulting in irrelevant observations and conclusions, which are primarily due to the introduction of foreign sequence elements. This communication describes our recent experience using the chloramphenicol acetyltransferase (CAT) gene as a reporter for analysis of the translational regulation of HSP70 genes in Leishmania infantum. We show that chimeric mRNAs consisting of the CAT open reading frame (ORF) and the untranslated regions (UTRs) from HSP70-II genes behave differently as endogenous HSP70-II mRNAs and that this difference is due to the presence of CAT sequences. Thus, the main purpose of this communication is to alert researchers working in gene regulation to be cautious when interpreting results based on heterologous reporter genes.
Collapse
Affiliation(s)
- Cristina Folgueira
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | | |
Collapse
|
19
|
Clayton C, Shapira M. Post-transcriptional regulation of gene expression in trypanosomes and leishmanias. Mol Biochem Parasitol 2007; 156:93-101. [PMID: 17765983 DOI: 10.1016/j.molbiopara.2007.07.007] [Citation(s) in RCA: 312] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2007] [Revised: 07/12/2007] [Accepted: 07/13/2007] [Indexed: 11/25/2022]
Abstract
Gene expression in Kinetoplastids is very unusual in that the open reading frames are arranged in long polycistronic arrays, monocistronic mRNAs being created by post-transcriptional processing. Thus the regulation of gene expression is post-transcriptional. We here discuss recent results concerning the enzymes required for mRNA degradation, and components of the translation initiation machinery, and how both are regulated.
Collapse
Affiliation(s)
- Christine Clayton
- Zentrum für Molekualre Biologie der Universität Heidelberg, Im Neuenheimer Feld 282, D69120 Heidelberg, Germany.
| | | |
Collapse
|