1
|
Trenaman A, Tinti M, Wall RJ, Horn D. Post-transcriptional reprogramming by thousands of mRNA untranslated regions in trypanosomes. Nat Commun 2024; 15:8113. [PMID: 39285175 PMCID: PMC11405848 DOI: 10.1038/s41467-024-52432-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 09/03/2024] [Indexed: 09/22/2024] Open
Abstract
Although genome-wide polycistronic transcription places major emphasis on post-transcriptional controls in trypanosomatids, messenger RNA cis-regulatory untranslated regions (UTRs) have remained largely uncharacterised. Here, we describe a genome-scale massive parallel reporter assay coupled with 3'-UTR-seq profiling in the African trypanosome and identify thousands of regulatory UTRs. Increased translation efficiency was associated with dosage of adenine-rich poly-purine tracts (pPuTs). An independent assessment of native UTRs using machine learning based predictions confirmed the robust correspondence between pPuTs and positive control, as did an assessment of synthetic UTRs. Those 3'-UTRs associated with upregulated expression in bloodstream-stage cells were also enriched in uracil-rich poly-pyrimidine tracts, suggesting a mechanism for developmental activation through pPuT 'unmasking'. Thus, we describe a cis-regulatory UTR sequence 'code' that underpins gene expression control in the context of a constitutively transcribed genome. We conclude that thousands of UTRs post-transcriptionally reprogram gene expression profiles in trypanosomes.
Collapse
Affiliation(s)
- Anna Trenaman
- The Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | - Michele Tinti
- The Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | - Richard J Wall
- The Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
- London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - David Horn
- The Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK.
| |
Collapse
|
2
|
Rojas-Pirela M, Delgado A, Rondón-Guerrero YDC, Cáceres AJ, Michels PAM, Concepción JL, Quiñones W. A Trypanosoma cruzi phosphoglycerate kinase isoform with a Per-Arnt-Sim domain acts as a possible sensor for intracellular conditions. Exp Parasitol 2023:108574. [PMID: 37353138 DOI: 10.1016/j.exppara.2023.108574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023]
Abstract
Per-ARNT-Sim (PAS) domains constitute a family of domains present in a wide variety of prokaryotic and eukaryotic organisms. They form part of the structure of various proteins involved in diverse cellular processes. Regulation of enzymatic activity and adaptation to environmental conditions, by binding small ligands, are the main functions attributed to PAS-containing proteins. Recently, genes for a diverse set of proteins with a PAS domain were identified in the genomes of several protists belonging to the group of kinetoplastids, however, until now few of these proteins have been characterized. In this work, we characterize a phosphoglycerate kinase containing a PAS domain present in Trypanosoma cruzi (TcPAS-PGK). This PGK isoform is an active enzyme of 58 kDa with a PAS domain located at its N-terminal end. We identified the protein's localization within glycosomes of the epimastigote form of the parasite by differential centrifugation and selective permeabilization of its membranes with digitonin, as well as in an enriched mitochondrial fraction. Heterologous expression systems were developed for the protein with the N-terminal PAS domain (PAS-PGKc) and without it (PAS-PGKt), and the substrate affinities of both forms of the protein were determined. The enzyme does not exhibit standard Michaelis-Menten kinetics. When evaluating the dependence of the specific activity of the recombinant PAS-PGK on the concentration of its substrates 3-phosphoglycerate (3PGA) and ATP, two peaks of maximal activity were found for the complete enzyme with the PAS domain and a single peak for the enzyme without the domain. Km values measured for 3PGA were 219 ± 26 and 8.8 ± 1.3 μM, and for ATP 291 ± 15 and 38 ± 2.2 μM, for the first peak of PAS-PGKc and for PAS-PGKt, respectively, whereas for the second PAS-PGKc peak values of approximately 1.1-1.2 mM were estimated for both substrates. Both recombinant proteins show inhibition by high concentrations of their substrates, ATP and 3PGA. The presence of hemin and FAD exerts a stimulatory effect on PAS-PGKc, increasing the specific activity by up to 55%. This stimulation is not observed in the absence of the PAS domain. It strongly suggests that the PAS domain has an important function in vivo in T. cruzi in the modulation of the catalytic activity of this PGK isoform. In addition, the PAS-PGK through its PAS and PGK domains could act as a sensor for intracellular conditions in the parasite to adjust its intermediary metabolism.
Collapse
Affiliation(s)
- Maura Rojas-Pirela
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida, 5101, Venezuela
| | - Andrea Delgado
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida, 5101, Venezuela
| | - Yossmayer D C Rondón-Guerrero
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida, 5101, Venezuela
| | - Ana J Cáceres
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida, 5101, Venezuela
| | - Paul A M Michels
- School of Biological Sciences, The University of Edinburgh, The King's Buildings, Edinburgh, EH9 3FL, Scotland, United Kingdom
| | - Juan Luis Concepción
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida, 5101, Venezuela
| | - Wilfredo Quiñones
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida, 5101, Venezuela.
| |
Collapse
|
3
|
Bishola Tshitenge T, Reichert L, Liu B, Clayton C. Several different sequences are implicated in bloodstream-form-specific gene expression in Trypanosoma brucei. PLoS Negl Trop Dis 2022; 16:e0010030. [PMID: 35312693 PMCID: PMC8982893 DOI: 10.1371/journal.pntd.0010030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/05/2022] [Accepted: 03/03/2022] [Indexed: 12/30/2022] Open
Abstract
The parasite Trypanosoma brucei grows as bloodstream forms in mammalian hosts, and as procyclic forms in tsetse flies. In trypanosomes, gene expression regulation depends heavily on post-transcriptional mechanisms. Both the RNA-binding protein RBP10 and glycosomal phosphoglycerate kinase PGKC are expressed only in mammalian-infective forms. RBP10 targets procyclic-specific mRNAs for destruction, while PGKC is required for bloodstream-form glycolysis. Developmental regulation of both is essential: expression of either RBP10 or PGKC in procyclic forms inhibits their proliferation. We show that the 3’-untranslated region of the RBP10 mRNA is extraordinarily long—7.3kb—and were able to identify six different sequences, scattered across the untranslated region, which can independently cause bloodstream-form-specific expression. The 3’-untranslated region of the PGKC mRNA, although much shorter, still contains two different regions, of 125 and 153nt, that independently gave developmental regulation. No short consensus sequences were identified that were enriched either within these regulatory regions, or when compared with other mRNAs with similar regulation, suggesting that more than one regulatory RNA-binding protein is important for repression of mRNAs in procyclic forms. We also identified regions, including an AU repeat, that increased expression in bloodstream forms, or suppressed it in both forms. Trypanosome mRNAs that encode RNA-binding proteins often have extremely extended 3’-untranslated regions. We suggest that one function of this might be to act as a fail-safe mechanism to ensure correct regulation even if mRNA processing or expression of trans regulators is defective. The parasite Trypanosoma brucei causes sleeping sickness in humans, and nagana in cattle, and is transmitted by Tsetse flies. It grows in the bloodstream and tissue fluids of mammalian hosts, as "bloodstream forms", and as "procyclic forms" in the midgut of tsetse flies. Several hundred proteins are expressed in a stage-specific fashion, and this is essential for parasite survival in the different environments. RBP10 is an RNA-binding protein that is expressed only in bloodstream forms. It binds to procyclic-specific mRNAs, and causes their destruction. PGKC is an enzyme that is also specifically expressed in bloodstream forms. Developmental regulation of both is essential: expression of either RBP10 or PGKC in procyclic forms prevents their growth. The mRNAs encoding both proteins are very unstable in procyclic forms, and the sequences responsible are in an "untranslated region" of the mRNA—sequences that follow the part that codes for protein. We here show that the mRNA encoding PGKC has two regions that independently cause developmental regulation, and that the very long untranslated region of the RBP10 mRNA has no fewer than six regulatory regions, but there were no obvious similarities between them. We suggest that the presence of several different regulatory sequences in trypanosome mRNAs might be a fail-safe mechanism to ensure correct regulation.
Collapse
Affiliation(s)
| | - Lena Reichert
- Heidelberg University Center for Molecular Biology (ZMBH), Heidelberg, Germany
| | - Bin Liu
- Heidelberg University Center for Molecular Biology (ZMBH), Heidelberg, Germany
| | - Christine Clayton
- Heidelberg University Center for Molecular Biology (ZMBH), Heidelberg, Germany
- * E-mail:
| |
Collapse
|
4
|
Steketee PC, Dickie EA, Iremonger J, Crouch K, Paxton E, Jayaraman S, Alfituri OA, Awuah-Mensah G, Ritchie R, Schnaufer A, Rowan T, de Koning HP, Gadelha C, Wickstead B, Barrett MP, Morrison LJ. Divergent metabolism between Trypanosoma congolense and Trypanosoma brucei results in differential sensitivity to metabolic inhibition. PLoS Pathog 2021; 17:e1009734. [PMID: 34310651 PMCID: PMC8384185 DOI: 10.1371/journal.ppat.1009734] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 08/24/2021] [Accepted: 06/21/2021] [Indexed: 11/18/2022] Open
Abstract
Animal African Trypanosomiasis (AAT) is a debilitating livestock disease prevalent across sub-Saharan Africa, a main cause of which is the protozoan parasite Trypanosoma congolense. In comparison to the well-studied T. brucei, there is a major paucity of knowledge regarding the biology of T. congolense. Here, we use a combination of omics technologies and novel genetic tools to characterise core metabolism in T. congolense mammalian-infective bloodstream-form parasites, and test whether metabolic differences compared to T. brucei impact upon sensitivity to metabolic inhibition. Like the bloodstream stage of T. brucei, glycolysis plays a major part in T. congolense energy metabolism. However, the rate of glucose uptake is significantly lower in bloodstream stage T. congolense, with cells remaining viable when cultured in concentrations as low as 2 mM. Instead of pyruvate, the primary glycolytic endpoints are succinate, malate and acetate. Transcriptomics analysis showed higher levels of transcripts associated with the mitochondrial pyruvate dehydrogenase complex, acetate generation, and the glycosomal succinate shunt in T. congolense, compared to T. brucei. Stable-isotope labelling of glucose enabled the comparison of carbon usage between T. brucei and T. congolense, highlighting differences in nucleotide and saturated fatty acid metabolism. To validate the metabolic similarities and differences, both species were treated with metabolic inhibitors, confirming that electron transport chain activity is not essential in T. congolense. However, the parasite exhibits increased sensitivity to inhibition of mitochondrial pyruvate import, compared to T. brucei. Strikingly, T. congolense exhibited significant resistance to inhibitors of fatty acid synthesis, including a 780-fold higher EC50 for the lipase and fatty acid synthase inhibitor Orlistat, compared to T. brucei. These data highlight that bloodstream form T. congolense diverges from T. brucei in key areas of metabolism, with several features that are intermediate between bloodstream- and insect-stage T. brucei. These results have implications for drug development, mechanisms of drug resistance and host-pathogen interactions.
Collapse
Affiliation(s)
- Pieter C Steketee
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Emily A Dickie
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - James Iremonger
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Kathryn Crouch
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Edith Paxton
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Siddharth Jayaraman
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Omar A Alfituri
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Ryan Ritchie
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Achim Schnaufer
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Tim Rowan
- Global Alliance for Livestock Veterinary Medicines, Edinburgh, United Kingdom
| | - Harry P de Koning
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Catarina Gadelha
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Bill Wickstead
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Michael P Barrett
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom.,Glasgow Polyomics, University of Glasgow, Glasgow, United Kingdom
| | - Liam J Morrison
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
5
|
Massange-Sánchez JA, Casados-Vázquez LE, Juarez-Colunga S, Sawers RJH, Tiessen A. The Phosphoglycerate Kinase (PGK) Gene Family of Maize ( Zea mays var. B73). PLANTS (BASEL, SWITZERLAND) 2020; 9:plants9121639. [PMID: 33255472 PMCID: PMC7761438 DOI: 10.3390/plants9121639] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/27/2020] [Accepted: 09/08/2020] [Indexed: 05/17/2023]
Abstract
Phosphoglycerate kinase (PGK, E.C. 2.7.2.3) interconverts ADP + 1,3-bisphospho-glycerate (1,3-bPGA) to ATP + 3-phosphoglycerate (3PGA). While most bacteria have a single pgk gene and mammals possess two copies, plant genomes contain three or more PGK genes. In this study, we identified five Pgk genes in the Zea mays var. B73 genome, predicted to encode proteins targeted to different subcellular compartments: ZmPgk1, ZmPgk2, and ZmPgk4 (chloroplast), ZmPgk3 (cytosol), and ZmPgk5 (nucleus). The expression of ZmPgk3 was highest in non-photosynthetic tissues (roots and cobs), where PGK activity was also greatest, consistent with a function in glycolysis. Green tissues (leaf blade and husk leaf) showed intermediate levels of PGK activity, and predominantly expressed ZmPgk1 and ZmPgk2, suggesting involvement in photosynthetic metabolism. ZmPgk5 was weakly expressed and ZmPgk4 was not detected in any tissue. Phylogenetic analysis showed that the photosynthetic and glycolytic isozymes of plants clustered together, but were distinct from PGKs of animals, fungi, protozoa, and bacteria, indicating that photosynthetic and glycolytic isozymes of plants diversified after the divergence of the plant lineage from other groups. These results show the distinct role of each PGK in maize and provide the basis for future studies into the regulation and function of this key enzyme.
Collapse
Affiliation(s)
- Julio A. Massange-Sánchez
- Departamento de Ingeniería Genética, CINVESTAV Unidad Irapuato, Irapuato 36821, Mexico; (L.E.C.-V.); (S.J.-C.); (A.T.)
- Unidad de Biotecnología Vegetal, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C. (CIATEJ) Subsede Zapopan, Guadalajara 44270, Mexico
- Correspondence: ; Tel.: +52-(33)-3345-5200 (ext. 1700)
| | - Luz E. Casados-Vázquez
- Departamento de Ingeniería Genética, CINVESTAV Unidad Irapuato, Irapuato 36821, Mexico; (L.E.C.-V.); (S.J.-C.); (A.T.)
- Life Science Division Food Department, University of Guanajuato Campus Irapuato-Salamanca, Irapuato, Guanajuato 36500, Mexico
| | - Sheila Juarez-Colunga
- Departamento de Ingeniería Genética, CINVESTAV Unidad Irapuato, Irapuato 36821, Mexico; (L.E.C.-V.); (S.J.-C.); (A.T.)
| | - Ruairidh J. H. Sawers
- Department of Plant Science, The Pennsylvania State University, State College, PA 16801, USA;
| | - Axel Tiessen
- Departamento de Ingeniería Genética, CINVESTAV Unidad Irapuato, Irapuato 36821, Mexico; (L.E.C.-V.); (S.J.-C.); (A.T.)
- Laboratorio Nacional PlanTECC, Ciudad de México C.P. 06020, Mexico
| |
Collapse
|
6
|
Abstract
In trypanosomes, RNA polymerase II transcription is polycistronic and individual mRNAs are excised by trans-splicing and polyadenylation. The lack of individual gene transcription control is compensated by control of mRNA processing, translation and degradation. Although the basic mechanisms of mRNA decay and translation are evolutionarily conserved, there are also unique aspects, such as the existence of six cap-binding translation initiation factor homologues, a novel decapping enzyme and an mRNA stabilizing complex that is recruited by RNA-binding proteins. High-throughput analyses have identified nearly a hundred regulatory mRNA-binding proteins, making trypanosomes valuable as a model system to investigate post-transcriptional regulation.
Collapse
Affiliation(s)
- Christine Clayton
- University of Heidelberg Center for Molecular Biology (ZMBH), Im Neuenheimer Feld 282, D69120 Heidelberg, Germany
| |
Collapse
|
7
|
Untranslated regions of mRNA and their role in regulation of gene expression in protozoan parasites. J Biosci 2017; 42:189-207. [PMID: 28229978 DOI: 10.1007/s12038-016-9660-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Protozoan parasites are one of the oldest living entities in this world that throughout their existence have shown excellent resilience to the odds of survival and have adapted beautifully to ever changing rigors of the environment. In view of the dynamic environment encountered by them throughout their life cycle, and in establishing pathogenesis, it is unsurprising that modulation of gene expression plays a fundamental role in their survival. In higher eukaryotes, untranslated regions (UTRs) of transcripts are one of the crucial regulators of gene expression (influencing mRNA stability and translation efficiency). Parasitic protozoan genome studies have led to the characterization (in silico, in vitro and in vivo) of a large number of their genes. Comparison of higher eukaryotic UTRs with parasitic protozoan UTRs reveals the existence of several similar and dissimilar facets of the UTRs. This review focuses on the elements of UTRs of medically important protozoan parasites and their regulatory role in gene expression. Such information may be useful to researchers in designing gene targeting strategies linked with perturbation of host-parasite relationships leading to control of specific parasites.
Collapse
|
8
|
Leishmania major phosphoglycerate kinase transcript and protein stability contributes to differences in isoform expression levels. Exp Parasitol 2015; 159:222-6. [DOI: 10.1016/j.exppara.2015.09.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 07/26/2015] [Accepted: 09/24/2015] [Indexed: 12/23/2022]
|
9
|
Fadda A, Ryten M, Droll D, Rojas F, Färber V, Haanstra JR, Merce C, Bakker BM, Matthews K, Clayton C. Transcriptome-wide analysis of trypanosome mRNA decay reveals complex degradation kinetics and suggests a role for co-transcriptional degradation in determining mRNA levels. Mol Microbiol 2014; 94:307-26. [PMID: 25145465 PMCID: PMC4285177 DOI: 10.1111/mmi.12764] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2014] [Indexed: 01/14/2023]
Abstract
African trypanosomes are an excellent system for quantitative modelling of post-transcriptional mRNA control. Transcription is constitutive and polycistronic; individual mRNAs are excised by trans splicing and polyadenylation. We here measure mRNA decay kinetics in two life cycle stages, bloodstream and procyclic forms, by transcription inhibition and RNASeq. Messenger RNAs with short half-lives tend to show initial fast degradation, followed by a slower phase; they are often stabilized by depletion of the 5′–3′ exoribonuclease XRNA. Many longer-lived mRNAs show initial slow degradation followed by rapid destruction: we suggest that the slow phase reflects gradual deadenylation. Developmentally regulated mRNAs often show regulated decay, and switch their decay pattern. Rates of mRNA decay are good predictors of steady state levels for short mRNAs, but mRNAs longer than 3 kb show unexpectedly low abundances. Modelling shows that variations in splicing and polyadenylation rates can contribute to steady-state mRNA levels, but this is completely dependent on competition between processing and co-transcriptional mRNA precursor destruction.
Collapse
Affiliation(s)
- Abeer Fadda
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, 69120, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Barros-Álvarez X, Cáceres AJ, Michels PA, Concepción JL, Quiñones W. The phosphoglycerate kinase isoenzymes have distinct roles in the regulation of carbohydrate metabolism in Trypanosoma cruzi. Exp Parasitol 2014; 143:39-47. [DOI: 10.1016/j.exppara.2014.05.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 04/04/2014] [Accepted: 05/07/2014] [Indexed: 12/01/2022]
|
11
|
Fadda A, Färber V, Droll D, Clayton C. The roles of 3'-exoribonucleases and the exosome in trypanosome mRNA degradation. RNA (NEW YORK, N.Y.) 2013; 19:937-947. [PMID: 23697549 PMCID: PMC3683928 DOI: 10.1261/rna.038430.113] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 03/28/2013] [Indexed: 06/02/2023]
Abstract
The degradation of eukaryotic mRNAs can be initiated by deadenylation, decapping, or endonuclease cleavage. This is followed by 5'-3' degradation by homologs of Xrn1, and/or 3'-5' degradation by the exosome. We previously reported that, in African trypanosome Trypanosoma brucei, most mRNAs are deadenylated prior to degradation, and that depletion of the major 5'-3' exoribonuclease XRNA preferentially stabilizes unstable mRNAs. We now show that depletion of either CAF1 or CNOT10, two components of the principal deadenylation complex, strongly inhibits degradation of most mRNAs. RNAi targeting another deadenylase, PAN2, or RRP45, a core component of the exosome, preferentially stabilized mRNAs with intermediate half-lives. RRP45 depletion resulted in a 5' bias of mRNA sequences, suggesting action by a distributive 3'-5' exoribonuclease. Results suggested that the exosome is involved in the processing of trypanosome snoRNAs. There was no correlation between effects on half-lives and on mRNA abundance.
Collapse
|
12
|
Voncken F, Gao F, Wadforth C, Harley M, Colasante C. The phosphoarginine energy-buffering system of trypanosoma brucei involves multiple arginine kinase isoforms with different subcellular locations. PLoS One 2013; 8:e65908. [PMID: 23776565 PMCID: PMC3679164 DOI: 10.1371/journal.pone.0065908] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 05/02/2013] [Indexed: 12/24/2022] Open
Abstract
Phosphagen energy-buffering systems play an essential role in regulating the cellular energy homeostasis in periods of high-energy demand or energy supply fluctuations. Here we describe the phosphoarginine/arginine kinase system of the kinetoplastid parasite Trypanosoma brucei, consisting of three highly similar arginine kinase isoforms (TbAK1-3). Immunofluorescence microscopy using myc-tagged protein versions revealed that each isoform is located in a specific subcellular compartment: TbAK1 is exclusively found in the flagellum, TbAK2 in the glycosome, and TbAK3 in the cytosol of T. brucei. The flagellar location of TbAK1 is dependent on a 22 amino acid long N-terminal sequence, which is sufficient for targeting a GFP-fusion protein to the trypanosome flagellum. The glycosomal location of TbAK2 is in agreement with the presence of a conserved peroxisomal targeting signal, the C-terminal tripeptide ‘SNL’. TbAK3 lacks any apparent targeting sequences and is accordingly located in the cytosol of the parasite. Northern blot analysis indicated that each TbAK isoform is differentially expressed in bloodstream and procyclic forms of T. brucei, while the total cellular arginine kinase activity was 3-fold higher in bloodstream form trypanosomes. These results suggest a substantial change in the temporal and spatial energy requirements during parasite differentiation. Increased arginine kinase activity improved growth of procyclic form T. brucei during oxidative challenges with hydrogen peroxide. Elimination of the total cellular arginine kinase activity by RNA interference significantly decreased growth (>90%) of procyclic form T. brucei under standard culture conditions and was lethal for this life cycle stage in the presence of hydrogen peroxide. The putative physiological roles of the different TbAK isoforms in T. brucei are further discussed.
Collapse
Affiliation(s)
- Frank Voncken
- School of Biological, Biomedical and Environmental Sciences, University of Hull, Hull, United Kingdom.
| | | | | | | | | |
Collapse
|
13
|
Gupta SK, Kosti I, Plaut G, Pivko A, Tkacz ID, Cohen-Chalamish S, Biswas DK, Wachtel C, Waldman Ben-Asher H, Carmi S, Glaser F, Mandel-Gutfreund Y, Michaeli S. The hnRNP F/H homologue of Trypanosoma brucei is differentially expressed in the two life cycle stages of the parasite and regulates splicing and mRNA stability. Nucleic Acids Res 2013; 41:6577-94. [PMID: 23666624 PMCID: PMC3711420 DOI: 10.1093/nar/gkt369] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Trypanosomes are protozoan parasites that cycle between a mammalian host (bloodstream form) and an insect host, the Tsetse fly (procyclic stage). In trypanosomes, all mRNAs are trans-spliced as part of their maturation. Genome-wide analysis of trans-splicing indicates the existence of alternative trans-splicing, but little is known regarding RNA-binding proteins that participate in such regulation. In this study, we performed functional analysis of the Trypanosoma brucei heterogeneous nuclear ribonucleoproteins (hnRNP) F/H homologue, a protein known to regulate alternative splicing in metazoa. The hnRNP F/H is highly expressed in the bloodstream form of the parasite, but is also functional in the procyclic form. Transcriptome analyses of RNAi-silenced cells were used to deduce the RNA motif recognized by this protein. A purine rich motif, AAGAA, was enriched in both the regulatory regions flanking the 3′ splice site and poly (A) sites of the regulated genes. The motif was further validated using mini-genes carrying wild-type and mutated sequences in the 3′ and 5′ UTRs, demonstrating the role of hnRNP F/H in mRNA stability and splicing. Biochemical studies confirmed the binding of the protein to this proposed site. The differential expression of the protein and its inverse effects on mRNA level in the two lifecycle stages demonstrate the role of hnRNP F/H in developmental regulation.
Collapse
Affiliation(s)
- Sachin Kumar Gupta
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Xiao Y, Nguyen S, Kim SH, Volkov OA, Tu BP, Phillips MA. Product feedback regulation implicated in translational control of the Trypanosoma brucei S-adenosylmethionine decarboxylase regulatory subunit prozyme. Mol Microbiol 2013; 88:846-61. [PMID: 23634831 DOI: 10.1111/mmi.12226] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2013] [Indexed: 12/12/2022]
Abstract
Human African sleeping sickness (HAT) is caused by the parasitic protozoan Trypanosoma brucei. Polyamine biosynthesis is an important drug target in the treatment of HAT. Previously we showed that trypanosomatid S-adenosylmethionine decarboxylase (AdoMetDC), a key enzyme for biosynthesis of the polyamine spermidine, is activated by heterodimer formation with an inactive paralogue termed prozyme. Furthermore, prozyme protein levels were regulated in response to reduced AdoMetDC activity. Herein we show that T. brucei encodes three prozyme transcripts. The 3'UTRs of these transcripts were mapped and chloramphenicol acetyltransferase (CAT) reporter constructs were used to identify a 1.2 kb region that contained a 3'UTR prozyme regulatory element sufficient to upregulate CAT protein levels (but not RNA) upon AdoMetDC inhibition, supporting the hypothesis that prozyme expression is regulated translationally. To gain insight into trans-acting factors, genetic rescue of AdoMetDC RNAi knock-down lines with human AdoMetDC was performed leading to rescue of the cell growth block, and restoration of prozyme protein to wild-type levels. Metabolite analysis showed that prozyme protein levels were inversely proportional to intracellular levels of decarboxylated AdoMet (dcAdoMet). These data suggest that prozyme translation may be regulated by dcAdoMet, a metabolite not previously identified to play a regulatory role.
Collapse
Affiliation(s)
- Yanjing Xiao
- Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390-9041, USA
| | | | | | | | | | | |
Collapse
|
15
|
Gupta SK, Carmi S, Waldman Ben-Asher H, Tkacz ID, Naboishchikov I, Michaeli S. Basal splicing factors regulate the stability of mature mRNAs in trypanosomes. J Biol Chem 2013; 288:4991-5006. [PMID: 23283975 DOI: 10.1074/jbc.m112.416578] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Gene expression in trypanosomes is mainly regulated post-transcriptionally. Genes are transcribed as polycistronic mRNAs that are dissected by the concerted action of trans-splicing and polyadenylation. In trans-splicing, a common exon, the spliced leader, is added to all mRNAs from a small RNA. In this study, we examined by microarray analysis the transcriptome following RNAi silencing of the basal splicing factors U2AF65, SF1, and U2AF35. The transcriptome data revealed correlations between the affected genes and their splicing and polyadenylation signaling properties, suggesting that differential binding of these factors to pre-mRNA regulates trans-splicing and hence expression of specific genes. Surprisingly, all these factors were shown to affect not only splicing but also mRNA stability. Affinity purification of SF1 and U2AF35 complexes supported their role in mRNA stability. U2AF35 but not SF1 was shown to bind to ribosomes. To examine the role of splicing factors in mRNA stability, mutations were introduced into the polypyrimidine tract located in the 3' UTR of a mini-gene, and the results demonstrate that U2AF65 binds to such a site and controls the mRNA stability. We propose that transcripts carrying splicing signals in their 3' UTR bind the splicing factors and control their stability.
Collapse
Affiliation(s)
- Sachin Kumar Gupta
- Mina and Everard Goodman Faculty of Life Sciences, and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900, Israel
| | | | | | | | | | | |
Collapse
|
16
|
Butter F, Bucerius F, Michel M, Cicova Z, Mann M, Janzen CJ. Comparative proteomics of two life cycle stages of stable isotope-labeled Trypanosoma brucei reveals novel components of the parasite's host adaptation machinery. Mol Cell Proteomics 2012; 12:172-9. [PMID: 23090971 PMCID: PMC3536898 DOI: 10.1074/mcp.m112.019224] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Trypanosoma brucei developed a sophisticated life cycle to adapt to different host environments. Although developmental differentiation of T. brucei has been the topic of intensive research for decades, the mechanisms responsible for adaptation to different host environments are not well understood. We developed stable isotope labeling by amino acids in cell culture in trypanosomes to compare the proteomes of two different life cycle stages. Quantitative comparison of 4364 protein groups identified many proteins previously not known to be stage-specifically expressed. The identification of stage-specific proteins helps to understand how parasites adapt to different hosts and provides new insights into differences in metabolism, gene regulation, and cell architecture. A DEAD-box RNA helicase, which is highly up-regulated in the bloodstream form of this parasite and which is essential for viability and proper cell cycle progression in this stage is described as an example.
Collapse
Affiliation(s)
- Falk Butter
- Department of Proteomics, Max Planck Institute for Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | | | | | | | | | | |
Collapse
|
17
|
Urbaniak MD, Guther MLS, Ferguson MAJ. Comparative SILAC proteomic analysis of Trypanosoma brucei bloodstream and procyclic lifecycle stages. PLoS One 2012; 7:e36619. [PMID: 22574199 PMCID: PMC3344917 DOI: 10.1371/journal.pone.0036619] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 04/03/2012] [Indexed: 11/19/2022] Open
Abstract
The protozoan parasite Trypanosoma brucei has a complex digenetic lifecycle between a mammalian host and an insect vector, and adaption of its proteome between lifecycle stages is essential to its survival and virulence. We have optimized a procedure for growing Trypanosoma brucei procyclic form cells in conditions suitable for stable isotope labeling by amino acids in culture (SILAC) and report a comparative proteomic analysis of cultured procyclic form and bloodstream form T. brucei cells. In total we were able to identify 3959 proteins and quantify SILAC ratios for 3553 proteins with a false discovery rate of 0.01. A large number of proteins (10.6%) are differentially regulated by more the 5-fold between lifecycle stages, including those involved in the parasite surface coat, and in mitochondrial and glycosomal energy metabolism. Our proteomic data is broadly in agreement with transcriptomic studies, but with significantly larger fold changes observed at the protein level than at the mRNA level.
Collapse
Affiliation(s)
- Michael D. Urbaniak
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - M. Lucia S Guther
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Michael A. J. Ferguson
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee, United Kingdom
- * E-mail:
| |
Collapse
|
18
|
Wurst M, Seliger B, Jha BA, Klein C, Queiroz R, Clayton C. Expression of the RNA recognition motif protein RBP10 promotes a bloodstream-form transcript pattern in Trypanosoma brucei. Mol Microbiol 2012; 83:1048-63. [PMID: 22296558 DOI: 10.1111/j.1365-2958.2012.07988.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
When Trypanosoma brucei differentiates from the bloodstream form to the procyclic form, there are decreases in the levels of many mRNAs encoding proteins required for the glycolytic pathway, and the mRNA encoding the RNA recognition motif protein RBP10 decreases in parallel. We show that RBP10 is a cytoplasmic protein that is specific to bloodstream-form trypanosomes, where it is essential. Depletion of RBP10 caused decreases in many bloodstream-form-specific mRNAs, with increases in mRNAs associated with the early stages of differentiation. The changes were similar to, but more extensive than, those caused by glucose deprivation. Conversely, forced RBP10 expression in procyclics induced a switch towards bloodstream-form mRNA expression patterns, with concomitant growth inhibition. Forced expression of RBP10 prevented differentiation of bloodstream forms in response to cis-aconitate, but did not prevent expression of key differentiation markers in response to glucose deprivation. RBP10 was not associated with heavy polysomes, showed no detectable in vivo binding to RNA, and was not stably associated with other proteins. Tethering of RBP10 to a reporter mRNA inhibited translation, and halved the abundance of the bound mRNA. We suggest that RBP10 may prevent the expression of regulatory proteins that are specific to the procyclic form.
Collapse
Affiliation(s)
- Martin Wurst
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
19
|
|
20
|
Manful T, Fadda A, Clayton C. The role of the 5'-3' exoribonuclease XRNA in transcriptome-wide mRNA degradation. RNA (NEW YORK, N.Y.) 2011; 17:2039-2047. [PMID: 21947264 PMCID: PMC3198596 DOI: 10.1261/rna.2837311] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Accepted: 08/16/2011] [Indexed: 05/31/2023]
Abstract
The steady-state level of each mRNA in a cell is a balance between synthesis and degradation. Here, we use high-throughput RNA sequencing (RNASeq) to determine the relationship between mRNA degradation and mRNA abundance on a transcriptome-wide scale. The model organism used was the bloodstream form of Trypanosoma brucei, a protist that lacks regulation of RNA polymerase II initiation. The mRNA half-lives varied over two orders of magnitude, with a median half-life of 13 min for total (rRNA-depleted) mRNA. Data for poly(A)+ RNA yielded shorter half-lives than for total RNA, indicating that removal of the poly(A) tail was usually the first step in degradation. Depletion of the major 5'-3' exoribonuclease, XRNA, resulted in the stabilization of most mRNAs with half-lives under 30 min. Thus, on a transcriptome-wide scale, degradation of most mRNAs is initiated by deadenylation. Trypanosome mRNA levels are strongly influenced by gene copy number and mRNA half-life: Very abundant mRNAs that are required throughout the life-cycle may be encoded by multicopy genes and have intermediate-to-long half-lives; those encoding ribosomal proteins, with one to two gene copies, are exceptionally stable. Developmentally regulated transcripts with a lower abundance in the bloodstream forms than the procyclic forms had half-lives around the median, whereas those with a higher abundance in the bloodstream forms than the procyclic forms, such as those encoding glycolytic enzymes, had longer half-lives.
Collapse
Affiliation(s)
- Theresa Manful
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, D69120 Heidelberg, Germany
| | - Abeer Fadda
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, D69120 Heidelberg, Germany
| | - Christine Clayton
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, D69120 Heidelberg, Germany
| |
Collapse
|
21
|
Delhi P, Queiroz R, Inchaustegui D, Carrington M, Clayton C. Is there a classical nonsense-mediated decay pathway in trypanosomes? PLoS One 2011; 6:e25112. [PMID: 21957477 PMCID: PMC3177853 DOI: 10.1371/journal.pone.0025112] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 08/24/2011] [Indexed: 11/18/2022] Open
Abstract
In many eukaryotes, messenger RNAs with premature termination codons are destroyed by a process called "nonsense-mediated decay", which requires the RNA helicase Upf1 and also, usually, an interacting factor, Upf2. Recognition of premature termination codons may rely on their distance from either a splice site or the polyadenylation site, and long 3'-untranslated regions can trigger mRNA decay. The protist Trypanosoma brucei relies heavily on mRNA degradation to determine mRNA levels, and 3'-untranslated regions play a major role in control of mRNA decay. We show here that trypanosomes have a homologue of Upf1, TbUPF1, which interacts with TbUPF2 and (in an RNA-dependent fashion) with poly(A) binding protein 1, PABP1. Introduction of a premature termination codon in either an endogenous gene or a reporter gene decreased mRNA abundance, as expected for nonsense-mediated decay, but a dependence of this effect on TbUPF1 could not be demonstrated, and depletion of TbUPF1 by over 95% had no effect on parasite growth or the mRNA transcriptome. Further investigations of the reporter mRNA revealed that increases in open reading frame length tended to increase mRNA abundance. In contrast, inhibition of translation, either using 5'-secondary structures or by lengthening the 5'-untranslated region, usually decreased reporter mRNA abundance. Meanwhile, changing the length of the 3'-untranslated region had no consistent effect on mRNA abundance. We suggest that in trypanosomes, translation per se may inhibit mRNA decay, and interactions with multiple RNA-binding proteins preclude degradation based on 3'-untranslated region length alone.
Collapse
Affiliation(s)
- Praveen Delhi
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Hedielberg, Germany
- * E-mail: (PD); (CC)
| | - Rafael Queiroz
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Hedielberg, Germany
| | - Diana Inchaustegui
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Hedielberg, Germany
| | - Mark Carrington
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Christine Clayton
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Hedielberg, Germany
- * E-mail: (PD); (CC)
| |
Collapse
|
22
|
Abstract
Trypanosomes are a group of protozoan eukaryotes, many of which are major parasites of humans and livestock. The genomes of trypanosomes and their modes of gene expression differ in several important aspects from those of other eukaryotic model organisms. Protein-coding genes are organized in large directional gene clusters on a genome-wide scale, and their polycistronic transcription is not generally regulated at initiation. Transcripts from these polycistrons are processed by global trans-splicing of pre-mRNA. Furthermore, in African trypanosomes, some protein-coding genes are transcribed by a multifunctional RNA polymerase I from a specialized extranucleolar compartment. The primary DNA sequence of the trypanosome genomes and their cellular organization have usually been treated as separate entities. However, it is becoming increasingly clear that in order to understand how a genome functions in a living cell, we will need to unravel how the one-dimensional genomic sequence and its trans-acting factors are arranged in the three-dimensional space of the eukaryotic nucleus. Understanding this cell biology of the genome will be crucial if we are to elucidate the genetic control mechanisms of parasitism. Here, we integrate the concepts of nuclear architecture, deduced largely from studies of yeast and mammalian nuclei, with recent developments in our knowledge of the trypanosome genome, gene expression, and nuclear organization. We also compare this nuclear organization to those in other systems in order to shed light on the evolution of nuclear architecture in eukaryotes.
Collapse
|
23
|
Development of a dual reporter system to identify regulatory cis-acting elements in untranslated regions of Trypanosoma cruzi mRNAs. Parasitol Int 2011; 60:161-9. [PMID: 21277385 DOI: 10.1016/j.parint.2011.01.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2010] [Revised: 01/19/2011] [Accepted: 01/20/2011] [Indexed: 01/26/2023]
Abstract
In trypanosomatids, transcription is polycistronic and gene expression control occurs mainly at the post-transcriptional level. To investigate the role of sequences present in the 3'UTR of stage-specific mRNAs of Trypanosoma cruzi, we generated a new vector, named pTcDUALuc, containing the firefly and Renilla luciferase reporter genes. To test this vector, sequences derived from the 3'UTR plus intergenic regions of the alpha tubulin gene, which is up-regulated in epimastigotes, and amastin, which is up-regulated in amastigotes, were inserted downstream from the firefly reporter gene and luciferase activity was compared in transient and stable transfected parasites. As expected, increased luciferase activity was detected in epimastigotes transiently transfected with pTcDUALuc containing tubulin sequences. Using stable transfected cell lines that were allowed to differentiate into amastigotes, we observed increased luciferase activity and mRNA levels in amastigotes transfected with pTcDUALuc containing amastin sequences. We also showed that the spliced leader sequence and poly-A tail were inserted in the predicted sites of the firefly luciferase mRNA and that deletions in the alpha tubulin 3'UTR resulted in decreased luciferase expression because it affects polyadenylation. In contrast to the constructs containing 3'UTR sequences derived from tubulin and amastin genes, the presence of the 3'UTR from a trans-sialidase gene, whose expression is higher in trypomastigotes, resulted in increased luciferase activity in trypomastigotes without a corresponding increase in luciferase mRNA levels.
Collapse
|
24
|
Spliced leader trapping reveals widespread alternative splicing patterns in the highly dynamic transcriptome of Trypanosoma brucei. PLoS Pathog 2010; 6:e1001037. [PMID: 20700444 PMCID: PMC2916883 DOI: 10.1371/journal.ppat.1001037] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 07/12/2010] [Indexed: 11/19/2022] Open
Abstract
Trans-splicing of leader sequences onto the 5′ends of mRNAs is a widespread phenomenon in protozoa, nematodes and some chordates. Using parallel sequencing we have developed a method to simultaneously map 5′splice sites and analyze the corresponding gene expression profile, that we term spliced leader trapping (SLT). The method can be applied to any organism with a sequenced genome and trans-splicing of a conserved leader sequence. We analyzed the expression profiles and splicing patterns of bloodstream and insect forms of the parasite Trypanosoma brucei. We detected the 5′ splice sites of 85% of the annotated protein-coding genes and, contrary to previous reports, found up to 40% of transcripts to be differentially expressed. Furthermore, we discovered more than 2500 alternative splicing events, many of which appear to be stage-regulated. Based on our findings we hypothesize that alternatively spliced transcripts present a new means of regulating gene expression and could potentially contribute to protein diversity in the parasite. The entire dataset can be accessed online at TriTrypDB or through: http://splicer.unibe.ch/. Some organisms like the human and animal parasite Trypanosoma brucei add a leader sequence to their mRNAs through a reaction called trans-splicing. Until now the splice sites for most mRNAs were unknown in T. brucei. Using high throughput sequencing we have developed a method to identify the splice sites and at the same time measure the abundance of the corresponding mRNAs. Analyzing three different life cycle stages of the parasite we identified the vast majority of splice sites in the organism and, to our great surprise, uncovered more than 2500 alternative splicing events, many of which appeared to be specific for one of the life cycle stages. Alternative splicing is a result of the addition of the leader sequence to different positions on the mRNA, leading to mixed mRNA populations that can encode for proteins with varying properties. One of the most obvious changes caused by alternative splicing is the gain or loss of targeting signals, leading to differential localization of the corresponding proteins. Based on our findings we hypothesize that alternative splicing is a major mechanism to regulate gene expression in T. brucei and could contribute to protein diversity in the parasite.
Collapse
|
25
|
Trypanosoma cruzi: modulation of HSP70 mRNA stability by untranslated regions during heat shock. Exp Parasitol 2010; 126:245-53. [PMID: 20493845 DOI: 10.1016/j.exppara.2010.05.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2009] [Revised: 04/25/2010] [Accepted: 05/16/2010] [Indexed: 11/22/2022]
Abstract
Gene regulation in trypanosomatids occurs mainly by post-transcriptional mechanisms modulating mRNA stability and translation. We have investigated heat shock protein (HSP) 70 gene regulation in Trypanosoma cruzi, the causal agent of Chagas' disease. The HSP70 mRNA's half-life increases after heat shock, and the stabilization is dependent on protein synthesis. In a cell-free RNA decay assay, a U-rich region in the 3' untranslated region (UTR) is a target for degradation, which is reduced when in the presence of protein extracts from heat shocked cells. In a transfected reporter gene assay, both the 5'- and 3'-UTRs confer temperature-dependent regulation. Both UTRs must be present to increase mRNA stability at 37 degrees C, indicating that the 5'- and 3'-UTRs act cooperatively to stabilize HSP70 mRNA during heat shock. We conclude that HSP70 5'- and 3'-UTRs regulate mRNA stability during heat shock in T. cruzi.
Collapse
|
26
|
Salavati R, Najafabadi HS. Sequence-based functional annotation: what if most of the genes are unique to a genome? Trends Parasitol 2010; 26:225-9. [DOI: 10.1016/j.pt.2010.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2009] [Revised: 12/08/2009] [Accepted: 02/04/2010] [Indexed: 11/30/2022]
|
27
|
Stewart M, Haile S, Jha BA, Cristodero M, Li CH, Clayton C. Processing of a phosphoglycerate kinase reporter mRNA in Trypanosoma brucei is not coupled to transcription by RNA polymerase II. Mol Biochem Parasitol 2010; 172:99-106. [PMID: 20363263 DOI: 10.1016/j.molbiopara.2010.03.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Revised: 03/08/2010] [Accepted: 03/27/2010] [Indexed: 11/30/2022]
Abstract
Capping of mRNAs is strictly coupled to RNA polymerase II transcription and there is evidence, mainly from metazoans, that other steps in pre-mRNA processing show a similar linkage. In trypanosomes, however, the mRNA cap is supplied by a trans spliced leader sequence. Thus pre-mRNAs transcribed by RNA Polymerase I are capped by trans splicing, and translation-competent transgenic mRNAs can be produced by RNA Polymerase I and T7 RNA polymerase so long as the primary transcript has a splice acceptor signal. We quantified the efficiency of processing of trypanosome pre-mRNAs produced from a plasmid integrated either at the tubulin locus, or in an rRNA spacer, and transcribed by RNA polymerase II, RNA polymerase I or T7 RNA polymerase. The processing efficiencies were similar for primary transcripts from the tubulin locus, produced by RNA polymerase II, and for RNA from an rRNA spacer, transcribed by RNA polymerase I. Primary transcripts produced by T7 RNA polymerase from the tubulin locus were processed almost as well. There was therefore no evidence for recruitment of the 3'-splicing apparatus by the RNA polymerase. Abundant transcripts transcribed from the rRNA locus by T7 RNA polymerase were somewhat less efficiently processed.
Collapse
Affiliation(s)
- Mhairi Stewart
- Zentrum für Molekularbiologie der Universität Heidelberg, ZMBH-DKFZ Alliance, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
28
|
Kiss DL, Andrulis ED. Genome-wide analysis reveals distinct substrate specificities of Rrp6, Dis3, and core exosome subunits. RNA (NEW YORK, N.Y.) 2010; 16:781-791. [PMID: 20185544 PMCID: PMC2844625 DOI: 10.1261/rna.1906710] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Accepted: 12/18/2009] [Indexed: 05/27/2023]
Abstract
The RNA processing exosome complex was originally defined as an evolutionarily conserved multisubunit complex of ribonucleases responsible for the processing and/or turnover of stable RNAs. The exosome complex is also involved in the surveillance of mRNAs in both the nucleus and the cytoplasm, including nonsense-mediated decay (NMD) targets. The detailed mechanisms for how individual exosome subunits participate in each of these RNA metabolic pathways remains unclear. Here, we use RNAi to deplete exosome subunits, the exonucleases Rrp6 and Dis3, and an exosome cofactor in Drosophila melanogaster S2 tissue culture cells and assay the effects on global mRNA levels using gene expression microarrays. Consistent with the RNA degradative activities ascribed to the exosome, most mRNAs are increased. Notably, these stabilized mRNAs possess 3' untranslated regions that are longer than the representative transcriptomic average. Moreover, our results reveal substantial differences in the pools of affected mRNAs for each depleted subunit. For example, approximately 25% of the affected transcripts in Rrp6 depleted cells represent NMD substrates. While the affected mRNAs were dissimilar, they encode proteins that function in similar cellular pathways. We conclude that individual exosome subunits are largely functionally independent at the transcript level, but are interdependent on a transcriptomic level.
Collapse
Affiliation(s)
- Daniel L Kiss
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4960, USA
| | | |
Collapse
|
29
|
Veitch NJ, Johnson PCD, Trivedi U, Terry S, Wildridge D, MacLeod A. Digital gene expression analysis of two life cycle stages of the human-infective parasite, Trypanosoma brucei gambiense reveals differentially expressed clusters of co-regulated genes. BMC Genomics 2010; 11:124. [PMID: 20175885 PMCID: PMC2837033 DOI: 10.1186/1471-2164-11-124] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Accepted: 02/22/2010] [Indexed: 12/29/2022] Open
Abstract
Background The evolutionarily ancient parasite, Trypanosoma brucei, is unusual in that the majority of its genes are regulated post-transcriptionally, leading to the suggestion that transcript abundance of most genes does not vary significantly between different life cycle stages despite the fact that the parasite undergoes substantial cellular remodelling and metabolic changes throughout its complex life cycle. To investigate this in the clinically relevant sub-species, Trypanosoma brucei gambiense, which is the causative agent of the fatal human disease African sleeping sickness, we have compared the transcriptome of two different life cycle stages, the potentially human-infective bloodstream forms with the non-human-infective procyclic stage using digital gene expression (DGE) analysis. Results Over eleven million unique tags were generated, producing expression data for 7360 genes, covering 81% of the genes in the genome. Compared to microarray analysis of the related T. b. brucei parasite, approximately 10 times more genes with a 2.5-fold change in expression levels were detected. The transcriptome analysis revealed the existence of several differentially expressed gene clusters within the genome, indicating that contiguous genes, presumably from the same polycistronic unit, are co-regulated either at the level of transcription or transcript stability. Conclusions DGE analysis is extremely sensitive for detecting gene expression differences, revealing firstly that a far greater number of genes are stage-regulated than had previously been identified and secondly and more importantly, this analysis has revealed the existence of several differentially expressed clusters of genes present on what appears to be the same polycistronic units, a phenomenon which had not previously been observed in microarray studies. These differentially regulated clusters of genes are in addition to the previously identified RNA polymerase I polycistronic units of variant surface glycoproteins and procyclin expression sites, which encode the major surface proteins of the parasite. This raises a number of questions regarding the function and regulation of the gene clusters that clearly warrant further study.
Collapse
Affiliation(s)
- Nicola J Veitch
- Wellcome Centre for Molecular Parasitology, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, G12 8TA, UK
| | | | | | | | | | | |
Collapse
|
30
|
Persistent ER stress induces the spliced leader RNA silencing pathway (SLS), leading to programmed cell death in Trypanosoma brucei. PLoS Pathog 2010; 6:e1000731. [PMID: 20107599 PMCID: PMC2809764 DOI: 10.1371/journal.ppat.1000731] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Accepted: 12/17/2009] [Indexed: 12/16/2022] Open
Abstract
Trypanosomes are parasites that cycle between the insect host (procyclic form) and mammalian host (bloodstream form). These parasites lack conventional transcription regulation, including factors that induce the unfolded protein response (UPR). However, they possess a stress response mechanism, the spliced leader RNA silencing (SLS) pathway. SLS elicits shut-off of spliced leader RNA (SL RNA) transcription by perturbing the binding of the transcription factor tSNAP42 to its cognate promoter, thus eliminating trans-splicing of all mRNAs. Induction of endoplasmic reticulum (ER) stress in procyclic trypanosomes elicits changes in the transcriptome similar to those induced by conventional UPR found in other eukaryotes. The mechanism of up-regulation under ER stress is dependent on differential stabilization of mRNAs. The transcriptome changes are accompanied by ER dilation and elevation in the ER chaperone, BiP. Prolonged ER stress induces SLS pathway. RNAi silencing of SEC63, a factor that participates in protein translocation across the ER membrane, or SEC61, the translocation channel, also induces SLS. Silencing of these genes or prolonged ER stress led to programmed cell death (PCD), evident by exposure of phosphatidyl serine, DNA laddering, increase in reactive oxygen species (ROS) production, increase in cytoplasmic Ca2+, and decrease in mitochondrial membrane potential, as well as typical morphological changes observed by transmission electron microscopy (TEM). ER stress response is also induced in the bloodstream form and if the stress persists it leads to SLS. We propose that prolonged ER stress induces SLS, which serves as a unique death pathway, replacing the conventional caspase-mediated PCD observed in higher eukaryotes. Trypanosomes are the causative agent of major parasitic diseases such as African sleeping sickness, leishmaniasis and Chagas' disease that affect millions of people mostly in developing countries. These organisms diverged very early from the eukaryotic linage and possess unique molecular mechanisms such as trans-splicing and RNA editing. Trypanosomes lack polymerase II promoters that govern the transcription of protein coding genes. Eukaryotes respond to unfolding of proteins in the endoplasmic reticulum (ER) by a distinct transcriptional programming known as the unfolded protein response (UPR). In this study, we demonstrate that despite the lack of transcriptional regulation, procyclic trypanosomes change their transcriptome as a response to ER stress by differential mRNA stabilization. Prolonged ER stress induces a unique process, the spliced leader RNA silencing (SLS), that shuts off the trans-splicing and the production of all mRNAs. SLS is induced both by prolonged ER stress and by knock-down of factors involved in ER translocation in both life stages of the parasite. SLS induces programmed cell death (PCD) evident by the hallmark of apoptosis in metazoa (DNA fragmentation, membrane flipping and ultrastructural changes). We propose that SLS serves as a unique death pathway replacing the conventional caspase-mediated PCD observed in higher eukaryotes.
Collapse
|
31
|
Multiple genetic mechanisms lead to loss of functional TbAT1 expression in drug-resistant trypanosomes. EUKARYOTIC CELL 2009; 9:336-43. [PMID: 19966032 DOI: 10.1128/ec.00200-09] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The P2 aminopurine transporter, encoded by TbAT1 in African trypanosomes in the Trypanosoma brucei group, carries melaminophenyl arsenical and diamidine drugs into these parasites. Loss of this transporter contributes to drug resistance. We identified the genomic location of TbAT1 to be in the subtelomeric region of chromosome 5 and determined the status of the TbAT1 gene in two trypanosome lines selected for resistance to the melaminophenyl arsenical, melarsamine hydrochloride (Cymelarsan), and in a Trypanosoma equiperdum clone selected for resistance to the diamidine, diminazene aceturate. In the Trypanosoma brucei gambiense STIB 386 melarsamine hydrochloride-resistant line, TbAT1 is deleted, while in the Trypanosoma brucei brucei STIB 247 melarsamine hydrochloride-resistant and T. equiperdum diminazene-resistant lines, TbAT1 is present, but expression at the RNA level is no longer detectable. Further characterization of TbAT1 in T. equiperdum revealed that a loss of heterozygosity at the TbAT1 locus accompanied loss of expression and that P2-mediated uptake of [(3)H]diminazene is lost in drug-resistant T. equiperdum. Adenine-inhibitable adenosine uptake is still detectable in a DeltaTbat1 T. b. brucei mutant, although at a greatly reduced capacity compared to that of the wild type, indicating that an additional adenine-inhibitable adenosine permease, distinct from P2, is present in these cells.
Collapse
|
32
|
Mao Y, Najafabadi HS, Salavati R. Genome-wide computational identification of functional RNA elements in Trypanosoma brucei. BMC Genomics 2009; 10:355. [PMID: 19653906 PMCID: PMC2907701 DOI: 10.1186/1471-2164-10-355] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Accepted: 08/04/2009] [Indexed: 01/30/2023] Open
Abstract
Background Post-transcriptional regulation of gene expression is the dominant regulatory mechanism in trypanosomatids as their mRNAs are transcribed from polycistronic units. A few cis-acting RNA elements in 3'-untranslated regions of mRNAs have been identified in trypanosomatids, which affect the mRNA stability or translation rate in different life stages of these parasites. Other functional RNAs (fRNAs) also play essential roles in these organisms. However, there has been no genome-wide analysis for identification of fRNAs in trypanosomatids. Results Functional RNAs, including non-coding RNAs (ncRNAs) and cis-acting RNA elements involved in post-transcriptional gene regulation, were predicted based on two independent computational analyses of the genome of Trypanosoma brucei. In the first analysis, the predicted candidate ncRNAs were identified based on conservation with the related trypanosomatid Leishmania braziliensis. This prediction had a substantially low estimated false discovery rate, and a considerable number of the predicted ncRNAs represented novel classes with unknown functions. In the second analysis, we identified a number of function-specific regulatory motifs, based on which we devised a classifier that can be used for homology-independent function prediction in T. brucei. Conclusion This first genome-wide analysis of fRNAs in trypanosomatids restricts the search space of experimental approaches and, thus, can significantly expedite the process of characterization of these elements. Our classifier for function prediction based on cis-acting regulatory elements can also, in combination with other methods, provide the means for homology-independent annotation of trypanosomatid genomes.
Collapse
Affiliation(s)
- Yuan Mao
- Institute of Parasitology, McGill University, Montreal, Quebec H9X3V9, Canada.
| | | | | |
Collapse
|
33
|
Schwede A, Manful T, Jha BA, Helbig C, Bercovich N, Stewart M, Clayton C. The role of deadenylation in the degradation of unstable mRNAs in trypanosomes. Nucleic Acids Res 2009; 37:5511-28. [PMID: 19596809 PMCID: PMC2760810 DOI: 10.1093/nar/gkp571] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Removal of the poly(A) tail is the first step in the degradation of many eukaryotic mRNAs. In metazoans and yeast, the Ccr4/Caf1/Not complex has the predominant deadenylase activity, while the Pan2/Pan3 complex may trim poly(A) tails to the correct size, or initiate deadenylation. In trypanosomes, turnover of several constitutively-expressed or long-lived mRNAs is not affected by depletion of the 5′–3′ exoribonuclease XRNA, but is almost completely inhibited by depletion of the deadenylase CAF1. In contrast, two highly unstable mRNAs, encoding EP procyclin and a phosphoglycerate kinase, PGKB, accumulate when XRNA levels are reduced. We here show that degradation of EP mRNA was partially inhibited after CAF1 depletion. RNAi-targeting trypanosome PAN2 had a mild effect on global deadenylation, and on degradation of a few mRNAs including EP. By amplifying and sequencing degradation intermediates, we demonstrated that a reduction in XRNA had no effect on degradation of a stable mRNA encoding a ribosomal protein, but caused accumulation of EP mRNA fragments that had lost substantial portions of the 5′ and 3′ ends. The results support a model in which trypanosome mRNAs can be degraded by at least two different, partially independent, cytoplasmic degradation pathways attacking both ends of the mRNA.
Collapse
Affiliation(s)
- Angela Schwede
- Zentrum für Molekulare Biologie (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
34
|
Colasante C, Peña Diaz P, Clayton C, Voncken F. Mitochondrial carrier family inventory of Trypanosoma brucei brucei: Identification, expression and subcellular localisation. Mol Biochem Parasitol 2009; 167:104-17. [PMID: 19463859 DOI: 10.1016/j.molbiopara.2009.05.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Revised: 05/05/2009] [Accepted: 05/07/2009] [Indexed: 01/23/2023]
Abstract
The mitochondrial carrier family (MCF) is a group of structurally conserved proteins that mediate the transport of a wide range of metabolic intermediates across the mitochondrial inner membrane. In this paper, an overview of the mitochondrial carrier proteins (MCPs) of the early-branching kinetoplastid parasite Trypanosoma brucei brucei is presented. Sequence analysis and phylogenetic reconstruction gave insight into the evolution and conservation of the 24 identified TbMCPs; for most of these, putative transport functions could be predicted. Comparison of the kinetoplastid MCP inventory to those previously reported for other eukaryotes revealed remarkable deviations: T. b. brucei lacks genes encoding some prototypical MCF members, such as the citrate carrier and uncoupling proteins. The in vivo expression of the identified TbMCPs in the two replicating life-cycle forms of T. b. brucei, the bloodstream-form and procyclic-form, was quantitatively assessed at the mRNA level by Northern blot analysis. Immunolocalisation studies confirmed that majority of the 24 identified TbMCPs is found in the mitochondrion of procyclic-form T. b. brucei.
Collapse
Affiliation(s)
- Claudia Colasante
- Department of Biological Sciences and Hull York Medical School (HYMS), University of Hull, HU6 7RX Hull, United Kingdom.
| | | | | | | |
Collapse
|
35
|
Stern MZ, Gupta SK, Salmon-Divon M, Haham T, Barda O, Levi S, Wachtel C, Nilsen TW, Michaeli S. Multiple roles for polypyrimidine tract binding (PTB) proteins in trypanosome RNA metabolism. RNA (NEW YORK, N.Y.) 2009; 15:648-65. [PMID: 19218552 PMCID: PMC2661826 DOI: 10.1261/rna.1230209] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Trypanosomatid genomes encode for numerous proteins containing an RNA recognition motif (RRM), but the function of most of these proteins in mRNA metabolism is currently unknown. Here, we report the function of two such proteins that we have named PTB1 and PTB2, which resemble the mammalian polypyrimidine tract binding proteins (PTB). RNAi silencing of these factors indicates that both are essential for life. PTB1 and PTB2 reside mostly in the nucleus, but are found in the cytoplasm, as well. Microarray analysis performed on PTB1 and PTB2 RNAi silenced cells indicates that each of these factors differentially affects the transcriptome, thus regulating a different subset of mRNAs. PTB1 and PTB2 substrates were categorized bioinformatically, based on the presence of PTB binding sites in their 5' and 3' flanking sequences. Both proteins were shown to regulate mRNA stability. Interestingly, PTB proteins are essential for trans-splicing of genes containing C-rich polypyrimidine tracts. PTB1, but not PTB2, also affects cis-splicing. The specificity of binding of PTB1 was established in vivo and in vitro using a model substrate. This study demonstrates for the first time that trans-splicing of only certain substrates requires specific factors such as PTB proteins for their splicing. The trypanosome PTB proteins, like their mammalian homologs, represent multivalent RNA binding proteins that regulate mRNAs from their synthesis to degradation.
Collapse
|
36
|
Abstract
Control of gene expression in trypanosomes relies almost exclusively on post-transcriptional mechanisms. Trypanosomes have the normal enzymes for mRNA decay: both the exosome and a 5'-3'-exoribonuclease are important in the degradation of very unstable transcripts, whereas the CAF1/NOT complex plays a major role in the degradation of all mRNAs tested. Targeted RNA interference screening was used to identify RNA-binding proteins that regulate mRNA degradation, and it revealed roles for proteins with RNA recognition motifs or pumilio domains.
Collapse
|
37
|
Estévez AM. The RNA-binding protein TbDRBD3 regulates the stability of a specific subset of mRNAs in trypanosomes. Nucleic Acids Res 2008; 36:4573-86. [PMID: 18611951 PMCID: PMC2504296 DOI: 10.1093/nar/gkn406] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In trypanosomes, the apparent lack of regulation of RNA polymerase II-dependent transcription initiation poses a challenge to understand how these eukaryotes adjust gene expression to adapt to the contrasting environments they find during their life cycles. Evidence so far indicates that mRNA turnover and translation are the major control points in which regulation is exerted in trypanosomes. However, very little is known about which proteins are involved, and how do they regulate the abundance and translation of different mRNAs in different life stages. In this work, an RNA-binding protein, TbDRBD3, has been identified by affinity chromatography, and its function addressed using RNA interference, microarray analysis and immunoprecipitation of mRNA-protein complexes. The results obtained indicate that TbDRBD3 binds to a subset of developmentally regulated mRNAs encoding membrane proteins, and that this association promotes the stabilization of the target transcripts. These observations raise the possibility that TbDRBD3-mRNA complexes act as a post-transcriptional operon, and provide a framework to interpret how trypanosomes regulate gene expression in the absence of transcriptional control.
Collapse
Affiliation(s)
- Antonio M Estévez
- Instituto de Parasitología y Biomedicina López-Neyra, CSIC Avda. del Conocimiento s/n, Armilla, 18100-Granada, Spain.
| |
Collapse
|
38
|
Schwede A, Ellis L, Luther J, Carrington M, Stoecklin G, Clayton C. A role for Caf1 in mRNA deadenylation and decay in trypanosomes and human cells. Nucleic Acids Res 2008; 36:3374-88. [PMID: 18442996 PMCID: PMC2425496 DOI: 10.1093/nar/gkn108] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Revised: 02/25/2008] [Accepted: 02/26/2008] [Indexed: 02/06/2023] Open
Abstract
The eukaryotic Ccr4/Caf1/Not complex is involved in deadenylation of mRNAs. The Caf1 and Ccr4 subunits both potentially have deadenylating enzyme activity. We investigate here the roles of Ccr4 and Caf1 in deadenylation in two organisms that separated early in eukaryotic evolution: humans and trypanosomes. In Trypanosoma brucei, we found a complex containing CAF1, NOT1, NOT2 and NOT5, DHH1 and a possible homologue of Caf130; no homologue of Ccr4 was found. Trypanosome CAF1 has deadenylation activity, and is essential for cell survival. Depletion of trypanosome CAF1 delayed deadenylation and degradation of constitutively expressed mRNAs. Human cells have two isozymes of Caf1: simultaneous depletion of both inhibited degradation of an unstable reporter mRNA. In both species, depletion of Caf1 homologues inhibited deadenylation of bulk RNA and resulted in an increase in average poly(A) tail length.
Collapse
Affiliation(s)
- Angela Schwede
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany, Department of Biochemistry, 80 Tennis Court Rd., Cambridge CB2 1GA, UK, German Cancer Research Centre (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany and DKFZ-ZMBH Allianz
| | - Louise Ellis
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany, Department of Biochemistry, 80 Tennis Court Rd., Cambridge CB2 1GA, UK, German Cancer Research Centre (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany and DKFZ-ZMBH Allianz
| | - Julia Luther
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany, Department of Biochemistry, 80 Tennis Court Rd., Cambridge CB2 1GA, UK, German Cancer Research Centre (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany and DKFZ-ZMBH Allianz
| | - Mark Carrington
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany, Department of Biochemistry, 80 Tennis Court Rd., Cambridge CB2 1GA, UK, German Cancer Research Centre (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany and DKFZ-ZMBH Allianz
| | - Georg Stoecklin
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany, Department of Biochemistry, 80 Tennis Court Rd., Cambridge CB2 1GA, UK, German Cancer Research Centre (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany and DKFZ-ZMBH Allianz
| | - Christine Clayton
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany, Department of Biochemistry, 80 Tennis Court Rd., Cambridge CB2 1GA, UK, German Cancer Research Centre (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany and DKFZ-ZMBH Allianz
| |
Collapse
|
39
|
Helm JR, Wilson ME, Donelson JE. Different trans RNA splicing events in bloodstream and procyclic Trypanosoma brucei. Mol Biochem Parasitol 2008; 159:134-7. [PMID: 18384893 DOI: 10.1016/j.molbiopara.2008.02.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Revised: 01/23/2008] [Accepted: 02/07/2008] [Indexed: 10/22/2022]
Abstract
Most trypanosomatid genes are transcribed into polycistronic precursor RNAs that are processed into monocistronic mRNAs possessing a 39-nucleotide spliced leader (SL) at their 5'-ends and polyadenylation at their 3'-ends. We show here that precursor RNA derived from a luciferase gene integrated in reverse orientation at the rDNA locus of Trypanosoma brucei is processed into three major SL-containing RNAs in bloodstream cells and a single SL-containing RNA in procyclic RNAs. This difference in trans RNA splicing between bloodstream and procyclic cells is independent of the 5'- and 3'-UTRs flanking the luciferase coding region. Thus, bloodstream cells can recognize some sequences in precursor RNA as a SL addition site that procyclic cells do not. These alternative SL addition sites may be aberrant or they might be utilized to expand the number of gene products from individual genes. Future experiments on endogenous genes will be necessary to examine the latter possibility.
Collapse
Affiliation(s)
- Jared R Helm
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | | | | |
Collapse
|
40
|
Haile S, Dupé A, Papadopoulou B. Deadenylation-independent stage-specific mRNA degradation in Leishmania. Nucleic Acids Res 2008; 36:1634-44. [PMID: 18250085 PMCID: PMC2275140 DOI: 10.1093/nar/gkn019] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The life cycle of Leishmania alternates between developmental forms residing within the insect vector (e.g. promastigotes) and the mammalian host (amastigotes). In Leishmania nearly all control of gene expression is post-transcriptional and involves sequences in the 3′-untranslated regions (3′UTRs) of mRNAs. Very little is known as to how these cis-elements regulate RNA turnover and translation rates in trypanosomatids and nothing is known about mRNA degradation mechanisms in Leishmania in particular. Here, we use the amastin mRNA—an amastigote-specific transcript—as a model and show that a ∼100 nt U-rich element (URE) within its 3′UTR significantly accounts for developmental regulation. RNase-H-RNA blot analysis revealed that a major part of the rapid promastigote-specific degradation of the amastin mRNA is not initiated by deadenylation. This is in contrast to the amastin mRNA in amastigotes and to reporter RNAs lacking the URE, which, in common with most eukaryotic mRNAs studied to-date, are deadenylated before being degraded. Moreover, our analysis did not reveal a role for decapping in the stage-specific degradation of the amastin mRNA. Overall, these results suggest that degradation of the amastin mRNA of Leishmania is likely to be bi-phasic, the first phase being stage-specific and dependent on an unusual URE-mediated pathway of mRNA degradation.
Collapse
Affiliation(s)
- Simon Haile
- Research Centre in Infectious Diseases, CHUL Research Centre and Department of Medical Biology, Faculty of Medicine, Laval University, Quebec, Canada
| | | | | |
Collapse
|
41
|
Developmental regulation of gene expression in trypanosomatid parasitic protozoa. Curr Opin Microbiol 2008; 10:569-77. [PMID: 18177626 DOI: 10.1016/j.mib.2007.10.001] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2007] [Revised: 10/02/2007] [Accepted: 10/03/2007] [Indexed: 12/21/2022]
Abstract
Kinetoplastids branched early from the eukaryotic lineage and include several parasitic protozoan species. Up to several hundred kinetoplastid genes are co-transcribed into polycistronic RNAs and individual mRNAs are resolved by coupled co-transcriptional trans-splicing of a universal splice-leader RNA (SL-RNA) and 3'-end maturation processes. Protein-coding genes lack RNA polymerase II promoters. Consequently, most of gene regulation in these organisms occurs post-transcriptionally. Over the last few years, many more genes that are regulated at the mRNA stability level and a few at the translation level have been reported. Almost all major trypanosome homologues of yeast/mammalian mRNA degradation enzymes have been functionally characterized and major pathways identified. Novel paradigms have also recently emerged: regulated post-transcriptional processing of cytoplasmic RNAs, SL-RNA transcriptional silencing-mediated global stress response, and Leishmania-specific large-scale modulation of post-transcriptional gene expression via inactive degenerated retroelements. Several of these developments have greatly benefited from the recently completed genomic sequences and functional genomic studies.
Collapse
|
42
|
Haanstra JR, Stewart M, Luu VD, van Tuijl A, Westerhoff HV, Clayton C, Bakker BM. Control and regulation of gene expression: quantitative analysis of the expression of phosphoglycerate kinase in bloodstream form Trypanosoma brucei. J Biol Chem 2007; 283:2495-507. [PMID: 17991737 DOI: 10.1074/jbc.m705782200] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Isoenzymes of phosphoglycerate kinase in Trypanosoma brucei are differentially expressed in its two main life stages. This study addresses how the organism manages to make sufficient amounts of the isoenzyme with the correct localization, which processes (transcription, splicing, and RNA degradation) control the levels of mRNAs, and how the organism regulates the switch in isoform expression. For this, we combined new quantitative measurements of phosphoglycerate kinase mRNA abundance, RNA precursor stability, trans splicing, and ribosome loading with published data and made a kinetic computer model. For the analysis of regulation we extended regulation analysis. Although phosphoglycerate kinase mRNAs are present at surprisingly low concentrations (e.g. 12 molecules per cell), its protein is highly abundant. Substantial control of mRNA and protein levels was exerted by both mRNA synthesis and degradation, whereas splicing and precursor degradation had little control on mRNA and protein concentrations. Yet regulation of mRNA levels does not occur by transcription, but by adjusting mRNA degradation. The contribution of splicing to regulation is negligible, as for all cases where splicing is faster than RNA precursor degradation.
Collapse
Affiliation(s)
- Jurgen R Haanstra
- Vrije Universiteit, Biocentrum Amsterdam, De Boelelaan 1085, Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
43
|
Hartmann C, Clayton C. Regulation of a transmembrane protein gene family by the small RNA-binding proteins TbUBP1 and TbUBP2. Mol Biochem Parasitol 2007; 157:112-5. [PMID: 18022708 DOI: 10.1016/j.molbiopara.2007.09.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Revised: 09/28/2007] [Accepted: 09/29/2007] [Indexed: 11/29/2022]
Abstract
The loci Tb927.3.4070, 927.3.4080, Tb927.3.4090, 927.3.4100 and 927.3.4110 of Trypanosoma brucei encode five similar proteins with 13-14 transmembrane domains. Corresponding mRNAs are more abundant in bloodstream-form trypanosomes than in procyclics. The 4070, 4090 and 4110 genes have almost identical 3'-intergenic regions and the predicted proteins share a short C-terminal extension; a reporter mRNA with the 4110 3'-untranslated region was more abundant in bloodstream forms than procyclic forms. The 3'-untranslated regions for 4080 and 4100 are different, and that of 4080 gave procyclic-specific reporter expression. TbUBP1 and 2 are proteins with low-specificity RNA-binding activity. Over-expression of TbUBP2 in bloodstream forms increased the overall abundance of mRNA encoding the transmembrane proteins, whereas TbUBP1 and 2 RNA interference decreased it. RNAi targeting TbUBP1 and 2 in bloodstream forms decreased mRNA with a 4110 3'-untranslated region, but increased it for 4080. Thus TbUBP and TbUBP2 may accentuate developmental regulation of the Tb927.3.4070-927.3.4110 mRNAs.
Collapse
Affiliation(s)
- Claudia Hartmann
- Zentrum für Molekulare Biologie der Universität Heidelberg, Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany
| | | |
Collapse
|
44
|
Regulation of an amino acid transporter mRNA in Trypanosoma brucei. Mol Biochem Parasitol 2007; 157:102-6. [PMID: 17996963 DOI: 10.1016/j.molbiopara.2007.09.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Revised: 09/18/2007] [Accepted: 09/26/2007] [Indexed: 11/22/2022]
Abstract
Trypanosoma brucei regulates gene expression by post-transcriptional mechanisms, such as mRNA turnover and translation control. This regulation frequently requires specific sequences located in the 3'-untranslated region. Microarray analysis and Northern blot hybridization showed that the amino acid transporter 11 mRNA is up-regulated in insect stages of the parasite. By RT-PCR and sequencing, the AATP11 polyadenylation site was mapped. We show that this 3'-UTR causes higher expression of the chloramphenicol acetyltransferase (CAT) reporter gene in procyclic trypanosomes than in bloodstream forms. Results of deletion analysis suggested that multiple elements located between nucleotides 141 and 618 of the 3'-untranslated region are required for this control.
Collapse
|
45
|
Hartmann C, Benz C, Brems S, Ellis L, Luu VD, Stewart M, D'Orso I, Busold C, Fellenberg K, Frasch ACC, Carrington M, Hoheisel J, Clayton CE. Small trypanosome RNA-binding proteins TbUBP1 and TbUBP2 influence expression of F-box protein mRNAs in bloodstream trypanosomes. EUKARYOTIC CELL 2007; 6:1964-78. [PMID: 17873084 PMCID: PMC2168414 DOI: 10.1128/ec.00279-07] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the African trypanosome Trypanosoma brucei nearly all control of gene expression is posttranscriptional; sequences in the 3'-untranslated regions of mRNAs determine the steady-state mRNA levels by regulation of RNA turnover. Here we investigate the roles of two related proteins, TbUBP1 and TbUBP2, containing a single RNA recognition motif, in trypanosome gene expression. TbUBP1 and TbUBP2 are in the cytoplasm and nucleus, comprise ca. 0.1% of the total protein, and are not associated with polysomes or RNA degradation enzymes. Overexpression of TbUBP2 upregulated the levels of several mRNAs potentially involved in cell division, including the CFB1 mRNA, which encodes a protein with a cyclin F-box domain. CFB1 regulation was mediated by the 3'-untranslated region and involved stabilization of the mRNA. Depletion of TbUBP2 and TbUBP1 inhibited growth and downregulated expression of the cyclin F box protein gene CFB2; trans splicing was unaffected. The results of pull-down assays indicated that all tested mRNAs were bound to TbUBP2 or TbUBP1, with some preference for CFB1. We suggest that TbUBP1 and TbUBP2 may be relatively nonspecific RNA-binding proteins and that specific effects of overexpression or depletion could depend on competition between various different proteins for RNA binding.
Collapse
Affiliation(s)
- Claudia Hartmann
- Zentrum für Molekulare Biologie der Universität Heidelberg, Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Clayton C, Shapira M. Post-transcriptional regulation of gene expression in trypanosomes and leishmanias. Mol Biochem Parasitol 2007; 156:93-101. [PMID: 17765983 DOI: 10.1016/j.molbiopara.2007.07.007] [Citation(s) in RCA: 312] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2007] [Revised: 07/12/2007] [Accepted: 07/13/2007] [Indexed: 11/25/2022]
Abstract
Gene expression in Kinetoplastids is very unusual in that the open reading frames are arranged in long polycistronic arrays, monocistronic mRNAs being created by post-transcriptional processing. Thus the regulation of gene expression is post-transcriptional. We here discuss recent results concerning the enzymes required for mRNA degradation, and components of the translation initiation machinery, and how both are regulated.
Collapse
Affiliation(s)
- Christine Clayton
- Zentrum für Molekualre Biologie der Universität Heidelberg, Im Neuenheimer Feld 282, D69120 Heidelberg, Germany.
| | | |
Collapse
|