1
|
Ayoub N, Gedeon A, Munier-Lehmann H. A journey into the regulatory secrets of the de novo purine nucleotide biosynthesis. Front Pharmacol 2024; 15:1329011. [PMID: 38444943 PMCID: PMC10912719 DOI: 10.3389/fphar.2024.1329011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/01/2024] [Indexed: 03/07/2024] Open
Abstract
De novo purine nucleotide biosynthesis (DNPNB) consists of sequential reactions that are majorly conserved in living organisms. Several regulation events take place to maintain physiological concentrations of adenylate and guanylate nucleotides in cells and to fine-tune the production of purine nucleotides in response to changing cellular demands. Recent years have seen a renewed interest in the DNPNB enzymes, with some being highlighted as promising targets for therapeutic molecules. Herein, a review of two newly revealed modes of regulation of the DNPNB pathway has been carried out: i) the unprecedent allosteric regulation of one of the limiting enzymes of the pathway named inosine 5'-monophosphate dehydrogenase (IMPDH), and ii) the supramolecular assembly of DNPNB enzymes. Moreover, recent advances that revealed the therapeutic potential of DNPNB enzymes in bacteria could open the road for the pharmacological development of novel antibiotics.
Collapse
Affiliation(s)
- Nour Ayoub
- Institut Pasteur, Université Paris Cité, INSERM UMRS-1124, Paris, France
| | - Antoine Gedeon
- Sorbonne Université, École Normale Supérieure, Université PSL, CNRS UMR7203, Laboratoire des Biomolécules, LBM, Paris, France
| | | |
Collapse
|
2
|
Buey RM, Fernández‐Justel D, Jiménez A, Revuelta JL. The gateway to guanine nucleotides: Allosteric regulation of IMP dehydrogenases. Protein Sci 2022; 31:e4399. [PMID: 36040265 PMCID: PMC9375230 DOI: 10.1002/pro.4399] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/07/2022] [Accepted: 07/19/2022] [Indexed: 11/12/2022]
Abstract
Inosine 5'-monophosphate dehydrogenase (IMPDH) is an evolutionarily conserved enzyme that mediates the first committed step in de novo guanine nucleotide biosynthetic pathway. It is an essential enzyme in purine nucleotide biosynthesis that modulates the metabolic flux at the branch point between adenine and guanine nucleotides. IMPDH plays key roles in cell homeostasis, proliferation, and the immune response, and is the cellular target of several drugs that are widely used for antiviral and immunosuppressive chemotherapy. IMPDH enzyme is tightly regulated at multiple levels, from transcriptional control to allosteric modulation, enzyme filamentation, and posttranslational modifications. Herein, we review recent developments in our understanding of the mechanisms of IMPDH regulation, including all layers of allosteric control that fine-tune the enzyme activity.
Collapse
Affiliation(s)
- Rubén M. Buey
- Metabolic Engineering Group, Department of Microbiology and GeneticsUniversidad de SalamancaSalamancaSpain
| | - David Fernández‐Justel
- Metabolic Engineering Group, Department of Microbiology and GeneticsUniversidad de SalamancaSalamancaSpain
| | - Alberto Jiménez
- Metabolic Engineering Group, Department of Microbiology and GeneticsUniversidad de SalamancaSalamancaSpain
| | - José L. Revuelta
- Metabolic Engineering Group, Department of Microbiology and GeneticsUniversidad de SalamancaSalamancaSpain
| |
Collapse
|
3
|
Wang H, Yang X, Wei S. Analysis of Aspergillus versicolor exudate composition. J Basic Microbiol 2022; 62:1241-1253. [PMID: 35972830 DOI: 10.1002/jobm.202200117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/20/2022] [Accepted: 07/23/2022] [Indexed: 11/07/2022]
Abstract
Aspergillus versicolor, a widely distributed fungus, is associated with pollution and carcinogenic hazards. This study aimed to examine the functions of the A. versicolor exudate and laid a scientific foundation for improving our understanding, utilization, and control of A. versicolor. The A. versicolor exudate proteome, ion content, and amino acid components were determined using label-free quantitation, atomic absorption spectrophotometry, and high-performance liquid chromatography, respectively. In total, 502 proteins were identified in the A. versicolor exudate. Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, and cluster of orthologous group analyses were used to annotate the functional classification and pathways of the aligned proteins. Proteins identified in the exudate were mainly enriched in carbohydrate metabolic process, translation, oxidoreductase activity, oxidoreductase activity, hydrolase activity, cell wall-related processes, catalytic activity, and unknown functions. The exudate comprised Na, K, Ca, Fe, and Mg cations. Among the 17 types of amino acids detected in the exudate, 7 were essential and 10 were nonessential. The exudate may be involved in the vital processes of A. versicolor. Additionally, the exudate may play an important role in the growth, development, reproduction, homeostasis, nutrient supply for regrowth, and virulence of A. versicolor.
Collapse
Affiliation(s)
- Haining Wang
- Department of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning Province, China
| | - Xiaohe Yang
- Jiamusi Branch of Heilongjiang Academy of Agricultural Sciences, Jiamusi, Heilongjiang Province, China
| | - Songhong Wei
- Department of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning Province, China
| |
Collapse
|
4
|
Jardim A, Hardie DB, Boitz J, Borchers CH. Proteomic Profiling of Leishmania donovani Promastigote Subcellular Organelles. J Proteome Res 2018; 17:1194-1215. [PMID: 29332401 DOI: 10.1021/acs.jproteome.7b00817] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To facilitate a greater understanding of the biological processes in the medically important Leishmania donovani parasite, a combination of differential and density-gradient ultracentrifugation techniques were used to achieve a comprehensive subcellular fractionation of the promastigote stage. An in-depth label-free proteomic LC-MS/MS analysis of the density gradients resulted in the identification of ∼50% of the Leishmania proteome (3883 proteins detected), which included ∼645 integral membrane proteins and 1737 uncharacterized proteins. Clustering and subcellular localization of proteins was based on a subset of training Leishmania proteins with known subcellular localizations that had been determined using biochemical, confocal microscopy, or immunoelectron microscopy approaches. This subcellular map will be a valuable resource that will help dissect the cell biology and metabolic processes associated with specific organelles of Leishmania and related kinetoplastids.
Collapse
Affiliation(s)
- Armando Jardim
- Institute of Parasitology, Macdonald Campus, McGill University , 21111 Lakeshore Road, Saine-Anne-de-Bellevue, Québec H9X 3V9, Canada
| | - Darryl B Hardie
- University of Victoria -Genome British Columbia Proteomics Centre , #3101-4464 Markham Street, Vancouver Island Technology Park, Victoria, British Columbia V8Z7X8, Canada
| | - Jan Boitz
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University , Portland, Oregon 97239, United States
| | - Christoph H Borchers
- University of Victoria -Genome British Columbia Proteomics Centre , #3101-4464 Markham Street, Vancouver Island Technology Park, Victoria, British Columbia V8Z7X8, Canada.,Department of Biochemistry and Biophysics, University of North Carolina , 120 Mason Farm Road, Campus Box 7260 Third Floor, Genetic Medicine Building, Chapel Hill, North Carolina 27599, United States.,Department of Biochemistry and Microbiology, University of Victoria , Petch Building, Room 270d, 3800 Finnerty Road, Victoria, British Columbia V8P 5C2, Canada.,Gerald Bronfman Department of Oncology, Jewish General Hospital, McGill University , 3755 Côte Ste-Catherine Road, Montreal, Quebec H3T 1E2, Canada.,Proteomics Centre, Segal Cancer Centre, Lady Davis Institute, Jewish General Hospital, McGill University , 3755 Côte Ste-Catherine Road, Montreal, Quebec H3T 1E2, Canada
| |
Collapse
|
5
|
A nucleotide-controlled conformational switch modulates the activity of eukaryotic IMP dehydrogenases. Sci Rep 2017; 7:2648. [PMID: 28572600 PMCID: PMC5454003 DOI: 10.1038/s41598-017-02805-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 04/19/2017] [Indexed: 12/31/2022] Open
Abstract
Inosine-5′-monophosphate dehydrogenase (IMPDH) is an essential enzyme for nucleotide metabolism and cell proliferation. Despite IMPDH is the target of drugs with antiviral, immunosuppressive and antitumor activities, its physiological mechanisms of regulation remain largely unknown. Using the enzyme from the industrial fungus Ashbya gossypii, we demonstrate that the binding of adenine and guanine nucleotides to the canonical nucleotide binding sites of the regulatory Bateman domain induces different enzyme conformations with significantly distinct catalytic activities. Thereby, the comparison of their high-resolution structures defines the mechanistic and structural details of a nucleotide-controlled conformational switch that allosterically modulates the catalytic activity of eukaryotic IMPDHs. Remarkably, retinopathy-associated mutations lie within the mechanical hinges of the conformational change, highlighting its physiological relevance. Our results expand the mechanistic repertoire of Bateman domains and pave the road to new approaches targeting IMPDHs.
Collapse
|
6
|
Boitz JM, Jardim A, Ullman B. GMP reductase and genetic uncoupling of adenylate and guanylate metabolism in Leishmania donovani parasites. Mol Biochem Parasitol 2016; 208:74-83. [PMID: 27343371 DOI: 10.1016/j.molbiopara.2016.06.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 06/20/2016] [Accepted: 06/21/2016] [Indexed: 11/26/2022]
Abstract
Purine acquisition is an essential nutritional process for Leishmania. Although purine salvage into adenylate nucleotides has been investigated in detail, little attention has been focused on the guanylate branch of the purine pathway. To characterize guanylate nucleotide metabolism in Leishmania and create a cell culture model in which the pathways for adenylate and guanylate nucleotide synthesis can be genetically uncoupled for functional studies in intact cells, we created and characterized null mutants of L. donovani that were deficient in either GMP reductase alone (Δgmpr) or in both GMP reductase and its paralog IMP dehydrogenase (Δgmpr/Δimpdh). Whereas wild type parasites were capable of utilizing virtually any purine nucleobase/nucleoside, the Δgmpr and Δgmpr/Δimpdh null lines exhibited highly restricted growth phenotypes. The Δgmpr single mutant could not grow in xanthine, guanine, or their corresponding nucleosides, while no purine on its own could support the growth of Δgmpr/Δimpdh cells. Permissive growth conditions for the Δgmpr/Δimpdh necessitated both xanthine, guanine, or the corresponding nucleosides, and additionally, a second purine that could serve as a source for adenylate nucleotide synthesis. Interestingly, GMPR, like its paralog IMPDH, is compartmentalized to the leishmanial glycosome, a process mediated by its COOH-terminal peroxisomal targeting signal. The restricted growth phenotypes displayed by the L. donovani Δgmpr and Δgmpr/Δimpdh null mutants confirms the importance of GMPR in the purine interconversion processes of this parasite.
Collapse
Affiliation(s)
- Jan M Boitz
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Mail Code L224, Portland, OR 97239, USA
| | - Armando Jardim
- Institute of Parasitology and Centre for Host-Parasite Interactions, Macdonald Campus of McGill University, 21 111 Lakeshore Road, Ste-Anne-de-Bellevue, Quebec, H9X3V9, Canada
| | - Buddy Ullman
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Mail Code L224, Portland, OR 97239, USA.
| |
Collapse
|
7
|
Mycophenolic Acid and Its Derivatives as Potential Chemotherapeutic Agents Targeting Inosine Monophosphate Dehydrogenase in Trypanosoma congolense. Antimicrob Agents Chemother 2016; 60:4391-3. [PMID: 27139487 DOI: 10.1128/aac.02816-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 04/27/2016] [Indexed: 01/23/2023] Open
Abstract
This study aimed to evaluate the trypanocidal activity of mycophenolic acid (MPA) and its derivatives for Trypanosoma congolense The proliferation of T. congolense was completely inhibited by adding <1 μM MPA and its derivatives. In addition, the IMP dehydrogenase in T. congolense was molecularly characterized as the target of these compounds. The results suggest that MPA and its derivatives have the potential to be new candidates as novel trypanocidal drugs.
Collapse
|
8
|
Smith S, Boitz J, Chidambaram ES, Chatterjee A, Ait-Tihyaty M, Ullman B, Jardim A. The cystathionine-β-synthase domains on the guanosine 5''-monophosphate reductase and inosine 5'-monophosphate dehydrogenase enzymes from Leishmania regulate enzymatic activity in response to guanylate and adenylate nucleotide levels. Mol Microbiol 2016; 100:824-40. [PMID: 26853689 DOI: 10.1111/mmi.13352] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2016] [Indexed: 01/24/2023]
Abstract
The Leishmania guanosine 5'-monophosphate reductase (GMPR) and inosine 5'-monophosphate dehydrogenase (IMPDH) are purine metabolic enzymes that function maintaining the cellular adenylate and guanylate nucleotide. Interestingly, both enzymes contain a cystathionine-β-synthase domain (CBS). To investigate this metabolic regulation, the Leishmania GMPR was cloned and shown to be sufficient to complement the guaC (GMPR), but not the guaB (IMPDH), mutation in Escherichia coli. Kinetic studies confirmed that the Leishmania GMPR catalyzed a strict NADPH-dependent reductive deamination of GMP to produce IMP. Addition of GTP or high levels of GMP induced a marked increase in activity without altering the Km values for the substrates. In contrast, the binding of ATP decreased the GMPR activity and increased the GMP Km value 10-fold. These kinetic changes were correlated with changes in the GMPR quaternary structure, induced by the binding of GMP, GTP, or ATP to the GMPR CBS domain. The capacity of these CBS domains to mediate the catalytic activity of the IMPDH and GMPR provides a regulatory mechanism for balancing the intracellular adenylate and guanylate pools.
Collapse
Affiliation(s)
- Sabrina Smith
- Institute of Parasitology and Centre for Host-Parasite Interactions, Macdonald Campus of McGill University, 21 111 Lakeshore Road, Ste-Anne-de-Bellevue, Quebec, H9X 3V9, Canada
| | - Jan Boitz
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Ehzilan Subramanian Chidambaram
- Institute of Parasitology and Centre for Host-Parasite Interactions, Macdonald Campus of McGill University, 21 111 Lakeshore Road, Ste-Anne-de-Bellevue, Quebec, H9X 3V9, Canada
| | - Abhishek Chatterjee
- Institute of Parasitology and Centre for Host-Parasite Interactions, Macdonald Campus of McGill University, 21 111 Lakeshore Road, Ste-Anne-de-Bellevue, Quebec, H9X 3V9, Canada
| | - Maria Ait-Tihyaty
- Institute of Parasitology and Centre for Host-Parasite Interactions, Macdonald Campus of McGill University, 21 111 Lakeshore Road, Ste-Anne-de-Bellevue, Quebec, H9X 3V9, Canada
| | - Buddy Ullman
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Armando Jardim
- Institute of Parasitology and Centre for Host-Parasite Interactions, Macdonald Campus of McGill University, 21 111 Lakeshore Road, Ste-Anne-de-Bellevue, Quebec, H9X 3V9, Canada
| |
Collapse
|
9
|
Jamdhade MD, Pawar H, Chavan S, Sathe G, Umasankar PK, Mahale KN, Dixit T, Madugundu AK, Prasad TSK, Gowda H, Pandey A, Patole MS. Comprehensive proteomics analysis of glycosomes from Leishmania donovani. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2015; 19:157-70. [PMID: 25748437 DOI: 10.1089/omi.2014.0163] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Leishmania donovani is a kinetoplastid protozoan that causes a severe and fatal disease kala-azar, or visceral leishmaniasis. L. donovani infects human host after the phlebotomine sandfly takes a blood meal and resides within the phagolysosome of infected macrophages. Previous studies on host-parasite interactions have not focused on Leishmania organelles and the role that they play in the survival of this parasite within macrophages. Leishmania possess glycosomes that are unique and specialized subcellular microbody organelles. Glycosomes are known to harbor most peroxisomal enzymes and, in addition, they also possess nine glycolytic enzymes. In the present study, we have carried out proteomic profiling using high resolution mass spectrometry of a sucrose density gradient-enriched glycosomal fraction isolated from L. donovani promastigotes. This study resulted in the identification of 4022 unique peptides, leading to the identification of 1355 unique proteins from a preparation enriched in L. donovani glycosomes. Based on protein annotation, 566 (41.8%) were identified as hypothetical proteins with no known function. A majority of the identified proteins are involved in metabolic processes such as carbohydrate, lipid, and nucleic acid metabolism. Our present proteomic analysis is the most comprehensive study to date to map the proteome of L. donovani glycosomes.
Collapse
|
10
|
Buey RM, Ledesma-Amaro R, Balsera M, de Pereda JM, Revuelta JL. Increased riboflavin production by manipulation of inosine 5'-monophosphate dehydrogenase in Ashbya gossypii. Appl Microbiol Biotechnol 2015; 99:9577-89. [PMID: 26150243 DOI: 10.1007/s00253-015-6710-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 05/15/2015] [Accepted: 05/19/2015] [Indexed: 12/13/2022]
Abstract
Guanine nucleotides are the precursors of essential biomolecules including nucleic acids and vitamins such as riboflavin. The enzyme inosine-5'-monophosphate dehydrogenase (IMPDH) catalyzes the ratelimiting step in the guanine nucleotide de novo biosynthetic pathway and plays a key role in controlling the cellular nucleotide pools. Thus, IMPDH is an important metabolic bottleneck in the guanine nucleotide synthesis, susceptible of manipulation by means of metabolic engineering approaches. Herein, we report the functional and structural characterization of the IMPDH enzyme from the industrial fungus Ashbya gossypii. Our data show that the overexpression of the IMPDH gene increases the metabolic flux through the guanine pathway and ultimately enhances 40 % riboflavin production with respect to the wild type. Also, IMPDH disruption results in a 100-fold increase of inosine excretion to the culture media. Our results contribute to the developing metabolic engineering toolbox aiming at improving the production of metabolites with biotechnological interest in A. gossypii.
Collapse
Affiliation(s)
- Rubén M Buey
- Metabolic Engineering Group, Departamento de Microbiología y Genética, Universidad de Salamanca, Edificio Departamental, Campus Miguel de Unamuno, 37007, Salamanca, Spain.
| | | | - Mónica Balsera
- Department Abiotic Stress, Instituto de Recursos Naturales y Agrobiología, Consejo Superior de Investigaciones Científicas, C/ Cordel de Merinas 40-52, 37008, Salamanca, Spain
| | - José María de Pereda
- Instituto de Biología Celular y Molecular del Cáncer, Consejo Superior de Investigaciones Científicas, Universidad de Salamanca, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - José Luis Revuelta
- Metabolic Engineering Group, Departamento de Microbiología y Genética, Universidad de Salamanca, Edificio Departamental, Campus Miguel de Unamuno, 37007, Salamanca, Spain.
| |
Collapse
|
11
|
Rostirolla DC, Milech de Assunção T, Bizarro CV, Basso LA, Santos DS. Biochemical characterization of Mycobacterium tuberculosis IMP dehydrogenase: kinetic mechanism, metal activation and evidence of a cooperative system. RSC Adv 2014. [DOI: 10.1039/c4ra02142h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Proposed kinetic mechanism forMtIMPDH in the presence of K+.
Collapse
Affiliation(s)
- Diana Carolina Rostirolla
- Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF)
- Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB)
- Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)
- Porto Alegre, Brazil
- Programa de Pós-Graduação em Medicina e Ciências da Saúde
| | | | - Cristiano Valim Bizarro
- Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF)
- Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB)
- Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)
- Porto Alegre, Brazil
| | - Luiz Augusto Basso
- Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF)
- Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB)
- Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)
- Porto Alegre, Brazil
- Programa de Pós-Graduação em Medicina e Ciências da Saúde
| | - Diogenes Santiago Santos
- Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF)
- Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB)
- Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)
- Porto Alegre, Brazil
- Programa de Pós-Graduação em Medicina e Ciências da Saúde
| |
Collapse
|
12
|
Boitz JM, Strasser R, Yates PA, Jardim A, Ullman B. Adenylosuccinate synthetase and adenylosuccinate lyase deficiencies trigger growth and infectivity deficits in Leishmania donovani. J Biol Chem 2013; 288:8977-90. [PMID: 23404497 DOI: 10.1074/jbc.m112.431486] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Leishmania are auxotrophic for purines, and consequently purine acquisition from the host is a requisite nutritional function for the parasite. Both adenylosuccinate synthetase (ADSS) and adenylosuccinate lyase (ASL) have been identified as vital components of purine salvage in Leishmania donovani, and therefore Δadss and Δasl null mutants were constructed to test this hypothesis. Unlike wild type L. donovani, Δadss and Δasl parasites in culture exhibited a profoundly restricted growth phenotype in which the only permissive growth conditions were a 6-aminopurine source in the presence of 2'-deoxycoformycin, an inhibitor of adenine aminohydrolase activity. Although both knock-outs showed a diminished capacity to infect murine peritoneal macrophages, only the Δasl null mutant was profoundly incapacitated in its ability to infect mice. The enormous discrepancy in parasite loads observed in livers and spleens from mice infected with either Δadss or Δasl parasites can be explained by selective accumulation of adenylosuccinate in the Δasl knock-out and consequent starvation for guanylate nucleotides. Genetic complementation of a Δasl lesion in Escherichia coli implied that the L. donovani ASL could also recognize 5-aminoimidazole-(N-succinylocarboxamide) ribotide as a substrate, and purified recombinant ASL displayed an apparent Km of ∼24 μm for adenylosuccinate. Unlike many components of the purine salvage pathway of L. donovani, both ASL and ADSS are cytosolic enzymes. Overall, these data underscore the paramount importance of ASL to purine salvage by both life cycle stages of L. donovani and authenticate ASL as a potential drug target in Leishmania.
Collapse
Affiliation(s)
- Jan M Boitz
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, OR 97239, USA
| | | | | | | | | |
Collapse
|
13
|
Characterization of the novel Trypanosoma brucei inosine 5'-monophosphate dehydrogenase. Parasitology 2013; 140:735-45. [PMID: 23369253 DOI: 10.1017/s0031182012002090] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
There is an alarming rate of human African trypanosomiasis recrudescence in many parts of sub-Saharan Africa. Yet, the disease has no successful chemotherapy. Trypanosoma lacks the enzymatic machinery for the de novo synthesis of purine nucleotides, and is critically dependent on salvage mechanisms. Inosine 5'-monophosphate dehydrogenase (IMPDH) is responsible for the rate-limiting step in guanine nucleotide metabolism. Here, we characterize recombinant Trypanosoma brucei IMPDH (TbIMPDH) to investigate the enzymatic differences between TbIMPDH and host IMPDH. Size-exclusion chromatography and analytical ultracentrifugation sedimentation velocity experiments reveal that TbIMPDH forms a heptamer, different from type 1 and 2 mammalian tetrameric IMPDHs. Kinetic analysis reveals calculated K m values of 30 and 1300 μ m for IMP and NAD, respectively. The obtained K m value of TbIMPDH for NAD is approximately 20-200-fold higher than that of mammalian enzymes and indicative of a different NAD binding mode between trypanosomal and mammalian IMPDHs. Inhibition studies show K i values of 3·2 μ m, 21 nM and 3·3 nM for ribavirin 5'-monophosphate, mycophenolic acid and mizoribine 5'-monophosphate, respectively. Our results show that TbIMPDH is different from its mammalian counterpart and thus may be a good target for further studies on anti-trypanosomal drugs.
Collapse
|
14
|
Lakhal-Naouar I, Jardim A, Strasser R, Luo S, Kozakai Y, Nakhasi HL, Duncan RC. Leishmania donovani argininosuccinate synthase is an active enzyme associated with parasite pathogenesis. PLoS Negl Trop Dis 2012; 6:e1849. [PMID: 23094117 PMCID: PMC3475689 DOI: 10.1371/journal.pntd.0001849] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 08/22/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Gene expression analysis in Leishmania donovani (Ld) identified an orthologue of the urea cycle enzyme, argininosuccinate synthase (LdASS), that was more abundantly expressed in amastigotes than in promastigotes. In order to characterize in detail this newly identified protein in Leishmania, we determined its enzymatic activity, subcellular localization in the parasite and affect on virulence in vivo. METHODOLOGY/PRINCIPAL FINDINGS Two parasite cell lines either over expressing wild type LdASS or a mutant form (G128S) associated with severe cases of citrullinemia in humans were developed. In addition we also produced bacterially expressed recombinant forms of the same proteins. Our results demonstrated that LdASS has argininosuccinate synthase enzymatic activity that is abolished using an ASS specific inhibitor (MDLA: methyl-D-L-Aspartic acid). However, the mutant form of the protein is inactive. We demonstrate that though LdASS has a glycosomal targeting signal that binds the targeting apparatus in vitro, only a small proportion of the total cellular ASS is localized in a vesicle, as indicated by protection from protease digestion of the crude organelle fraction. The majority of LdASS was found to be in the cytosolic fraction that may include large cytosolic complexes as indicated by the punctate distribution in IFA. Surprisingly, comparison to known glycosomal proteins by IFA revealed that LdASS was located in a structure different from the known glycosomal vesicles. Significantly, parasites expressing a mutant form of LdASS associated with a loss of in vitro activity had reduced virulence in vivo in BALB/c mice as demonstrated by a significant reduction in the parasite load in spleen and liver. CONCLUSION/SIGNIFICANCE Our study suggests that LdASS is an active enzyme, with unique localization and essential for parasite survival and growth in the mammalian host. Based on these observations LdASS could be further explored as a potential drug target.
Collapse
Affiliation(s)
- Ines Lakhal-Naouar
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration (FDA), Bethesda, Maryland, United States of America
| | - Armando Jardim
- Institute of Parasitology, McGill University and the Centre for Host-Parasite Interactions, Quebec, Canada
| | - Rona Strasser
- Institute of Parasitology, McGill University and the Centre for Host-Parasite Interactions, Quebec, Canada
| | - Shen Luo
- Laboratory of Chemistry, Division of Therapeutic Proteins, Center for Drug Evaluation and Research (CDER), Food and Drug Administration (FDA), Bethesda, Maryland, United States of America
| | - Yukiko Kozakai
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration (FDA), Bethesda, Maryland, United States of America
| | - Hira L. Nakhasi
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration (FDA), Bethesda, Maryland, United States of America
| | - Robert C. Duncan
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration (FDA), Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
15
|
Boitz JM, Ullman B, Jardim A, Carter NS. Purine salvage in Leishmania: complex or simple by design? Trends Parasitol 2012; 28:345-52. [PMID: 22726696 DOI: 10.1016/j.pt.2012.05.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 05/22/2012] [Accepted: 05/23/2012] [Indexed: 11/19/2022]
Abstract
Purine nucleotides function in a variety of vital cellular and metabolic processes including energy production, cell signaling, synthesis of vitamin-derived cofactors and nucleic acids, and as determinants of cell fate. Unlike their mammalian and insect hosts, Leishmania cannot synthesize the purine ring de novo and are absolutely dependent upon them to meet their purine requirements. The obligatory nature of purine salvage in these parasites, therefore, offers an attractive paradigm for drug targeting and, consequently, the delineation of the pathway has been under scientific investigation for over 30 years. Here, we review recent developments that reveal how purines flux in Leishmania and offer a potential 'Achilles' heel' for future validation.
Collapse
Affiliation(s)
- Jan M Boitz
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, OR 97239, USA.
| | | | | | | |
Collapse
|
16
|
Usha V, Hobrath JV, Gurcha SS, Reynolds RC, Besra GS. Identification of novel Mt-Guab2 inhibitor series active against M. tuberculosis. PLoS One 2012; 7:e33886. [PMID: 22479467 PMCID: PMC3315515 DOI: 10.1371/journal.pone.0033886] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Accepted: 02/23/2012] [Indexed: 12/17/2022] Open
Abstract
Tuberculosis (TB) remains a leading cause of mortality worldwide. With the emergence of multidrug resistant TB, extensively drug resistant TB and HIV-associated TB it is imperative that new drug targets be identified. The potential of Mycobacterium tuberculosis inosine monophosphate dehydrogenase (IMPDH) as a novel drug target was explored in the present study. IMPDH exclusively catalyzes the conversion of inosine monophosphate (IMP) to xanthosine monophosphate (XMP) in the presence of the cofactor nicotinamide adenine dinucleotide (NAD+). Although the enzyme is a dehydrogenase, the enzyme does not catalyze the reverse reaction i.e. the conversion of XMP to IMP. Unlike other bacteria, M. tuberculosis harbors three IMPDH-like genes, designated as Mt-guaB1, Mt-guaB2 and Mt-guaB3 respectively. Of the three putative IMPDH's, we previously confirmed that Mt-GuaB2 was the only functional ortholog by characterizing the enzyme kinetically. Using an in silico approach based on designed scaffolds, a series of novel classes of inhibitors was identified. The inhibitors possess good activity against M. tuberculosis with MIC values in the range of 0.4 to 11.4 µg mL−1. Among the identified ligands, two inhibitors have nanomolar Kis against the Mt-GuaB2 enzyme.
Collapse
Affiliation(s)
- Veeraraghavan Usha
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Judith V. Hobrath
- Drug Discovery Division, Southern Research Institute, Birmingham, Alabama, United States of America
| | - Sudagar S. Gurcha
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Robert C. Reynolds
- Drug Discovery Division, Southern Research Institute, Birmingham, Alabama, United States of America
| | - Gurdyal S. Besra
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
- * E-mail:
| |
Collapse
|
17
|
Boitz JM, Strasser R, Hartman CU, Jardim A, Ullman B. Adenine aminohydrolase from Leishmania donovani: unique enzyme in parasite purine metabolism. J Biol Chem 2012; 287:7626-39. [PMID: 22238346 DOI: 10.1074/jbc.m111.307884] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Adenine aminohydrolase (AAH) is an enzyme that is not present in mammalian cells and is found exclusively in Leishmania among the protozoan parasites that infect humans. AAH plays a paramount role in purine metabolism in this genus by steering 6-aminopurines into 6-oxypurines. Leishmania donovani AAH is 38 and 23% identical to Saccharomyces cerevisiae AAH and human adenosine deaminase enzymes, respectively, catalyzes adenine deamination to hypoxanthine with an apparent K(m) of 15.4 μM, and does not recognize adenosine as a substrate. Western blot analysis established that AAH is expressed in both life cycle stages of L. donovani, whereas subcellular fractionation and immunofluorescence studies confirmed that AAH is localized to the parasite cytosol. Deletion of the AAH locus in intact parasites established that AAH is not an essential gene and that Δaah cells are capable of salvaging the same range of purine nucleobases and nucleosides as wild type L. donovani. The Δaah null mutant was able to infect murine macrophages in vitro and in mice, although the parasite loads in both model systems were modestly reduced compared with wild type infections. The Δaah lesion was also introduced into a conditionally lethal Δhgprt/Δxprt mutant in which viability was dependent on pharmacologic ablation of AAH by 2'-deoxycoformycin. The Δaah/Δhgprt/Δxprt triple knock-out no longer required 2'-deoxycoformycin for growth and was avirulent in mice with no persistence after a 4-week infection. These genetic studies underscore the paramount importance of AAH to purine salvage by L. donovani.
Collapse
Affiliation(s)
- Jan M Boitz
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon 97239, USA
| | | | | | | | | |
Collapse
|
18
|
Fulwiler AL, Boitz JM, Gilroy C, Yates PA, Jardim A, Ullman B. IMP dehydrogenase deficiency in Leishmania donovani causes a restrictive growth phenotype in promastigotes but is not essential for infection in mice. Mol Biochem Parasitol 2011; 180:123-6. [PMID: 21907738 DOI: 10.1016/j.molbiopara.2011.08.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 08/20/2011] [Accepted: 08/26/2011] [Indexed: 11/15/2022]
Abstract
Leishmania cannot synthesize purines de novo and therefore must scavenge purines from its host for survival and growth. Biochemical and genomic analyses have indicated that Leishmania species express three potential routes for the synthesis of guanylate nucleotides: (1) a two-step pathway that converts IMP to GMP; (2) a three-step pathway that starts with the deamination of guanine to xanthine, followed by phosphoribosylation to XMP and then conversion to GMP; or (3) direct guanine phosphoribosylation by HGPRT. To determine the role of the first of these pathways to guanylate nucleotide synthesis, an L. donovani line deficient in IMP dehydrogenase (IMPDH), the first step in the IMP to GMP pathway, was constructed by targeted gene replacement. The Δimpdh lesion triggered a highly restrictive growth phenotype in promastigotes in culture but did not impact parasitemias in mice. The dispensability of IMPDH in vivo is the first definitive demonstration that intracellular L. donovani amastigotes have access to a sufficient pool of guanine, xanthine, or guanylate precursors from the host.
Collapse
Affiliation(s)
- Audrey L Fulwiler
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239-3098, USA
| | | | | | | | | | | |
Collapse
|
19
|
French JB, Yates PA, Soysa DR, Boitz JM, Carter NS, Chang B, Ullman B, Ealick SE. The Leishmania donovani UMP synthase is essential for promastigote viability and has an unusual tetrameric structure that exhibits substrate-controlled oligomerization. J Biol Chem 2011; 286:20930-41. [PMID: 21507942 PMCID: PMC3121495 DOI: 10.1074/jbc.m111.228213] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 03/30/2011] [Indexed: 11/06/2022] Open
Abstract
The final two steps of de novo uridine 5'-monophosphate (UMP) biosynthesis are catalyzed by orotate phosphoribosyltransferase (OPRT) and orotidine 5'-monophosphate decarboxylase (OMPDC). In most prokaryotes and simple eukaryotes these two enzymes are encoded by separate genes, whereas in mammals they are expressed as a bifunctional gene product called UMP synthase (UMPS), with OPRT at the N terminus and OMPDC at the C terminus. Leishmania and some closely related organisms also express a bifunctional enzyme for these two steps, but the domain order is reversed relative to mammalian UMPS. In this work we demonstrate that L. donovani UMPS (LdUMPS) is an essential enzyme in promastigotes and that it is sequestered in the parasite glycosome. We also present the crystal structure of the LdUMPS in complex with its product, UMP. This structure reveals an unusual tetramer with two head to head and two tail to tail interactions, resulting in two dimeric OMPDC and two dimeric OPRT functional domains. In addition, we provide structural and biochemical evidence that oligomerization of LdUMPS is controlled by product binding at the OPRT active site. We propose a model for the assembly of the catalytically relevant LdUMPS tetramer and discuss the implications for the structure of mammalian UMPS.
Collapse
Affiliation(s)
- Jarrod B. French
- From the Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853 and
| | - Phillip A. Yates
- the Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, Oregon 97239
| | - D. Radika Soysa
- the Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, Oregon 97239
| | - Jan M. Boitz
- the Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, Oregon 97239
| | - Nicola S. Carter
- the Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, Oregon 97239
| | - Bailey Chang
- From the Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853 and
| | - Buddy Ullman
- the Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, Oregon 97239
| | - Steven E. Ealick
- From the Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853 and
| |
Collapse
|
20
|
Gollapalli DR, Macpherson IS, Liechti G, Gorla SK, Goldberg JB, Hedstrom L. Structural determinants of inhibitor selectivity in prokaryotic IMP dehydrogenases. ACTA ACUST UNITED AC 2011; 17:1084-91. [PMID: 21035731 DOI: 10.1016/j.chembiol.2010.07.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2010] [Revised: 06/26/2010] [Accepted: 07/20/2010] [Indexed: 10/18/2022]
Abstract
The protozoan parasite Cryptosporidium parvum is a major cause of gastrointestinal disease; no effective drug therapy exists to treat this infection. Curiously, C. parvum IMPDH (CpIMPDH) is most closely related to prokaryotic IMPDHs, suggesting that the parasite obtained its IMPDH gene via horizontal transfer. We previously identified inhibitors of CpIMPDH that do not inhibit human IMPDHs. Here, we show that these compounds also inhibit IMPDHs from Helicobacter pylori, Borrelia burgdorferi, and Streptococcus pyogenes, but not from Escherichia coli. Residues Ala165 and Tyr358 comprise a structural motif that defines susceptible enzymes. Importantly, a second-generation CpIMPDH inhibitor has bacteriocidal activity on H. pylori but not E. coli. We propose that CpIMPDH-targeted inhibitors can be developed into a new class of antibiotics that will spare some commensal bacteria.
Collapse
|
21
|
Usha V, Gurcha SS, Lovering AL, Lloyd AJ, Papaemmanouil A, Reynolds RC, Besra GS. Identification of novel diphenyl urea inhibitors of Mt-GuaB2 active against Mycobacterium tuberculosis. MICROBIOLOGY-SGM 2010; 157:290-299. [PMID: 21081761 DOI: 10.1099/mic.0.042549-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In contrast with most bacteria, which harbour a single inosine monophosphate dehydrogenase (IMPDH) gene, the genomic sequence of Mycobacterium tuberculosis H37Rv predicts three genes encoding IMPDH: guaB1, guaB2 and guaB3. These three genes were cloned and expressed in Escherichia coli to evaluate functional IMPDH activity. Purified recombinant Mt-GuaB2, which uses inosine monophosphate as a substrate, was identified as the only active GuaB orthologue in M. tuberculosis and showed optimal activity at pH 8.5 and 37 °C. Mt-GuaB2 was inhibited significantly in vitro by a panel of diphenyl urea-based derivatives, which were also potent anti-mycobacterial agents against M. tuberculosis and Mycobacterium smegmatis, with MICs in the range of 0.2-0.5 μg ml(-1). When Mt-GuaB2 was overexpressed on a plasmid in trans in M. smegmatis, a diphenyl urea analogue showed a 16-fold increase in MIC. Interestingly, when Mt-GuaB orthologues (Mt-GuaB1 and 3) were also overexpressed on a plasmid in trans in M. smegmatis, they also conferred resistance, suggesting that although these Mt-GuaB orthologues were inactive in vitro, they presumably titrate the effect of the inhibitory properties of the active compounds in vivo.
Collapse
Affiliation(s)
- Veeraraghavan Usha
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Sudagar S Gurcha
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Andrew L Lovering
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Adrian J Lloyd
- Department of Biological Sciences, University of Warwick, Coventry, UK
| | - Athina Papaemmanouil
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Robert C Reynolds
- Drug Discovery Division, Southern Research Institute, Birmingham, AL 35255, USA
| | - Gurdyal S Besra
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
22
|
Affiliation(s)
- Lizbeth Hedstrom
- Department of Biology, Brandeis University, MS009, 415 South Street, Waltham, Massachusetts 02454, USA.
| |
Collapse
|