1
|
Chou SE, Kalel VC, Erdmann R. Biochemical Fractionation of Trypanosomes for the Analysis of Glycosomal Protein Import Defects. Methods Mol Biol 2023; 2643:445-453. [PMID: 36952205 DOI: 10.1007/978-1-0716-3048-8_32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Insect-transmitted trypanosomatid parasite infections cause life-threatening neglected tropical diseases (NTDs), including African sleeping sickness, Chagas disease and leishmaniasis. In these parasites, glycosomes are unique organelles that are essential for the parasite survival. Proper biogenesis of glycosomes is crucial to ensure correct compartmentation of the glycosomal metabolism. Genetic or chemical disruption of the glycosome biogenesis leads to a mislocalization of the glycosomal enzymes into the cytosol, which results in toxicity to the parasites. Here, we describe a detailed protocol for biochemical fractionation of Trypanosoma brucei parasites to detect mislocalization of glycosomal proteins to the cytosol. This approach utilizes increasing concentrations of digitonin that first permeabilizes the plasma membrane, followed by permeabilization of other organelles, depending on their cholesterol content. Fractionated samples can be further analyzed using immunoblotting for specific marker proteins or quantified by the specific enzyme activities.
Collapse
Affiliation(s)
- Shih-En Chou
- Institute for Biochemistry and Pathobiochemistry Department of Systems Biochemistry, Faculty of Medicine, Ruhr University of Bochum, Bochum, Germany
| | - Vishal C Kalel
- Institute for Biochemistry and Pathobiochemistry Department of Systems Biochemistry, Faculty of Medicine, Ruhr University of Bochum, Bochum, Germany.
| | - Ralf Erdmann
- Institute for Biochemistry and Pathobiochemistry Department of Systems Biochemistry, Faculty of Medicine, Ruhr University of Bochum, Bochum, Germany.
| |
Collapse
|
2
|
Pex7 selectively imports PTS2 target proteins to peroxisomes and is required for anthracnose disease development in Colletotrichum scovillei. Fungal Genet Biol 2021; 157:103636. [PMID: 34742890 DOI: 10.1016/j.fgb.2021.103636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 10/29/2021] [Accepted: 10/29/2021] [Indexed: 11/22/2022]
Abstract
Pex7 is a shuttling receptor that imports matrix proteins with a type 2 peroxisomal targeting signal (PTS2) to peroxisomes. The Pex7-mediated PTS2 protein import contributes to crucial metabolic processes such as the fatty acid β-oxidation and glucose metabolism in a number of fungi, but cellular roles of Pex7 between the import of PTS2 target proteins and metabolic processes have not been fully understood. In this study, we investigated the functional roles of CsPex7, a homolog of the yeast Pex7, by targeted gene deletion in the pepper anthracnose fungus Colletotrichum scovillei. CsPex7 was required for carbon source utilization, scavenging of reactive oxygen species, conidial production, and disease development in C. scovillei. The expression of fluorescently tagged PTS2 signal of hexokinases and 3-ketoacyl-CoA thiolases showed that peroxisomal localization of the hexokinase CsGlk1 PTS2 is dependent on CsPex7, but those of the 3-ketoacyl-CoA thiolases are independent on CsPex7. In addition, GFP-tagged CsPex7 proteins were intensely localized to the peroxisomes on glucose-containing media, indicating a role of CsPex7 in glucose utilization. Collectively, these findings indicate that CsPex7 selectively recognizes specific PTS2 signal for import of PTS2-containing proteins to peroxisomes, thereby mediating peroxisomal targeting efficiency of PTS2-containing proteins in C. scovillei. On pepper fruits, the ΔCspex7 mutant exhibited significantly reduced virulence, in which excessive accumulation of hydrogen peroxide was observed in the pepper cells. We think the reduced virulence results from the abnormality in hydrogen peroxide metabolism of the ΔCspex7 mutant. Our findings provide insight into the cellular roles of CsPex7 in PTS2 protein import system.
Collapse
|
3
|
Zhang K, Beverley SM. Mannogen-ing Central Carbon Metabolism by Leishmania. Trends Parasitol 2019; 35:947-949. [PMID: 31662278 DOI: 10.1016/j.pt.2019.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 01/28/2023]
Abstract
Leishmania parasites synthesize mannogens, a unique type of storage carbohydrate, from finely tuned interactions between synthesis and degradation by a family of mannosyltransferase/phosphorylases (MTPs) newly discovered by Sernee et al. The crucial roles of mannogen in regulating central carbon metabolism and in vivo virulence suggest the potential of MTPs as promising drug targets.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Stephen M Beverley
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO 63110, USA.
| |
Collapse
|
4
|
Banerjee H, Rachubinski RA. Involvement of SNARE protein Ykt6 in glycosome biogenesis in Trypanosoma brucei. Mol Biochem Parasitol 2017; 218:28-37. [PMID: 29107734 DOI: 10.1016/j.molbiopara.2017.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 10/02/2017] [Accepted: 10/21/2017] [Indexed: 11/30/2022]
Abstract
The kinetoplastid parasites Trypanosoma and Leishmania are etiologic agents of diseases like African sleeping sickness, Chagas and leishmaniasis that inflict many tropical and subtropical parts of the world. These parasites are distinctive in that they compartmentalize most of the usually cytosolic enzymes of the glycolytic pathway within a peroxisome-like organelle called the glycosome. Functional glycosomes are essential in both the procyclic and bloodstream forms of trypanosomatid parasites, and mislocalization of glycosomal enzymes to the cytosol is fatal for the parasite. The life cycle of these parasites is intimately linked to their efficient protein and vesicular trafficking machinery that helps them in immune evasion, host-pathogen interaction and organelle biogenesis and integrity. Soluble N-ethylmaleimide sensitive factor attachment protein receptor (SNARE) proteins play important roles in vesicular trafficking and mediate a wide range of protein-protein interactions in eukaryotes. We show here that the SNARE protein Ykt6 is necessary for glycosome biogenesis and function in Trypanosoma brucei. RNAi-mediated depletion of Ykt6 in both the procyclic and bloodstream forms of T. brucei leads to mislocalization of glycosomal matrix proteins to the cytosol, pronounced reduction in glycosome number, and cell death. GFP-tagged Ykt6 appears as punctate structures in the T. brucei cell and colocalizes in part to glycosomes. Our results constitute the first demonstration of a role for SNARE proteins in the biogenesis of peroxisomal organelles.
Collapse
Affiliation(s)
- Hiren Banerjee
- Department of Cell Biology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Richard A Rachubinski
- Department of Cell Biology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada.
| |
Collapse
|
5
|
Cull B, Prado Godinho JL, Fernandes Rodrigues JC, Frank B, Schurigt U, Williams RA, Coombs GH, Mottram JC. Glycosome turnover in Leishmania major is mediated by autophagy. Autophagy 2015; 10:2143-57. [PMID: 25484087 PMCID: PMC4502677 DOI: 10.4161/auto.36438] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Autophagy is a central process behind the cellular remodeling that occurs during differentiation of Leishmania, yet the cargo of the protozoan parasite's autophagosome is unknown. We have identified glycosomes, peroxisome-like organelles that uniquely compartmentalize glycolytic and other metabolic enzymes in Leishmania and other kinetoplastid parasitic protozoa, as autophagosome cargo. It has been proposed that the number of glycosomes and their content change during the Leishmania life cycle as a key adaptation to the different environments encountered. Quantification of RFP-SQL-labeled glycosomes showed that promastigotes of L. major possess ~20 glycosomes per cell, whereas amastigotes contain ~10. Glycosome numbers were significantly greater in promastigotes and amastigotes of autophagy-defective L. major Δatg5 mutants, implicating autophagy in glycosome homeostasis and providing a partial explanation for the previously observed growth and virulence defects of these mutants. Use of GFP-ATG8 to label autophagosomes showed glycosomes to be cargo in ~15% of them; glycosome-containing autophagosomes were trafficked to the lysosome for degradation. The number of autophagosomes increased 10-fold during differentiation, yet the percentage of glycosome-containing autophagosomes remained constant. This indicates that increased turnover of glycosomes was due to an overall increase in autophagy, rather than an upregulation of autophagosomes containing this cargo. Mitophagy of the single mitochondrion was not observed in L. major during normal growth or differentiation; however, mitochondrial remnants resulting from stress-induced fragmentation colocalized with autophagosomes and lysosomes, indicating that autophagy is used to recycle these damaged organelles. These data show that autophagy in Leishmania has a central role not only in maintaining cellular homeostasis and recycling damaged organelles but crucially in the adaptation to environmental change through the turnover of glycosomes.
Collapse
Affiliation(s)
- Benjamin Cull
- a Wellcome Trust Center for Molecular Parasitology; Institute of Infection, Immunity and Inflammation; College of Medical, Veterinary and Life Sciences ; University of Glasgow ; Glasgow , UK
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Hojjat H, Jardim A. The Leishmania donovani peroxin 14 binding domain accommodates a high degeneracy in the pentapeptide motifs present on peroxin 5. Biochim Biophys Acta Gen Subj 2015; 1850:2203-12. [DOI: 10.1016/j.bbagen.2015.07.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Revised: 06/22/2015] [Accepted: 07/21/2015] [Indexed: 12/12/2022]
|
7
|
Kalel VC, Schliebs W, Erdmann R. Identification and functional characterization of Trypanosoma brucei peroxin 16. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:2326-37. [PMID: 26025675 DOI: 10.1016/j.bbamcr.2015.05.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 05/22/2015] [Accepted: 05/24/2015] [Indexed: 12/01/2022]
Abstract
Protozoan parasites of the family Trypanosomatidae infect humans as well as livestock causing devastating diseases like sleeping sickness, Chagas disease, and Leishmaniasis. These parasites compartmentalize glycolytic enzymes within unique organelles, the glycosomes. Glycosomes represent a subclass of peroxisomes and they are essential for the parasite survival. Hence, disruption of glycosome biogenesis is an attractive drug target for these Neglected Tropical Diseases (NTDs). Peroxin 16 (PEX16) plays an essential role in peroxisomal membrane protein targeting and de novo biogenesis of peroxisomes from endoplasmic reticulum (ER). We identified trypanosomal PEX16 based on specific sequence characteristics and demonstrate that it is an integral glycosomal membrane protein of procyclic and bloodstream form trypanosomes. RNAi mediated partial knockdown of Trypanosoma brucei PEX16 in bloodstream form trypanosomes led to severe ATP depletion, motility defects and cell death. Microscopic and biochemical analysis revealed drastic reduction in glycosome number and mislocalization of the glycosomal matrix enzymes to the cytosol. Asymmetry of the localization of the remaining glycosomes was observed with a severe depletion in the posterior part. The results demonstrate that trypanosomal PEX16 is essential for glycosome biogenesis and thereby, provides a potential drug target for sleeping sickness and related diseases.
Collapse
Affiliation(s)
- Vishal C Kalel
- Department of Systems Biochemistry, Institute of Biochemistry and Pathobiochemistry, Faculty of Medicine, Ruhr-University Bochum, Germany
| | - Wolfgang Schliebs
- Department of Systems Biochemistry, Institute of Biochemistry and Pathobiochemistry, Faculty of Medicine, Ruhr-University Bochum, Germany
| | - Ralf Erdmann
- Department of Systems Biochemistry, Institute of Biochemistry and Pathobiochemistry, Faculty of Medicine, Ruhr-University Bochum, Germany.
| |
Collapse
|
8
|
Brown RWB, Collingridge PW, Gull K, Rigden DJ, Ginger ML. Evidence for loss of a partial flagellar glycolytic pathway during trypanosomatid evolution. PLoS One 2014; 9:e103026. [PMID: 25050549 PMCID: PMC4106842 DOI: 10.1371/journal.pone.0103026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 06/27/2014] [Indexed: 11/18/2022] Open
Abstract
Classically viewed as a cytosolic pathway, glycolysis is increasingly recognized as a metabolic pathway exhibiting surprisingly wide-ranging variations in compartmentalization within eukaryotic cells. Trypanosomatid parasites provide an extreme view of glycolytic enzyme compartmentalization as several glycolytic enzymes are found exclusively in peroxisomes. Here, we characterize Trypanosoma brucei flagellar proteins resembling glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and phosphoglycerate kinase (PGK): we show the latter associates with the axoneme and the former is a novel paraflagellar rod component. The paraflagellar rod is an essential extra-axonemal structure in trypanosomes and related protists, providing a platform into which metabolic activities can be built. Yet, bioinformatics interrogation and structural modelling indicate neither the trypanosome PGK-like nor the GAPDH-like protein is catalytically active. Orthologs are present in a free-living ancestor of the trypanosomatids, Bodo saltans: the PGK-like protein from B. saltans also lacks key catalytic residues, but its GAPDH-like protein is predicted to be catalytically competent. We discuss the likelihood that the trypanosome GAPDH-like and PGK-like proteins constitute molecular evidence for evolutionary loss of a flagellar glycolytic pathway, either as a consequence of niche adaptation or the re-localization of glycolytic enzymes to peroxisomes and the extensive changes to glycolytic flux regulation that accompanied this re-localization. Evidence indicating loss of localized ATP provision via glycolytic enzymes therefore provides a novel contribution to an emerging theme of hidden diversity with respect to compartmentalization of the ubiquitous glycolytic pathway in eukaryotes. A possibility that trypanosome GAPDH-like protein additionally represents a degenerate example of a moonlighting protein is also discussed.
Collapse
Affiliation(s)
- Robert W. B. Brown
- Faculty of Health and Medicine, Division of Biomedical and Life Sciences, Lancaster University, Lancaster, United Kingdom
| | | | - Keith Gull
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Daniel J. Rigden
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Michael L. Ginger
- Faculty of Health and Medicine, Division of Biomedical and Life Sciences, Lancaster University, Lancaster, United Kingdom
- * E-mail:
| |
Collapse
|
9
|
Pieuchot L, Jedd G. Peroxisome Assembly and Functional Diversity in Eukaryotic Microorganisms. Annu Rev Microbiol 2012; 66:237-63. [DOI: 10.1146/annurev-micro-092611-150126] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Laurent Pieuchot
- Temasek Life Sciences Laboratory and Department of Biological Sciences, National University of Singapore, 117604 Singapore; ,
| | - Gregory Jedd
- Temasek Life Sciences Laboratory and Department of Biological Sciences, National University of Singapore, 117604 Singapore; ,
| |
Collapse
|
10
|
Coley AF, Dodson HC, Morris MT, Morris JC. Glycolysis in the african trypanosome: targeting enzymes and their subcellular compartments for therapeutic development. Mol Biol Int 2011; 2011:123702. [PMID: 22091393 PMCID: PMC3195984 DOI: 10.4061/2011/123702] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Accepted: 02/16/2011] [Indexed: 12/16/2022] Open
Abstract
Subspecies of the African trypanosome, Trypanosoma brucei, which cause human African trypanosomiasis, are transmitted by the tsetse fly, with transmission-essential lifecycle stages occurring in both the insect vector and human host. During infection of the human host, the parasite is limited to using glycolysis of host sugar for ATP production. This dependence on glucose breakdown presents a series of targets for potential therapeutic development, many of which have been explored and validated as therapeutic targets experimentally. These include enzymes directly involved in glucose metabolism (e.g., the trypanosome hexokinases), as well as cellular components required for development and maintenance of the essential subcellular compartments that house the major part of the pathway, the glycosomes.
Collapse
Affiliation(s)
- April F Coley
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA
| | | | | | | |
Collapse
|
11
|
Abstract
SUMMARYEnzymes moonlight in a non-enzymatic capacity in a diverse variety of cellular processes. The discovery of these non-enzymatic functions is generally unexpected, and moonlighting enzymes are known in both prokaryotes and eukaryotes. Importantly, this unexpected multi-functionality indicates that caution might be needed on some occasions in interpreting phenotypes that result from the deletion or gene-silencing of some enzymes, including some of the best known enzymes from classic intermediary metabolism. Here, we provide an overview of enzyme moonlighting in parasitic protists. Unequivocal and putative examples of moonlighting are discussed, together with the possibility that the unusual biological characteristics of some parasites either limit opportunities for moonlighting to arise or perhaps contribute to the evolution of novel proteins with clear metabolic ancestry.
Collapse
|