1
|
Donu D, Boyle E, Curry A, Cen Y. Biochemical characterization and discovery of inhibitors for PfSir2A: new tricks for an old enzyme. RSC Chem Biol 2025:d4cb00206g. [PMID: 39897407 PMCID: PMC11784564 DOI: 10.1039/d4cb00206g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 01/22/2025] [Indexed: 02/04/2025] Open
Abstract
The Sir2 enzyme from Plasmodium falciparum (PfSir2A) is essential for the antigenic variation of this parasite, and its inhibition is expected to have therapeutic effects for malaria. Selective PfSir2A inhibitors are not available yet, partially due to the fact that this enzyme demonstrates extremely weak in vitro deacetylase activity, making the characterization of its inhibitors rather challenging. In the current study, we report the biochemical characterization and inhibitor discovery for this enzyme. PfSir2A exhibits greater enzymatic activity in the presence of DNA for both the peptide and histone protein substrates, suggesting that nucleosomes may be the real substrates of this enzyme. Indeed, it demonstrates robust deacetylase activity against nucleosome substrates, stemming primarily from the tight binding interactions with the nucleosome. In addition to DNA/nucleosome, free fatty acids (FFAs) are also identified as endogenous PfSir2A regulators. Myristic acid, a biologically relevant FFA, shows differential regulation of the two distinct activities of PfSir2A: activates deacetylation, but inhibits defatty-acylation. The structural basis of this differential regulation was further explored. Moreover, synthetic small molecule inhibitors of PfSir2A were discovered through the screening of a library of human sirtuin regulators. The mechanism of inhibition of the lead compounds were investigated. Collectively, the mechanistic insights and inhibitors described in this study will facilitate the future development of small molecule PfSir2A inhibitors as antimalarial agents.
Collapse
Affiliation(s)
- Dickson Donu
- Department of Medicinal Chemistry, Virginia Commonwealth University Richmond VA 23219 USA +1 804-828-7405
| | - Emily Boyle
- Department of Medicinal Chemistry, Virginia Commonwealth University Richmond VA 23219 USA +1 804-828-7405
| | - Alyson Curry
- Department of Medicinal Chemistry, Virginia Commonwealth University Richmond VA 23219 USA +1 804-828-7405
| | - Yana Cen
- Department of Medicinal Chemistry, Virginia Commonwealth University Richmond VA 23219 USA +1 804-828-7405
- Center for Drug Discovery, Virginia Commonwealth University Richmond VA 23219 USA
| |
Collapse
|
2
|
Donu D, Boyle E, Curry A, Cen Y. Biochemical Characterization and Inhibitor Discovery for Pf Sir2A - New Tricks for An Old Enzyme. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.25.614941. [PMID: 39386451 PMCID: PMC11463419 DOI: 10.1101/2024.09.25.614941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The Sir2 enzyme from Plasmodium falciparum ( Pf Sir2A) is essential for the antigenic variation of this parasite, and its inhibition is expected to have therapeutic effects for malaria. Selective Pf Sir2A inhibitors are not available yet, partially due to the fact that this enzyme demonstrates extremely weak in vitro deacetylase activity, making the characterization of its inhibitors rather challenging. In the current study, we report the biochemical characterization and inhibitor discovery for this enzyme. Pf Sir2A exhibits greater enzymatic activity in the presence of DNA for both the peptide and histone protein substrates, suggesting that nucleosomes may be the real substrates of this enzyme. Indeed, it demonstrates robust deacetylase activity against nucleosome substrates, stemming primarily from the tight binding interactions with the nucleosome. In addition to DNA/nucleosome, free fatty acids (FFAs) are also identified as endogenous Pf Sir2A regulators. Myristic acid, a biologically relevant FFA, shows differential regulation of the two distinct activities of Pf Sir2A: activates deacetylation, but inhibits defatty-acylation. The structural basis of this differential regulation was further explored. Moreover, synthetic small molecule inhibitors of Pf Sir2A were discovered through the screening of a library of human sirtuin regulators. The mechanism of inhibition of the lead compounds were investigated. Collectively, the mechanistic insights and inhibitors described in this study will facilitate the future development of small molecule Pf Sir2A inhibitors as antimalarial agents.
Collapse
|
3
|
Reyser T, Paloque L, Augereau JM, Di Stefano L, Benoit-Vical F. Epigenetic regulation as a therapeutic target in the malaria parasite Plasmodium falciparum. Malar J 2024; 23:44. [PMID: 38347549 PMCID: PMC10863139 DOI: 10.1186/s12936-024-04855-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 01/18/2024] [Indexed: 02/15/2024] Open
Abstract
Over the past thirty years, epigenetic regulation of gene expression has gained increasing interest as it was shown to be implicated in illnesses ranging from cancers to parasitic diseases. In the malaria parasite, epigenetics was shown to be involved in several key steps of the complex life cycle of Plasmodium, among which asexual development and sexual commitment, but also in major biological processes like immune evasion, response to environmental changes or DNA repair. Because epigenetics plays such paramount roles in the Plasmodium parasite, enzymes involved in these regulating pathways represent a reservoir of potential therapeutic targets. This review focuses on epigenetic regulatory processes and their effectors in the malaria parasite, as well as the inhibitors of epigenetic pathways and their potential as new anti-malarial drugs. Such types of drugs could be formidable tools that may contribute to malaria eradication in a context of widespread resistance to conventional anti-malarials.
Collapse
Affiliation(s)
- Thibaud Reyser
- LCC-CNRS, Laboratoire de Chimie de Coordination, CNRS, Université de Toulouse, Toulouse, France
- MAAP, Inserm ERL 1289, Team "New Antiplasmodial Molecules and Pharmacological Approaches", Toulouse, France
- Institut de Pharmacologie et de Biologie Structurale, IPBS, CNRS, UPS, Université de Toulouse, Toulouse, France
| | - Lucie Paloque
- LCC-CNRS, Laboratoire de Chimie de Coordination, CNRS, Université de Toulouse, Toulouse, France
- MAAP, Inserm ERL 1289, Team "New Antiplasmodial Molecules and Pharmacological Approaches", Toulouse, France
- Institut de Pharmacologie et de Biologie Structurale, IPBS, CNRS, UPS, Université de Toulouse, Toulouse, France
| | - Jean-Michel Augereau
- LCC-CNRS, Laboratoire de Chimie de Coordination, CNRS, Université de Toulouse, Toulouse, France
- MAAP, Inserm ERL 1289, Team "New Antiplasmodial Molecules and Pharmacological Approaches", Toulouse, France
- Institut de Pharmacologie et de Biologie Structurale, IPBS, CNRS, UPS, Université de Toulouse, Toulouse, France
| | - Luisa Di Stefano
- MCD, Centre de Biologie Intégrative (CBI), CNRS, UPS, Université de Toulouse, Toulouse, France
| | - Françoise Benoit-Vical
- LCC-CNRS, Laboratoire de Chimie de Coordination, CNRS, Université de Toulouse, Toulouse, France.
- MAAP, Inserm ERL 1289, Team "New Antiplasmodial Molecules and Pharmacological Approaches", Toulouse, France.
- Institut de Pharmacologie et de Biologie Structurale, IPBS, CNRS, UPS, Université de Toulouse, Toulouse, France.
| |
Collapse
|
4
|
de Souza EMDC, de Oliveira MVD, Siqueira JEDS, Rocha DCDC, Marinho ADNR, Marinho AMDR, Marinho PSB, Lima AH. Molecular characterization and in silico evaluation of surfactins produced by endophytic bacteria from Phanera splendens. Front Chem 2023; 11:1240704. [PMID: 37608862 PMCID: PMC10441774 DOI: 10.3389/fchem.2023.1240704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 07/28/2023] [Indexed: 08/24/2023] Open
Abstract
The Phanera splendens (Kunth) Vaz. is a medicinal plant that is used in traditional medicine for the treatment of various diseases, such as malaria. This plant presents highly efficient endophytic bacterial isolates with biocontrol properties. Bacillus sp. is responsible for the production of a variety of non-ribosomal synthesized cyclic lipopeptides which highlight the surfactins. Surfactins have a wide range of antimicrobial activity, including antiplasmodial activity. There is scientific evidence that surfactin structure 2d-01 can be a potent inhibitor against a Plasmodium falciparum sirtuin (Sir2) by acting on the Sir2A protein as the target. The Pf genome encodes two known sirtuins, PfSir2A and PfSir2B, where PfSir2A is a regulator of asexual growth and var gene expression. Herein, we have identified six surfactins produced by endophytic bacteria and performed in silico analysis to elucidate the binding mode of surfactins at the active site of the PfSir2A enzyme. Among the characterized surfactins, 1d-02 showed the highest affinity for the PfSir2A enzyme, with binding energy values equal to -45.08 ± 6.0 and -11.95 ± 0.8 kcal/mol, using MM/GBSA and SIE methods, respectively. We hope that the information about the surfactin structures obtained in this work, as well as the potential binding affinity with an important enzyme from P. falciparum, could contribute to the design of new compounds with antimalarial activity.
Collapse
Affiliation(s)
| | - Maycon Vinicius Damasceno de Oliveira
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, Pará, Brazil
| | - José Edson de Sousa Siqueira
- Laboratório de Bioensaios e Química de Microrganismos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, Pará, Brazil
| | | | | | - Andrey Moacir do Rosario Marinho
- Laboratório de Bioensaios e Química de Microrganismos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Patrícia Santana Barbosa Marinho
- Laboratório de Bioensaios e Química de Microrganismos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Anderson H. Lima
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, Pará, Brazil
| |
Collapse
|
5
|
Yu YH, Wu CM, Chen WJ, Hua KF, Liu JR, Cheng YH. Effectiveness of Bacillus licheniformis-Fermented Products and Their Derived Antimicrobial Lipopeptides in Controlling Coccidiosis in Broilers. Animals (Basel) 2021; 11:ani11123576. [PMID: 34944351 PMCID: PMC8698030 DOI: 10.3390/ani11123576] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/10/2021] [Accepted: 12/14/2021] [Indexed: 11/30/2022] Open
Abstract
Simple Summary Coccidiosis is an important health problem in broilers, caused by infection with a highly contagious intestinal parasite of the genus Eimeria. Anti-coccidial drugs are widely used for the prevention of coccidiosis in broilers. However, multi-resistance coccidia is a potential threat to poultry production. In this study, we evaluated the potential of Bacillus licheniformis-fermented products (BLFP) and their derived antimicrobial lipopeptide, surfactin, on the prevention of coccidiosis in broilers. Results demonstrate that BLFPs and their derived antimicrobial lipopeptide, surfactin, exhibit anti-coccidial activity in vitro and in vivo. Abstract This study aimed to investigate the potential of Bacillus licheniformis-fermented products (BLFP) and their derived antimicrobial lipopeptide, surfactin, for the prevention of coccidiosis in broilers. Broilers were fed BLFP at 1.25 and 5 g/kg under Eimeria tenella challenge. At the end of experiment (35 days), the growth performance, survival rate, cecal morphology, cecal lesion scores, oocyst-count index, and anti-coccidial index were analyzed. The effects of the BLFP-derived surfactin on oocyst sporulation and sporozoite morphology in Eimeria species were also investigated in vitro. Results showed that BLFP supplementation at 1.25 and 5 g/kg improved cecal morphology and increased the survival rate of broilers under E. tenella challenge. Supplementation with 1.25 g/kg of BLFP reduced the lesion scores in the cecum of E. tenella-challenged broilers, while the oocyst-count index was reduced in broilers given 5 g/kg of BLFP. The anti-coccidial index of the 1.25 g/kg of BLFP-treated group was greater than 160, compared with the E. tenella-challenge-only group. Furthermore, surfactin inhibited Eimeria oocyst sporulation and disrupted sporozoite morphology. These results demonstrate that BLFPs and their derived antimicrobial lipopeptide, surfactin, exhibit anti-coccidial activity in vitro and in vivo. BLFP may be used as a natural feed additive for the prevention of coccidiosis in broilers, and 1.25 g/kg can be considered the optimum dosage.
Collapse
Affiliation(s)
- Yu-Hsiang Yu
- Department of Biotechnology and Animal Science, National Ilan University, Yilan 26047, Taiwan; (Y.-H.Y.); (W.-J.C.); (K.-F.H.)
| | - Chia-Min Wu
- Department of Animal Science and Technology, National Taiwan University, Taipei 106, Taiwan;
| | - Wei-Jung Chen
- Department of Biotechnology and Animal Science, National Ilan University, Yilan 26047, Taiwan; (Y.-H.Y.); (W.-J.C.); (K.-F.H.)
| | - Kuo-Feng Hua
- Department of Biotechnology and Animal Science, National Ilan University, Yilan 26047, Taiwan; (Y.-H.Y.); (W.-J.C.); (K.-F.H.)
| | - Je-Ruei Liu
- Department of Animal Science and Technology, National Taiwan University, Taipei 106, Taiwan;
- Institute of Biotechnology, National Taiwan University, Taipei 106, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
- Correspondence: (J.-R.L.); (Y.-H.C.); Tel.: +886-2-3366-6011 (J.-R.L.); +886-3-931-7712 (Y.-H.C.)
| | - Yeong-Hsiang Cheng
- Department of Biotechnology and Animal Science, National Ilan University, Yilan 26047, Taiwan; (Y.-H.Y.); (W.-J.C.); (K.-F.H.)
- Correspondence: (J.-R.L.); (Y.-H.C.); Tel.: +886-2-3366-6011 (J.-R.L.); +886-3-931-7712 (Y.-H.C.)
| |
Collapse
|
6
|
Quintero M, Blandón LM, Vidal OM, Guzman JD, Gómez-Marín JE, Patiño AD, Molina DA, Puerto-Castro GM, Gómez-León J. In vitro biological activity of extracts from marine bacteria cultures against Toxoplasma gondii and Mycobacterium tuberculosis. J Appl Microbiol 2021; 132:2705-2720. [PMID: 34856041 DOI: 10.1111/jam.15397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/07/2021] [Accepted: 11/29/2021] [Indexed: 11/29/2022]
Abstract
AIMS To evaluate the biological activity of extracts from cultures of marine bacteria against Toxoplasma gondii and Mycobacterium tuberculosis. METHODS AND RESULTS Ethyl acetate extracts obtained from seven marine bacteria were tested against T. gondii GFP-RH and M. tuberculosis H37Rv. The cytotoxicity on HFF-1 cells was measured by a microplate resazurin fluorescent approach, and the haemolytic activity was determined photometrically. The extracts from Bacillus sp. (INV FIR35 and INV FIR48) affected the tachyzoite viability. The extracts from Bacillus, Pseudoalteromonas, Streptomyces and Micromonospora exhibited effects on infection and proliferation processes of parasite. Bacillus sp. INV FIR48 extract showed an minimum inhibitory concentration value of 50 µg ml-1 against M. tuberculosis H37Rv. All the extracts exhibited relatively low toxicity to HFF-1 cells and the primary culture of erythrocytes, except Bacillus sp. INV FIR35, which decreased cell viability under 20%. Liquid chromatography coupled to mass spectrometry analysis of the most active bacterial extract Bacillus sp. INV FIR48 showed the presence of peptide metabolites related to surfactin. CONCLUSIONS The extract from culture of deep-sea Bacillus sp. INV FIR48 showed anti-T. gondii and anti-tuberculosis (TB) biological activity with low cytotoxicity. In addition, peptide metabolites were detected in the extract. SIGNIFICANCE AND IMPACT OF THE STUDY Toxoplasmosis and TB are among the most prevalent diseases worldwide, and the current treatment drugs exhibit side effects. This study confirm that marine bacteria are on hand sources of anti-infective natural products.
Collapse
Affiliation(s)
- Marynes Quintero
- Marine Bioprospecting Line, Evaluation and Use of Marine and Coastal Resources Program-VAR, Marine and Coastal Research Institute-INVEMAR, Santa Marta, Colombia
| | - Lina M Blandón
- Marine Bioprospecting Line, Evaluation and Use of Marine and Coastal Resources Program-VAR, Marine and Coastal Research Institute-INVEMAR, Santa Marta, Colombia
| | - Oscar M Vidal
- Division of Health Sciences, Medicine Department, Universidad del Norte, Barranquilla, Colombia
| | - Juan D Guzman
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany
| | - Jorge E Gómez-Marín
- GEPAMOL, Center for Biomedical Research, Faculty of Health Sciences, Universidad del Quindío, Armenia, Colombia
| | - Albert D Patiño
- Marine Bioprospecting Line, Evaluation and Use of Marine and Coastal Resources Program-VAR, Marine and Coastal Research Institute-INVEMAR, Santa Marta, Colombia
| | - Diego A Molina
- GEPAMOL, Center for Biomedical Research, Faculty of Health Sciences, Universidad del Quindío, Armenia, Colombia
| | - Gloria M Puerto-Castro
- Red Nacional de Investigación Innovación y Gestión del Conocimiento en Tuberculosis, Instituto Nacional de Salud, Bogotá, Colombia
| | - Javier Gómez-León
- Marine Bioprospecting Line, Evaluation and Use of Marine and Coastal Resources Program-VAR, Marine and Coastal Research Institute-INVEMAR, Santa Marta, Colombia
| |
Collapse
|
7
|
Cheng YH, Horng YB, Chen WJ, Hua KF, Dybus A, Yu YH. Effect of Fermented Products Produced by Bacillus licheniformis on the Growth Performance and Cecal Microbial Community of Broilers under Coccidial Challenge. Animals (Basel) 2021; 11:ani11051245. [PMID: 33925950 PMCID: PMC8146065 DOI: 10.3390/ani11051245] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 11/16/2022] Open
Abstract
This study investigated the effects of fermented products produced by Bacillus licheniformis (fermented products) on the growth performance and cecal microbial community in broilers exposed to coccidial challenge. A total of 108 one-day-old male broiler chicks (Ross 308) were randomly allotted to one of three treatments. Each treatment was distributed into six replicate cages with six birds each. The treatments consisted of a basal diet without treatment (NC), basal diet plus coccidial challenge (PC), and basal diet plus the coccidial challenge and 1 g/kg of fermented products (FP). The results indicated that FP increased the average daily gain of broilers at 21 to 35 days of age compared with the PC group (p < 0.05). The anti-coccidia index in the FP group was elevated compared with the PC group (p < 0.05). Principal coordinate analysis showed significant segregation in bacterial community composition in the cecal digesta among the groups. The genus Lactobacillus was more abundant in the cecal digesta of the FP group compared with the PC group (p < 0.05). There was a positive correlation between the abundance of the genus Lactobacillus in the cecal digesta and growth performance (body weight, average daily gain, and average feed intake). Furthermore, the abundance of the genus Lactobacillus in the cecal digesta was positively associated with the cecal short-chain fatty acid levels (formic acid, acetic acid, propionic acid, butyric acid, and isobutyric acid). These findings suggest that fermented products produced by B. licheniformis can ameliorate the average daily gain of broilers exposed to coccidial challenge. B. licheniformis-fermented product supplementation increases anti-coccidial activity and modulates gut microbiota composition by increasing beneficial microbes and decreasing harmful microbes in broilers under coccidial challenge.
Collapse
Affiliation(s)
- Yeong-Hsiang Cheng
- Department of Biotechnology and Animal Science, National Ilan University, Yilan 26047, Taiwan; (Y.-H.C.); (Y.-B.H.); (W.-J.C.); (K.-F.H.)
| | - Yi-Bing Horng
- Department of Biotechnology and Animal Science, National Ilan University, Yilan 26047, Taiwan; (Y.-H.C.); (Y.-B.H.); (W.-J.C.); (K.-F.H.)
| | - Wei-Jung Chen
- Department of Biotechnology and Animal Science, National Ilan University, Yilan 26047, Taiwan; (Y.-H.C.); (Y.-B.H.); (W.-J.C.); (K.-F.H.)
| | - Kuo-Feng Hua
- Department of Biotechnology and Animal Science, National Ilan University, Yilan 26047, Taiwan; (Y.-H.C.); (Y.-B.H.); (W.-J.C.); (K.-F.H.)
| | - Andrzej Dybus
- Department of Genetics, West Pomeranian University of Technology, 70-310 Szczecin, Poland;
| | - Yu-Hsiang Yu
- Department of Biotechnology and Animal Science, National Ilan University, Yilan 26047, Taiwan; (Y.-H.C.); (Y.-B.H.); (W.-J.C.); (K.-F.H.)
- Correspondence: ; Tel.: +886-3-931-7716
| |
Collapse
|
8
|
Tabassum W, Bhattacharyya S, Varunan SM, Bhattacharyya MK. Febrile temperature causes transcriptional downregulation of Plasmodium falciparum Sirtuins through Hsp90-dependent epigenetic modification. Mol Microbiol 2021; 115:1025-1038. [PMID: 33538363 DOI: 10.1111/mmi.14692] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 01/30/2021] [Accepted: 01/30/2021] [Indexed: 11/28/2022]
Abstract
Sirtuins (PfSIR2A and PfSIR2B) are implicated to play pivotal roles in the silencing of sub-telomeric genes and the maintenance of telomere length in P. falciparum 3D7 strain. Here, we identify the key factors that regulate the cellular abundance and activity of these two histone deacetylases. Our results demonstrate that PfSIR2A and PfSIR2B are transcriptionally downregulated at the mid-ring stage in response to febrile temperature. We found that the molecular chaperone PfHsp90 acts as a repressor of PfSIR2A & B transcription. By virtue of its presence in the PfSIR2A & B promoter proximal regions PfHsp90 helps recruiting H3K9me3, conferring heterochromatic state, and thereby leading to the downregulation of PfSIR2A & B transcription. Such transcriptional downregulation can be reversed by the addition of 17-(allylamino)-17-demethoxygeldanamycin or Radicicol, two potent inhibitors of PfHsp90. The reduced occupancy of PfSir2 at sub-telomeric var promoters leads to the de-repression of var genes. Thus, here we uncover how exposure to febrile temperature, a hallmark of malaria, enables the parasites to manipulate the expression of the two prominent epigenetic modifiers PfSir2A and PfSir2B.
Collapse
Affiliation(s)
- Wahida Tabassum
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Sunanda Bhattacharyya
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Shalu M Varunan
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | | |
Collapse
|
9
|
Biochemical characterization of mono ADP ribosyl transferase activity of human sirtuin SIRT7 and its regulation. Arch Biochem Biophys 2019; 680:108226. [PMID: 31843644 DOI: 10.1016/j.abb.2019.108226] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 01/04/2023]
Abstract
SIRT7, an epigenetic modulator is related to several important cellular processes like aging, genome stability, and metabolism. The mechanistic and regulatory aspect of this enzyme needs to be explored. SIRT7 contains a conserved catalytic core with long flanking N- and C-terminal extensions. We find that the N terminus is involved in substrate binding, thus also in its dual enzyme activity i.e. deacetylation and ADP ribosylation. The C-terminus is not essential for its catalysis. Mutation of certain residues at the active site suggests that mono ADP-ribosylation and deacetylation are two distinct activities of SIRT7. In this study, we also find that the SIRT7 enzyme can specifically transfer a single moiety of ADP ribose on other nuclear proteins, with a preference for NAD+. For this, the ADPr transfer follows the enzymatic reaction mechanism. Nicotinamide and certain metal ions have a significant negative effect on this mono ADP ribosylation process. A comparison of these dual activities suggests SIRT7's preference for the mono ADPr transfer over its deacetylation of H3K18Ac. Mono ADP ribosylation in cells is often linked to different metabolic disease conditions. This kind of modification of transcription factors, p53 and ELK4 by SIRT7 may play a key role in maintaining the tumor phenotype. Thus, SIRT7 becomes an important therapeutic hotspot for drug designing against several diseases. Finally, we can also relate SIRT7 to the DNA repair process through ADP ribosylation of one of its key players, PARP1. Here, SIRT7 positively regulates the PARP1 activity.
Collapse
|
10
|
Monaldi D, Rotili D, Lancelot J, Marek M, Wössner N, Lucidi A, Tomaselli D, Ramos-Morales E, Romier C, Pierce RJ, Mai A, Jung M. Structure–Reactivity Relationships on Substrates and Inhibitors of the Lysine Deacylase Sirtuin 2 from Schistosoma mansoni (SmSirt2). J Med Chem 2019; 62:8733-8759. [DOI: 10.1021/acs.jmedchem.9b00638] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Daria Monaldi
- Institute of Pharmaceutical Sciences, University of Freiburg, Albertstr. 25, 79104 Freiburg, Germany
| | - Dante Rotili
- Dipartimento di Chimica e Tecnologie del Farmaco, “Sapienza” Università di Roma, 00185 Rome, Italy
| | - Julien Lancelot
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR 8204—CIIL—Centre d’Infection et d’Immunité de Lille, 59000 Lille, France
| | - Martin Marek
- Département de Biologie Structurale Intégrative, Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg (UDS), CNRS, INSERM, 67404 Illkirch Cedex, France
| | - Nathalie Wössner
- Institute of Pharmaceutical Sciences, University of Freiburg, Albertstr. 25, 79104 Freiburg, Germany
| | - Alessia Lucidi
- Dipartimento di Chimica e Tecnologie del Farmaco, “Sapienza” Università di Roma, 00185 Rome, Italy
| | - Daniela Tomaselli
- Dipartimento di Chimica e Tecnologie del Farmaco, “Sapienza” Università di Roma, 00185 Rome, Italy
| | - Elizabeth Ramos-Morales
- Département de Biologie Structurale Intégrative, Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg (UDS), CNRS, INSERM, 67404 Illkirch Cedex, France
| | - Christophe Romier
- Département de Biologie Structurale Intégrative, Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg (UDS), CNRS, INSERM, 67404 Illkirch Cedex, France
| | - Raymond J. Pierce
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR 8204—CIIL—Centre d’Infection et d’Immunité de Lille, 59000 Lille, France
| | - Antonello Mai
- Dipartimento di Chimica e Tecnologie del Farmaco, “Sapienza” Università di Roma, 00185 Rome, Italy
| | - Manfred Jung
- Institute of Pharmaceutical Sciences, University of Freiburg, Albertstr. 25, 79104 Freiburg, Germany
| |
Collapse
|
11
|
Pumilacidins from the Octocoral-Associated Bacillus sp. DT001 Display Anti-Proliferative Effects in Plasmodium falciparum. Molecules 2018; 23:molecules23092179. [PMID: 30158478 PMCID: PMC6225264 DOI: 10.3390/molecules23092179] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/24/2018] [Accepted: 08/25/2018] [Indexed: 12/03/2022] Open
Abstract
Chemical examination of the octocoral-associated Bacillus species (sp.) DT001 led to the isolation of pumilacidins A (1) and C (2). We investigated the effect of these compounds on the viability of Plasmodium falciparum and the mechanism of pumilacidin-induced death. The use of inhibitors of protein kinase C (PKC) and phosphoinositide 3-kinase (PI3K) was able to prevent the effects of pumilacidins A and C. The results indicated also that pumilacidins inhibit parasite growth via mitochondrial dysfunction and decreased cytosolic Ca2+.
Collapse
|
12
|
Inhibitors of Trypanosoma cruzi Sir2 related protein 1 as potential drugs against Chagas disease. PLoS Negl Trop Dis 2018; 12:e0006180. [PMID: 29357372 PMCID: PMC5794198 DOI: 10.1371/journal.pntd.0006180] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 02/01/2018] [Accepted: 12/19/2017] [Indexed: 11/26/2022] Open
Abstract
Chagas disease remains one of the most neglected diseases in the world despite being the most important parasitic disease in Latin America. The characteristic chronic manifestation of chagasic cardiomyopathy is the region’s leading cause of heart-related illness, causing significant mortality and morbidity. Due to the limited available therapeutic options, new drugs are urgently needed to control the disease. Sirtuins, also called Silent information regulator 2 (Sir2) proteins have long been suggested as interesting targets to treat different diseases, including parasitic infections. Recent studies on Trypanosoma cruzi sirtuins have hinted at the possibility to exploit these enzymes as a possible drug targets. In the present work, the T. cruzi Sir2 related protein 1 (TcSir2rp1) is genetically validated as a drug target and biochemically characterized for its NAD+-dependent deacetylase activity and its inhibition by the classic sirtuin inhibitor nicotinamide, as well as by bisnaphthalimidopropyl (BNIP) derivatives, a class of parasite sirtuin inhibitors. BNIPs ability to inhibit TcSir2rp1, and anti-parasitic activity against T. cruzi amastigotes in vitro were investigated. The compound BNIP Spermidine (BNIPSpd) (9), was found to be the most potent inhibitor of TcSir2rp1. Moreover, this compound showed altered trypanocidal activity against TcSir2rp1 overexpressing epimastigotes and anti-parasitic activity similar to the reference drug benznidazole against the medically important amastigotes, while having the highest selectivity index amongst the compounds tested. Unfortunately, BNIPSpd failed to treat a mouse model of Chagas disease, possibly due to its pharmacokinetic profile. Medicinal chemistry modifications of the compound, as well as alternative formulations may improve activity and pharmacokinetics in the future. Additionally, an initial TcSIR2rp1 model in complex with p53 peptide substrate was obtained from low resolution X-ray data (3.5 Å) to gain insight into the potential specificity of the interaction with the BNIP compounds. In conclusion, the search for TcSir2rp1 specific inhibitors may represent a valuable strategy for drug discovery against T. cruzi. Trypanosoma cruzi is a protozoan parasite belonging to the Kinetoplastida class responsible for Chagas disease, a neglected tropical illness that affects an estimated 6 to 8 million people in Latin America and some Southern regions of the USA, with another 25 million at risk of acquiring the disease and a death toll of 12,000 every year. Commonly transmitted from the feces of the kissing bug, the disease is characterized by a nearly asymptomatic acute phase but a problematic chronic phase in which 20–30% of individuals develop serious cardiac and/or intestinal problems. The therapies currently in use were introduced more than forty years ago, and there are important concerns about adverse effects and lower effectiveness with disease progression. There is, therefore, an urgent need to find better alternatives. In this study, we evaluate the potential of a Trypanosoma cruzi sirtuin protein as a novel drug target and its inhibition by novel members of a known class of sirtuin compound inhibitors.
Collapse
|
13
|
Kanyal A, Rawat M, Gurung P, Choubey D, Anamika K, Karmodiya K. Genome‐wide survey and phylogenetic analysis of histone acetyltransferases and histone deacetylases of
Plasmodium falciparum. FEBS J 2018; 285:1767-1782. [DOI: 10.1111/febs.14376] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 11/20/2017] [Accepted: 12/22/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Abhishek Kanyal
- Department of Biology Indian Institute of Science Education and Research Pashan, Pune India
| | - Mukul Rawat
- Department of Biology Indian Institute of Science Education and Research Pashan, Pune India
| | - Pratima Gurung
- Department of Biology Indian Institute of Science Education and Research Pashan, Pune India
| | | | | | - Krishanpal Karmodiya
- Department of Biology Indian Institute of Science Education and Research Pashan, Pune India
| |
Collapse
|
14
|
Jiang Y, Liu J, Chen D, Yan L, Zheng W. Sirtuin Inhibition: Strategies, Inhibitors, and Therapeutic Potential. Trends Pharmacol Sci 2017; 38:459-472. [PMID: 28389129 DOI: 10.1016/j.tips.2017.01.009] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 01/24/2017] [Accepted: 01/25/2017] [Indexed: 02/06/2023]
Abstract
The β-NAD+-dependent Nε-acyl-lysine deacylation reaction catalyzed by sirtuin family members has been increasingly demonstrated to be important in regulating multiple crucial cellular processes and has also been proposed to be a therapeutic target for multiple human diseases. Accordingly, its inhibitors have been actively pursued over the past few years. In addition, we have also seen the pharmacological assessment of sirtuin inhibitory compounds, although to a lesser extent. In this review, we first discuss how sirtuin inhibitors were discovered with the use of various approaches. We then follow with a discussion of pharmacological studies using sirtuin inhibitors. Our aim here is to set a stage for developing future superior sirtuin inhibitors and for an expanded effort in exploiting inhibitors to explore and/or validate the therapeutic potential stemming from the inhibition of the sirtuin-catalyzed deacylation reaction.
Collapse
Affiliation(s)
- Yanhong Jiang
- School of Pharmacy, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, PR China
| | - Jiajia Liu
- School of Pharmacy, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, PR China
| | - Di Chen
- School of Pharmacy, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, PR China
| | - Lingling Yan
- School of Pharmacy, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, PR China
| | - Weiping Zheng
- School of Pharmacy, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, PR China.
| |
Collapse
|
15
|
Hailu GS, Robaa D, Forgione M, Sippl W, Rotili D, Mai A. Lysine Deacetylase Inhibitors in Parasites: Past, Present, and Future Perspectives. J Med Chem 2017; 60:4780-4804. [DOI: 10.1021/acs.jmedchem.6b01595] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Gebremedhin S. Hailu
- Dipartimento
di Chimica e Tecnologie del Farmaco “Sapienza” Università di Roma, 00185 Rome, Italy
| | - Dina Robaa
- Institute of Pharmacy, Martin-Luther-Universitat Halle-Wittenberg, Halle, Germany
| | - Mariantonietta Forgione
- Dipartimento
di Chimica e Tecnologie del Farmaco “Sapienza” Università di Roma, 00185 Rome, Italy
- Center
for Life Nano Science@Sapienza, Italian Institute of Technology, Viale Regina Elena 291, 00161 Rome, Italy
| | - Wolfgang Sippl
- Institute of Pharmacy, Martin-Luther-Universitat Halle-Wittenberg, Halle, Germany
| | - Dante Rotili
- Dipartimento
di Chimica e Tecnologie del Farmaco “Sapienza” Università di Roma, 00185 Rome, Italy
| | - Antonello Mai
- Dipartimento
di Chimica e Tecnologie del Farmaco “Sapienza” Università di Roma, 00185 Rome, Italy
- Istituto
Pasteur, Fondazione Cenci-Bolognetti, “Sapienza” Università di Roma, 00185 Rome, Italy
| |
Collapse
|
16
|
Meena KR, Kanwar SS. Lipopeptides as the antifungal and antibacterial agents: applications in food safety and therapeutics. BIOMED RESEARCH INTERNATIONAL 2015; 2015:473050. [PMID: 25632392 PMCID: PMC4303012 DOI: 10.1155/2015/473050] [Citation(s) in RCA: 201] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 09/26/2014] [Accepted: 10/02/2014] [Indexed: 11/17/2022]
Abstract
A lot of crops are destroyed by the phytopathogens such as fungi, bacteria, and yeast leading to economic losses to the farmers. Members of the Bacillus genus are considered as the factories for the production of biologically active molecules that are potential inhibitors of growth of phytopathogens. Plant diseases constitute an emerging threat to global food security. Many of the currently available antimicrobial agents for agriculture are highly toxic and nonbiodegradable and thus cause extended environmental pollution. Moreover, an increasing number of phytopathogens have developed resistance to antimicrobial agents. The lipopeptides have been tried as potent versatile weapons to deal with a variety of phytopathogens. All the three families of Bacillus lipopeptides, namely, Surfactins, Iturins and Fengycins, have been explored for their antagonistic activities towards a wide range of phytopathogens including bacteria, fungi, and oomycetes. Iturin and Fengycin have antifungal activities, while Surfactin has broad range of potent antibacterial activities and this has also been used as larvicidal agent. Interestingly, lipopeptides being the molecules of biological origin are environmentally acceptable.
Collapse
Affiliation(s)
- Khem Raj Meena
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla 171 005, India
| | - Shamsher S. Kanwar
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla 171 005, India
| |
Collapse
|
17
|
Lancelot J, Caby S, Dubois-Abdesselem F, Vanderstraete M, Trolet J, Oliveira G, Bracher F, Jung M, Pierce RJ. Schistosoma mansoni Sirtuins: characterization and potential as chemotherapeutic targets. PLoS Negl Trop Dis 2013; 7:e2428. [PMID: 24069483 PMCID: PMC3772001 DOI: 10.1371/journal.pntd.0002428] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 08/02/2013] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The chemotherapy of schistosomiasis currently depends on the use of a single drug, praziquantel. In order to develop novel chemotherapeutic agents we are investigating enzymes involved in the epigenetic modification of chromatin. Sirtuins are NAD+ dependent lysine deacetylases that are involved in a wide variety of cellular processes including histone deacetylation, and have been demonstrated to be therapeutic targets in various pathologies, including cancer. METHODOLOGY PRINCIPAL FINDINGS In order to determine whether Schistosoma mansoni sirtuins are potential therapeutic targets we first identified and characterized their protein sequences. Five sirtuins (SmSirt) are encoded in the S. mansoni genome and phylogenetic analysis showed that they are orthologues of mammalian Sirt1, Sirt2, Sirt5, Sirt6 and Sirt7. Both SmSirt1 and SmSirt7 have large insertion in the catalytic domain compared to their mammalian orthologues. SmSirt5 is the only mitochondrial sirtuin encoded in the parasite genome (orthologues of Sirt3 and Sirt4 are absent) and transcripts corresponding to at least five splicing isoforms were identified. All five sirtuins are expressed throughout the parasite life-cycle, but with distinct patterns of expression. Sirtuin inhibitors were used to treat both schistosomula and adult worms maintained in culture. Three inhibitors in particular, Sirtinol, Salermide and MS3 induced apoptosis and death of schistosomula, the separation of adult worm pairs, and a reduction in egg laying. Moreover, Salermide treatment led to a marked disruption of the morphology of ovaries and testes. Transcriptional knockdown of SmSirt1 by RNA interference in adult worms led to morphological changes in the ovaries characterized by a marked increase in mature oocytes, reiterating the effects of sirtuin inhibitors and suggesting that SmSirt1 is their principal target. CONCLUSION SIGNIFICANCE Our data demonstrate the potential of schistosome sirtuins as therapeutic targets and validate screening for selective sirtuin inhibitors as a strategy for developing new drugs against schistosomiasis.
Collapse
Affiliation(s)
- Julien Lancelot
- Center for Infection and Immunity of Lille (CIIL), INSERM U1019 – CNRS UMR 8204, Université Lille Nord de France, Institut Pasteur de Lille, Lille, France
| | - Stéphanie Caby
- Center for Infection and Immunity of Lille (CIIL), INSERM U1019 – CNRS UMR 8204, Université Lille Nord de France, Institut Pasteur de Lille, Lille, France
| | - Florence Dubois-Abdesselem
- Center for Infection and Immunity of Lille (CIIL), INSERM U1019 – CNRS UMR 8204, Université Lille Nord de France, Institut Pasteur de Lille, Lille, France
| | - Mathieu Vanderstraete
- Center for Infection and Immunity of Lille (CIIL), INSERM U1019 – CNRS UMR 8204, Université Lille Nord de France, Institut Pasteur de Lille, Lille, France
| | - Jacques Trolet
- Center for Infection and Immunity of Lille (CIIL), INSERM U1019 – CNRS UMR 8204, Université Lille Nord de France, Institut Pasteur de Lille, Lille, France
| | - Guilherme Oliveira
- Genomics and Computational Biology Group, Center for Excellence in Bioinformatics, National Institute of Science and Technology in Tropical Diseases, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil
| | - Franz Bracher
- Department für Pharmazie, Zentrum für Pharmaforschung, Ludwig-Maximilians-Universität, München, Germany
| | - Manfred Jung
- Institut für Pharmazeutische Wissenschaften, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Raymond J. Pierce
- Center for Infection and Immunity of Lille (CIIL), INSERM U1019 – CNRS UMR 8204, Université Lille Nord de France, Institut Pasteur de Lille, Lille, France
- * E-mail:
| |
Collapse
|
18
|
Varunan SM, Tripathi J, Bhattacharyya S, Suhane T, Bhattacharyya MK. Plasmodium falciparum origin recognition complex subunit 1 (PfOrc1) functionally complements Δsir3 mutant of Saccharomyces cerevisiae. Mol Biochem Parasitol 2013; 191:28-35. [PMID: 24018145 DOI: 10.1016/j.molbiopara.2013.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Revised: 08/22/2013] [Accepted: 08/26/2013] [Indexed: 12/26/2022]
Abstract
Telomere position effect efficiently controls silencing of subtelomeric var genes, which are involved in antigenic variation in human malaria parasite Plasmodium falciparum. Although, PfOrc1 has been found to be associated with PfSir2 in the silencing complex, its function in telomere silencing remained uncertain especially due to an apparent lack of BAH domain at its amino-terminal region. Here we report that PfOrc1 possesses a Sir3/Orc1 like silencing activity. Using yeast as a surrogate organism we have shown that PfOrc1 could complement yeast Sir3 activity during telomere silencing in a Sir2 dependent manner. By constructing a series of chimera between PfOrc1 and ScSir3 we have observed that the amino-terminal domain of PfOrc1 harbors silencing activity similar to that present in the amino-terminal domain of ScSir3. We further generated several amino-terminal deletion mutants to dissect out such silencing activity and found that the first seventy amino acids at the amino-terminal domain are dispensable for its activity. Thus our results strongly supports that PfOrc1 may have a role in telomere silencing in this parasite. This finding will help to decipher the mechanism of telomere position effect in P. falciparum.
Collapse
Affiliation(s)
- Shalu M Varunan
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500046, Andhra Pradesh, India
| | | | | | | | | |
Collapse
|
19
|
Vanagas L, Jeffers V, Bogado SS, Dalmasso MC, Sullivan WJ, Angel SO. Toxoplasma histone acetylation remodelers as novel drug targets. Expert Rev Anti Infect Ther 2013. [PMID: 23199404 DOI: 10.1586/eri.12.100] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Toxoplasma gondii is a leading cause of neurological birth defects and a serious opportunistic pathogen. The authors and others have found that Toxoplasma uses a unique nucleosome composition supporting a fine gene regulation together with other factors. Post-translational modifications in histones facilitate the establishment of a global chromatin environment and orchestrate DNA-related biological processes. Histone acetylation is one of the most prominent post-translational modifications influencing gene expression. Histone acetyltransferases and histone deacetylases have been intensively studied as potential drug targets. In particular, histone deacetylase inhibitors have activity against apicomplexan parasites, underscoring their potential as a new class of antiparasitic compounds. In this review, we summarize what is known about Toxoplasma histone acetyltransferases and histone deacetylases, and discuss the inhibitors studied to date. Finally, the authors discuss the distinct possibility that the unique nucleosome composition of Toxoplasma, which harbors a nonconserved H2Bv variant histone, might be targeted in novel therapeutics directed against this parasite.
Collapse
Affiliation(s)
- Laura Vanagas
- Laboratorio de Parasitología Molecular, IIB-INTECH, CONICET-UNSAM, Av. Intendente Marino Km. 8.2, C.C 164, (B7130IIWA), Chascomús, Prov. Buenos Aires, Argentina.
| | | | | | | | | | | |
Collapse
|
20
|
Zheng W. Sirtuins as emerging anti-parasitic targets. Eur J Med Chem 2013; 59:132-40. [DOI: 10.1016/j.ejmech.2012.11.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Revised: 10/16/2012] [Accepted: 11/12/2012] [Indexed: 10/27/2022]
|
21
|
Li B. Telomere components as potential therapeutic targets for treating microbial pathogen infections. Front Oncol 2012; 2:156. [PMID: 23125966 PMCID: PMC3485576 DOI: 10.3389/fonc.2012.00156] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 10/16/2012] [Indexed: 01/12/2023] Open
Abstract
In a number of microbial pathogens that undergoes antigenic variation to evade the host's immune attack, genes encoding surface antigens are located at subtelomeric loci, and recent studies have revealed that telomere components play important roles in regulation of surface antigen expression in several of these pathogens, indicating that telomeres play critical roles in microbial pathogen virulence regulation. Importantly, although telomere protein components and their functions are largely conserved from protozoa to mammals, telomere protein homologs in microbial pathogens and humans have low sequence homology. Therefore, pathogen telomere components are potential drug targets for therapeutic approaches because first, most telomere proteins are essential for pathogens' survival, and second, disruption of pathogens' antigenic variation mechanism would facilitate host's immune system to clear the infection.
Collapse
Affiliation(s)
- Bibo Li
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, Cleveland State University Cleveland, OH, USA
| |
Collapse
|
22
|
Religa AA, Waters AP. Sirtuins of parasitic protozoa: in search of function(s). Mol Biochem Parasitol 2012; 185:71-88. [PMID: 22906508 PMCID: PMC3484402 DOI: 10.1016/j.molbiopara.2012.08.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 08/01/2012] [Accepted: 08/02/2012] [Indexed: 01/09/2023]
Abstract
The SIR2 family of NAD+-dependent protein deacetylases, collectively called sirtuins, has been of central interest due to their proposed roles in life-span regulation and ageing. Sirtuins are one group of environment sensors of a cell interpreting external information and orchestrating internal responses at the sub-cellular level, through participation in gene regulation mechanisms. Remarkably conserved across all kingdoms of life SIR2 proteins in several protozoan parasites appear to have both conserved and intriguing unique functions. This review summarises our current knowledge of the members of the sirtuin families in Apicomplexa, including Plasmodium, and other protozoan parasites such as Trypanosoma and Leishmania. The wide diversity of processes regulated by SIR2 proteins makes them targets worthy of exploitation in anti-parasitic therapies.
Collapse
Affiliation(s)
- Agnieszka A Religa
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK.
| | | |
Collapse
|
23
|
Pierce RJ, Dubois-Abdesselem F, Caby S, Trolet J, Lancelot J, Oger F, Bertheaume N, Roger E. Chromatin regulation in schistosomes and histone modifying enzymes as drug targets. Mem Inst Oswaldo Cruz 2012; 106:794-801. [PMID: 22124550 DOI: 10.1590/s0074-02762011000700003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 07/29/2011] [Indexed: 11/22/2022] Open
Abstract
Only one drug is currently available for the treatment and control of schistosomiasis and the increasing risk of selecting strains of schistosome that are resistant to praziquantel means that the development of new drugs is urgent. With this objective we have chosen to target the enzymes modifying histones and in particular the histone acetyltransferases and histone deacetylases (HDAC). Inhibitors of HDACs (HDACi) are under intense study as potential anti-cancer drugs and act via the induction of cell cycle arrest and/or apoptosis. Schistosomes like other parasites can be considered as similar to tumours in that they maintain an intense metabolic activity and rate of cell division that is outside the control of the host. We have shown that HDACi can induce apoptosis and death of schistosomes maintained in culture and have set up a consortium (Schistosome Epigenetics: Targets, Regulation, New Drugs) funded by the European Commission with the aim of developing inhibitors specific for schistosome histone modifying enzymes as novel lead compounds for drug development.
Collapse
|
24
|
Pan M, Yuan H, Brent M, Ding EC, Marmorstein R. SIRT1 contains N- and C-terminal regions that potentiate deacetylase activity. J Biol Chem 2011; 287:2468-76. [PMID: 22157016 DOI: 10.1074/jbc.m111.285031] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SIRT1 is one of seven mammalian sirtuin (silent information regulator 2-related) proteins that harbor NAD(+)-dependent protein deacetylase activity and is implicated in multiple metabolic and age-associated pathways and disorders. The sirtuin proteins contain a central region of high sequence conservation that is required for catalytic activity, but more variable N- and C-terminal regions have been proposed to mediate protein specific activities. Here we show that the conserved catalytic core domain of SIRT1 has very low catalytic activity toward several known protein substrates, but that regions N- and C-terminal to the catalytic core potentiate catalytic efficiency by between 12- and 45-fold, with the N-terminal domain contributing predominantly to catalytic rate, relatively independent of the nature of the acetyl-lysine protein substrate, and the C-terminal domain contributing significantly to the K(m) for NAD(+). We show that the N- and C-terminal regions stimulate SIRT1 deacetylase activity intramolecularly and that the C-terminal region stably associates with the catalytic core domain to form a SIRT1 holoenzyme. We also demonstrate that the C-terminal region of SIRT1 can influence the inhibitory activity of some sirtuin inhibitors that are known to function through the catalytic core domain. Together, these studies highlight the unique properties of the SIRT1 member of the sirtuin proteins and have implications for the development of SIRT1-specific regulatory molecules.
Collapse
Affiliation(s)
- Min Pan
- Wistar Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|
25
|
Abstract
Parasitic diseases cause significant global morbidity and mortality, particularly in underdeveloped regions of the world. Malaria alone causes ~800000 deaths each year, with children and pregnant women being at highest risk. There is no licensed vaccine available for any human parasitic disease and drug resistance is compromising the efficacy of many available anti-parasitic drugs. This is driving drug discovery research on new agents with novel modes of action. Histone deacetylase (HDAC) inhibitors are being investigated as drugs for a range of diseases, including cancers and infectious diseases such as HIV/AIDS, and several parasitic diseases. This review focuses on the current state of knowledge of HDAC inhibitors targeted to the major human parasitic diseases malaria, schistosomiasis, trypanosomiasis, toxoplasmosis and leishmaniasis. Insights are provided into the unique challenges that will need to be considered if HDAC inhibitors are to be progressed towards clinical development as potential new anti-parasitic drugs.
Collapse
Affiliation(s)
- Katherine T Andrews
- Eskitis Institute for Cell and Molecular Therapies, Griffith University, Nathan, Queensland, Australia.
| | | | | |
Collapse
|
26
|
Liang Z, Shi T, Ouyang S, Li H, Yu K, Zhu W, Luo C, Jiang H. Investigation of the catalytic mechanism of Sir2 enzyme with QM/MM approach: SN1 vs SN2? J Phys Chem B 2011; 114:11927-33. [PMID: 20726530 DOI: 10.1021/jp1054183] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Sir2, the histone deacetylase III family, has been subjected to a wide range of studies because of their crucial roles in DNA repair, longevity, transcriptional silencing, genome stability, apoptosis, and fat mobilization. The enzyme binds NAD(+) and acetyllysine as substrates and generates lysine, 2'-O-acetyl-ADP-ribose, and nicotinamide as products. However, the mechanism of the first step in Sir2 deacetylation reaction from various studies is controversial. To characterize this catalytic mechanism of acetyllysine deacetylation by Sir2, we employed a combined computational approach to carry out molecular modeling, molecular dynamics (MD) simulations, quantum mechanics/molecular mechanics (QM/MM) calculations on catalysis by both yeast Hst2 (homologue of SIR two 2) and bacterial Sir2TM (Sir2 homologue from Thermatoga maritima). Our three-dimensional (3D) model of the complex is composed of Sir2 protein, NAD(+), and acetyllysine (ALY) substrate. A 15-ns MD simulation of the complex revealed that Gln115 and His135 play a determining role in deacetylation. These two residues can act as bases to facilitate the deprotonation of 2'-OH from N-ribose. The result is in great agreement with previous mutagenesis analysis data. QM/MM calculations were further performed to study the mechanism of the first step in deacetylation in the two systems. The predicted potential energy barriers for yHst2 and Sir2TM are 12.0 and 15.7 kcal/mol, respectively. The characteristics of the potential energy surface indicated this reaction belongs to a SN2-like mechanism. These results provide insights into the Sir2 mechanism of nicotinamide inhibition and have important implications for the discovery of effectors against Sir2 enzymes.
Collapse
Affiliation(s)
- Zhongjie Liang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Chakrabarty SP, Balaram H. Reversible binding of zinc in Plasmodium falciparum Sir2: structure and activity of the apoenzyme. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1804:1743-50. [PMID: 20601220 DOI: 10.1016/j.bbapap.2010.06.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 11/07/2009] [Revised: 06/05/2010] [Accepted: 06/08/2010] [Indexed: 12/16/2022]
Abstract
Reversible zinc chelation via thiol groups of cysteines leading to modulation of activity in redox regulated proteins forms a basis for switching on-off of various biochemical processes. Silent information regulator 2 (Sir2), a NAD(+) dependent deacetylase, contains a non-catalytic zinc ion coordinated by thiol groups of cysteines. Using Plasmodium falciparum Sir2 (PfSir2), we have examined the effect of zinc removal on the structure and activity of this enzyme. Our studies show that the enzyme with high affinity for zinc exhibits partial collapse of structure upon removal of the metal ion. Zinc reconstitution of apo PfSir2 led to recovery of both structure and activity highlighting the reversibility of the process.
Collapse
Affiliation(s)
- Subhra Prakash Chakrabarty
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | | |
Collapse
|
28
|
Pontiki E, Hadjipavlou-Litina D. Histone deacetylase inhibitors (HDACIs). Structure--activity relationships: history and new QSAR perspectives. Med Res Rev 2010; 32:1-165. [PMID: 20162725 DOI: 10.1002/med.20200] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Histone deacetylase (HDAC) inhibition is a recent, clinically validated therapeutic strategy for cancer treatment. HDAC inhibitors (HDACIs) block angiogenesis, arrest cell growth, and lead to differentiation and apoptosis in tumor cells. In this article, a survey of published quantitative structure-activity relationships (QSARs) studies are presented and discussed in the hope of identifying the structural determinants for anticancer activity. Secondly a two-dimensional QSAR study was carried out on biological results derived from various types of HDACIs and from different assays using the C-QSAR program of Biobyte. The QSAR analysis presented here is an attempt to organize the knowledge on the HDACIs with the purpose of designing new chemical entities with enhanced inhibitory potencies and to study the mechanism of action of the compounds. This study revealed that lipophilicity is one of the most important determinants of activity. Additionally, steric factors such as the overall molar refractivity (CMR), molar volume (MgVol), the substituent's molar refractivity (MR) (linear or parabola), or the sterimol parameters B(1) and L are important. Electronic parameters indicated as σ(p), are found to be present only in one case.
Collapse
Affiliation(s)
- Eleni Pontiki
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotelian University of Thessaloniki, Thessaloniki 54124, Greece.
| | | |
Collapse
|
29
|
Mair GR, Lasonder E, Garver LS, Franke-Fayard BMD, Carret CK, Wiegant JCAG, Dirks RW, Dimopoulos G, Janse CJ, Waters AP. Universal features of post-transcriptional gene regulation are critical for Plasmodium zygote development. PLoS Pathog 2010; 6:e1000767. [PMID: 20169188 PMCID: PMC2820534 DOI: 10.1371/journal.ppat.1000767] [Citation(s) in RCA: 202] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Accepted: 01/13/2010] [Indexed: 01/21/2023] Open
Abstract
A universal feature of metazoan sexual development is the generation of oocyte P granules that withhold certain mRNA species from translation to provide coding potential for proteins during early post-fertilization development. Stabilisation of translationally quiescent mRNA pools in female Plasmodium gametocytes depends on the RNA helicase DOZI, but the molecular machinery involved in the silencing of transcripts in these protozoans is unknown. Using affinity purification coupled with mass-spectrometric analysis we identify a messenger ribonucleoprotein (mRNP) from Plasmodium berghei gametocytes defined by DOZI and the Sm-like factor CITH (homolog of worm CAR-I and fly Trailer Hitch). This mRNP includes 16 major factors, including proteins with homologies to components of metazoan P granules and archaeal proteins. Containing translationally silent transcripts, this mRNP integrates eIF4E and poly(A)-binding protein but excludes P body RNA degradation factors and translation-initiation promoting eIF4G. Gene deletion mutants of 2 core components of this mRNP (DOZI and CITH) are fertilization-competent, but zygotes fail to develop into ookinetes in a female gametocyte-mutant fashion. Through RNA-immunoprecipitation and global expression profiling of CITH-KO mutants we highlight CITH as a crucial repressor of maternally supplied mRNAs. Our data define Plasmodium P granules as an ancient mRNP whose protein core has remained evolutionarily conserved from single-cell organisms to germ cells of multi-cellular animals and stores translationally silent mRNAs that are critical for early post-fertilization development during the initial stages of mosquito infection. Therefore, translational repression may offer avenues as a target for the generation of transmission blocking strategies and contribute to limiting the spread of malaria. Transmission of malaria relies on ingestion of male and female sexual precursor cells (gametocytes) from the human host by the mosquito vector. Fertilization results in the formation of a diploid zygote that transforms into the ookinete, the motile form of the parasite that is capable of escaping the hostile mosquito midgut environment and truly infecting the mosquito vector. The developmental program of the Plasmodium zygote depends on the availability of mRNA pools transcribed and stored, but not translated, in the female gametocyte. Here we identify the core protein factors that co-operate in the assembly of mRNAs into a translationally silent ribonucleoprotein complex. In the absence of either DOZI or CITH—two key molecules within this complex—gametocytes suffer large scale mRNA de-stabilization that does not affect fertilization but culminates in the abortion of ookinete development soon after zygote formation. We characterize large scale, evolutionarily ancient translational silencing as a principal regulatory element during Plasmodium sexual development.
Collapse
Affiliation(s)
- Gunnar R. Mair
- Leiden Malaria Research Group, Department of Parasitology, Centre for Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
- Instituto de Medicina Molecular, Unidade de Parasitologia Molecular, Lisboa, Portugal
- * E-mail: (GRM); (APW)
| | - Edwin Lasonder
- Centre for Molecular and Biomolecular Informatics, NCMLS, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Lindsey S. Garver
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Blandine M. D. Franke-Fayard
- Leiden Malaria Research Group, Department of Parasitology, Centre for Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Céline K. Carret
- Instituto de Medicina Molecular, Unidade de Parasitologia Molecular, Lisboa, Portugal
| | - Joop C. A. G. Wiegant
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Roeland W. Dirks
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Chris J. Janse
- Leiden Malaria Research Group, Department of Parasitology, Centre for Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Andrew P. Waters
- Leiden Malaria Research Group, Department of Parasitology, Centre for Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
- Division of Infection and Immunity, Faculty of Biomedical Life Sciences, and Wellcome Centre for Molecular Parasitology, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, Scotland, United Kingdom
- * E-mail: (GRM); (APW)
| |
Collapse
|
30
|
Chakrabarty SP, Ramapanicker R, Mishra R, Chandrasekaran S, Balaram H. Development and characterization of lysine based tripeptide analogues as inhibitors of Sir2 activity. Bioorg Med Chem 2009; 17:8060-72. [PMID: 19861237 DOI: 10.1016/j.bmc.2009.10.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2009] [Revised: 10/01/2009] [Accepted: 10/02/2009] [Indexed: 12/28/2022]
Abstract
Sirtuins are NAD(+) dependent deacetylases that modulate various essential cellular functions. Development of peptide based inhibitors of Sir2s would prove useful both as pharmaceutical agents and as effectors by which downstream cellular alterations can be monitored. Click chemistry that utilizes Huisgen's 1,3-dipolar cycloaddition permits attachment of novel modifications onto the side chain of lysine. Herein, we report the synthesis of peptide analogues prepared using click reactions on Nepsilon-propargyloxycarbonyl protected lysine residues and their characterization as inhibitors of Plasmodiumfalciparum Sir2 activity. The peptide based inhibitors exhibited parabolic competitive inhibition with respect to acetylated-peptide substrate and parabolic non-competitive inhibition with NAD(+) supporting the formation of EI(2) and E.NAD(+).I(2) complexes. Cross-competition inhibition analysis with the non-competitive inhibitor nicotinamide (NAM) ruled out the possibility of the NAM-binding site being the second inhibitor binding site, suggesting the presence of a unique alternate pocket accommodating the inhibitor. One of these compounds was also found to be a potent inhibitor of the intraerythrocytic growth of P.falciparum with 50% inhibitory concentration in the micromolar range.
Collapse
Affiliation(s)
- Subhra Prakash Chakrabarty
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | | | | | | | | |
Collapse
|
31
|
Sanders BD, Jackson B, Brent M, Taylor AM, Schreiber SL, Howitz K, Marmorstein R. Identification and characterization of novel sirtuin inhibitor scaffolds. Bioorg Med Chem 2009; 17:7031-41. [PMID: 19734050 PMCID: PMC2929362 DOI: 10.1016/j.bmc.2009.07.073] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Revised: 07/23/2009] [Accepted: 07/26/2009] [Indexed: 12/31/2022]
Abstract
The sirtuin proteins are broadly conserved NAD(+)-dependent deacetylases that are implicated in diverse biological processes including DNA recombination and repair, transcriptional silencing, longevity, apoptosis, axonal protection, insulin signaling, and fat mobilization. Because of these associations, the identification of small molecule sirtuin modulators has been of significant interest. Here we report on high throughput screening against the yeast sirtuin, Hst2, leading to the identification of four unique inhibitor scaffolds that also inhibit the human sirtuins, SIRT1-3, and are able to inhibit telomeric silencing of yeast Sir2 in vivo. The identified inhibitor scaffolds range in potency from IC(50) values of 6.5-130 microM against Hst2. Each of the inhibitor scaffolds binds reversibly to the enzyme, and kinetic analysis reveals that each of the inhibitors is non-competitive with respect to both acetyl-lysine and NAD(+) binding. Limited SAR analysis of the scaffolds also identifies which functional groups may be important for inhibition. These sirtuin inhibitors are low molecular weight and well-suited for lead molecule optimization, making them useful chemical probes to study the mechanism and biological roles of sirtuins and potential starting points for optimization into therapeutics.
Collapse
Affiliation(s)
- Brandi D. Sanders
- The Wistar Institute, University of Pennsylvania, Philadelphia, PA, 19104 USA
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104 USA
| | - Brittany Jackson
- The Wistar Institute, University of Pennsylvania, Philadelphia, PA, 19104 USA
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104 USA
| | - Michael Brent
- The Wistar Institute, University of Pennsylvania, Philadelphia, PA, 19104 USA
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104 USA
| | - Alexander M. Taylor
- Howard Hughes Medical Institute, Broad Institute of Harvard and MIT, Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138
| | - Stuart L. Schreiber
- Howard Hughes Medical Institute, Broad Institute of Harvard and MIT, Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138
| | - Konrad Howitz
- ENZO Life Sciences, Inc., 5120 Butler Pike Plymouth Meeting, PA 19462
| | - Ronen Marmorstein
- The Wistar Institute, University of Pennsylvania, Philadelphia, PA, 19104 USA
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104 USA
| |
Collapse
|
32
|
Sanders BD, Jackson B, Marmorstein R. Structural basis for sirtuin function: what we know and what we don't. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1804:1604-16. [PMID: 19766737 DOI: 10.1016/j.bbapap.2009.09.009] [Citation(s) in RCA: 170] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Revised: 08/26/2009] [Accepted: 09/10/2009] [Indexed: 12/18/2022]
Abstract
The sirtuin (silent information regulator 2) proteins are NAD(+)-dependent deacetylases that are implicated in diverse biological processes including DNA regulation, metabolism, and longevity. Homologues of the prototypic yeast Sir2p have been identified in all three kingdoms of life, and while bacteria and archaea typically contain one to two sirtuins, eukaryotic organisms contain multiple members. Sirtuins are regulated in part by the cellular concentrations of the noncompetitive inhibitor, nicotinamide, and several synthetic modulators of these enzymes have been identified. The x-ray crystal structures of several sirtuin proteins in various liganded forms have been determined. This wealth of structural information, together with related biochemical studies, have provided important insights into the catalytic mechanism, substrate specificity, and inhibitory mechanism of sirtuin proteins. Implications for future structural studies to address outstanding questions in the field are also discussed.
Collapse
Affiliation(s)
- Brandi D Sanders
- The Wistar Institute and Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
33
|
Patel V, Mazitschek R, Coleman B, Nguyen C, Urgaonkar S, Cortese J, Barker RH, Greenberg E, Tang W, Bradner JE, Schreiber SL, Duraisingh MT, Wirth DF, Clardy J. Identification and characterization of small molecule inhibitors of a class I histone deacetylase from Plasmodium falciparum. J Med Chem 2009; 52:2185-7. [PMID: 19317450 PMCID: PMC2669731 DOI: 10.1021/jm801654y] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
A library of approximately 2000 small molecules biased toward inhibition of histone deacetylases was assayed for antimalarial activity in a high-throughput P. falciparum viability assay. Active compounds were cross-analyzed for induction of histone hyperacetylation in a human myeloma cell line to identify HDAC inhibitors with selectivity for P. falciparum over the human host. To verify on-target selectivity, pfHDAC-1 was expressed and purified and a biochemical assay for pfHDAC-1 activity was established.
Collapse
Affiliation(s)
- Vishal Patel
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Smith BC, Hallows WC, Denu JM. Mechanisms and molecular probes of sirtuins. CHEMISTRY & BIOLOGY 2008; 15:1002-13. [PMID: 18940661 PMCID: PMC2626554 DOI: 10.1016/j.chembiol.2008.09.009] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Revised: 09/08/2008] [Accepted: 09/17/2008] [Indexed: 12/12/2022]
Abstract
Sirtuins are critical regulators of many cellular processes, including insulin secretion, the cell cycle, and apoptosis. Sirtuins are associated with a variety of age-associated diseases such as type II diabetes, obesity, and Alzheimer's disease. A thorough understanding of sirtuin chemical mechanisms will aid toward developing novel therapeutics that regulate metabolic disorders and combat associated diseases. In this review, we discuss the unique deacetylase mechanism of sirtuins and how this information might be employed to develop inhibitors and other molecular probes for therapeutic and basic research applications. We also cover physiological regulation of sirtuin activity and how these modes of regulation may be exploited to manipulate sirtuin activity in live cells. Development of molecular probes and drugs that specifically target sirtuins will further understanding of sirtuin biology and potentially afford new treatments of several human diseases.
Collapse
Affiliation(s)
- Brian C. Smith
- Department of Biomolecular Chemistry; University of Wisconsin, Medical School; Madison, WI 53706; USA
| | - William C. Hallows
- Department of Biomolecular Chemistry; University of Wisconsin, Medical School; Madison, WI 53706; USA
| | - John M. Denu
- Department of Biomolecular Chemistry; University of Wisconsin, Medical School; Madison, WI 53706; USA
| |
Collapse
|
35
|
French JB, Cen Y, Sauve AA. Plasmodium falciparum Sir2 is an NAD+-dependent deacetylase and an acetyllysine-dependent and acetyllysine-independent NAD+ glycohydrolase. Biochemistry 2008; 47:10227-39. [PMID: 18729382 DOI: 10.1021/bi800767t] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Sirtuins are NAD (+)-dependent enzymes that deacetylate a variety of cellular proteins and in some cases catalyze protein ADP-ribosyl transfer. The catalytic mechanism of deacetylation is proposed to involve an ADPR-peptidylimidate, whereas the mechanism of ADP-ribosyl transfer to proteins is undetermined. Herein we characterize a Plasmodium falciparum sirtuin that catalyzes deacetylation of histone peptide sequences. Interestingly, the enzyme can also hydrolyze NAD (+). Two mechanisms of hydrolysis were identified and characterized. One is independent of acetyllysine substrate and produces alpha-stereochemistry as established by reaction of methanol which forms alpha-1- O-methyl-ADPR. This reaction is insensitive to nicotinamide inhibition. The second solvolytic mechanism is dependent on acetylated peptide and is proposed to involve the imidate to generate beta-stereochemistry. Stereochemistry was established by isolation of beta-1- O-methyl-ADPR when methanol was added as a cosolvent. This solvolytic reaction was inhibited by nicotinamide, suggesting that nicotinamide and solvent compete for the imidate. These findings establish new reactions of wildtype sirtuins and suggest possible mechanisms for ADP-ribosylation to proteins. These findings also illustrate the potential utility of nicotinamide as a probe for mechanisms of sirtuin-catalyzed ADP-ribosyl transfer.
Collapse
Affiliation(s)
- Jarrod B French
- Department of Pharmacology, Weill Cornell College of Medicine, 1300 York Avenue LC216, New York, New York 10065, USA
| | | | | |
Collapse
|