1
|
Naik B, Gupta N, Godara P, Srivastava V, Kumar P, Giri R, Prajapati VK, Pandey KC, Prusty D. Structure-based virtual screening approach reveals natural multi-target compounds for the development of antimalarial drugs to combat drug resistance. J Biomol Struct Dyn 2024; 42:7384-7408. [PMID: 37528665 DOI: 10.1080/07391102.2023.2240415] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 07/17/2023] [Indexed: 08/03/2023]
Abstract
Compared to the previous year, there has been an increase of nearly 2 million malaria cases in 2021. The emergence of drug-resistant strains of Plasmodium falciparum, the most deadly malaria parasite, has led to a decline in the effectiveness of existing antimalarial drugs. To address this problem, the present study aimed to identify natural compounds with the potential to inhibit multiple validated antimalarial drug targets. The natural compounds from the Natural Product Activity and Species Source (NPASS) database were screened against ten validated drug targets of Plasmodium falciparum using a structure-based molecular docking method. Twenty compounds, with targets ranging from three to five, were determined as the top hits. The molecular dynamics simulations of the top six complexes (NPC246162 in complex with PfAdSS, PfGDH, and PfNMT; NPC271270 in complex with PfCK, PfGDH, and PfdUTPase) confirmed their stable binding affinity in the dynamic environment. The Tanimoto coefficient and distance matrix score analysis show the structural divergence of all the hit compounds from known antimalarials, indicating minimum chances of cross-resistance. Thus, we propose further investigating these compounds in biochemical and parasite inhibition studies to reveal the real therapeutic potential. If found successful, these compounds may be a new avenue for future drug discovery efforts to combat existing antimalarial drug resistance.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Biswajit Naik
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| | - Nidhi Gupta
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| | - Priya Godara
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| | - Varshita Srivastava
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| | - Prateek Kumar
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, India
| | - Rajanish Giri
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| | - Kailash C Pandey
- Icmr-National Institute of Malaria Research, And Academy of Scientific and Innovative Research (AcSIR-ICMR), India
| | - Dhaneswar Prusty
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| |
Collapse
|
2
|
Glutamate dehydrogenase: a novel candidate to diagnose Plasmodium falciparum through rapid diagnostic test in blood specimen from fever patients. Sci Rep 2020; 10:6307. [PMID: 32286365 PMCID: PMC7156408 DOI: 10.1038/s41598-020-62850-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 03/20/2020] [Indexed: 11/18/2022] Open
Abstract
In recent years, Plasmodium falciparum histidine-rich protein 2 gene deletion has been reported in India. Such isolates are prone to selective transmission and thus form a challenge to case management. As most of the rapid malaria diagnostic tests are based on the detection of HRP2 protein in the blood, we attempted to use Glutamate Dehydrogenase (GDH) as a biomarker for the diagnosis of P. falciparum. Recombinant PfGDH was successfully cloned, expressed and purified using the Ni-NTA approach. Polyclonal antibodies were raised against full-length rPfGDH and its peptides. Antibodies for rPfGDH showed a strong immune response against the recombinant protein. However, antibody showed no affinity towards the peptides, which suggests they failed as antigen. Antibodies for rPfGDH significantly detected the GDH in human blood specimens. This is the first report where P. falciparum GDH was detected in malaria cases from various parts of India. The raised polyclonal antibodies had shown an affinity for PfGDH in quantitative ELISA and are capable to be exploited for RDTs. This research needs further statistical validation on a large number and different sample types from candidates infected with P. falciparum and other species.
Collapse
|
3
|
Using Yeast Synthetic Lethality To Inform Drug Combination for Malaria. Antimicrob Agents Chemother 2018; 62:AAC.01533-17. [PMID: 29358287 PMCID: PMC5913926 DOI: 10.1128/aac.01533-17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 12/30/2017] [Indexed: 11/28/2022] Open
Abstract
Combinatorial chemotherapy is necessary for the treatment of malaria. However, finding a suitable partner drug for a new candidate is challenging. Here we develop an algorithm that identifies all of the gene pairs of Plasmodium falciparum that possess orthologues in yeast that have a synthetic lethal interaction but are absent in humans. This suggests new options for drug combinations, particularly for inhibitors of targets such as P. falciparum calcineurin, cation ATPase 4, or phosphatidylinositol 4-kinase.
Collapse
|
4
|
Seol B, Shin HI, Kim JY, Jeon BY, Kang YJ, Pak JH, Kim TS, Lee HW. Sequence conservation of Plasmodium vivax glutamate dehydrogenase among Korean isolates and its application in seroepidemiology. Malar J 2017; 16:3. [PMID: 28049479 PMCID: PMC5209832 DOI: 10.1186/s12936-016-1653-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 12/15/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Glutamate dehydrogenase of malaria parasites (pGDH) is widely used in rapid diagnostic tests for malaria. Variation in the pGDH gene among Korean isolates of Plasmodium vivax was analysed, and a recombinant pGDH protein was evaluated for use as antigens for the serodiagnosis of vivax malaria. METHODS Genomic DNA was purified from blood samples of 20 patients and the pGDH gene of P. vivax was sequenced. Recombinant protein was prepared to determine the antigenicity of pGDH by enzyme-linked immunosorbent assay (ELISA). RESULTS Partial sequence analysis of the P. vivax pGDH gene from the 20 Korean isolates showed that an open reading frame (ORF) of 1410 nucleotides encoded a deduced protein of 470 amino acids. The amino acid and nucleotide sequences were conserved among all the Korean isolates. This ORF showed 100% homology with P. vivax strain Sal-I (GenBank accession No. XP_001616617.1). The full ORF (amino acids 39-503), excluding the region before the intron, was cloned from isolate P. vivax Bucheon 3 (KJ726751) and subcloned into the expression vector pET28b for transformation into Escherichia coli BL21(DE3)pLysS. The expressed recombinant protein had a molecular mass of approximately 55 kDa and showed 84.8% sensitivity (39/46 cases) and 97.2% specificity (35/36 cases) in an ELISA. The efficacy of recombinant pGDH protein in seroepidemiological studies was also evaluated by ELISA using serum samples collected from 876 inhabitants of Gyodong-myeon, Ganghwa County, Incheon Metropolitan City. Of these samples, 91 (10.39%) showed a positive reaction with recombinant pGDH protein. Among the antibody-positive individuals, 13 (14.29%) had experienced malaria infection during the last 10 years. CONCLUSION The pGDH genes of P. vivax isolates from representative epidemic-prone areas of South Korea are highly conserved. Therefore, pGDH is expected to be a useful antigen in seroepidemiological studies. It was difficult to identify the foci of malaria transmission in Gyodong-myeon based on the patient distribution because of the very low parasitaemia of Korean vivax malaria. However, seroepidemiology with recombinant pGDH protein easily identified regions with the highest incidence of malaria within the study area. Therefore, recombinant pGDH protein may have a useful role in serodiagnosis.
Collapse
Affiliation(s)
- Bomin Seol
- Department of Tropical Medicine and Parasitology, Inha University School of Medicine, Incheon, 22212, South Korea
| | - Hyun-Il Shin
- Division of Malaria and Parasitic Diseases, National Institute of Health, Korea Centers for Disease Control and Prevention, Osong, 363-951, South Korea
| | - Jung-Yeon Kim
- Division of Malaria and Parasitic Diseases, National Institute of Health, Korea Centers for Disease Control and Prevention, Osong, 363-951, South Korea
| | - Bo-Young Jeon
- Department of Biomedical Laboratory Science, School of Public Health, College of Health Sciences, Yonsei University, Wonju, 26493, South Korea
| | - Yoon-Joong Kang
- Department of Biomedical Science, Jungwon University, Goesan, Chungbuk, 367-805, South Korea
| | - Jhang-Ho Pak
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine and Asan Institute for Life Sciences, Seoul, 05505, South Korea
| | - Tong-Soo Kim
- Department of Tropical Medicine and Parasitology, Inha University School of Medicine, Incheon, 22212, South Korea.
| | - Hyeong-Woo Lee
- Department of Biomedical Laboratory Science, School of Public Health, College of Health Sciences, Yonsei University, Wonju, 26493, South Korea.
| |
Collapse
|
5
|
Jacot D, Waller RF, Soldati-Favre D, MacPherson DA, MacRae JI. Apicomplexan Energy Metabolism: Carbon Source Promiscuity and the Quiescence Hyperbole. Trends Parasitol 2015; 32:56-70. [PMID: 26472327 DOI: 10.1016/j.pt.2015.09.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/28/2015] [Accepted: 09/03/2015] [Indexed: 12/17/2022]
Abstract
The nature of energy metabolism in apicomplexan parasites has been closely investigated in the recent years. Studies in Plasmodium spp. and Toxoplasma gondii in particular have revealed that these parasites are able to employ enzymes in non-traditional ways, while utilizing multiple anaplerotic routes into a canonical tricarboxylic acid (TCA) cycle to satisfy their energy requirements. Importantly, some life stages of these parasites previously considered to be metabolically quiescent are, in fact, active and able to adapt their carbon source utilization to survive. We compare energy metabolism across the life cycle of malaria parasites and consider how this varies in other apicomplexans and related organisms, while discussing how this can be exploited for therapeutic intervention in these diseases.
Collapse
Affiliation(s)
- Damien Jacot
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Ross F Waller
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | | - James I MacRae
- The Francis Crick Institute, The Ridgeway, Mill Hill, London NW7 1AA, UK.
| |
Collapse
|
6
|
Huang KY, Chen YYM, Fang YK, Cheng WH, Cheng CC, Chen YC, Wu TE, Ku FM, Chen SC, Lin R, Tang P. Adaptive responses to glucose restriction enhance cell survival, antioxidant capability, and autophagy of the protozoan parasite Trichomonas vaginalis. Biochim Biophys Acta Gen Subj 2014; 1840:53-64. [DOI: 10.1016/j.bbagen.2013.08.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 07/22/2013] [Accepted: 08/13/2013] [Indexed: 10/26/2022]
|
7
|
Bánky D, Iván G, Grolmusz V. Equal opportunity for low-degree network nodes: a PageRank-based method for protein target identification in metabolic graphs. PLoS One 2013; 8:e54204. [PMID: 23382878 PMCID: PMC3558500 DOI: 10.1371/journal.pone.0054204] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 12/11/2012] [Indexed: 11/19/2022] Open
Abstract
Biological network data, such as metabolic-, signaling- or physical interaction graphs of proteins are increasingly available in public repositories for important species. Tools for the quantitative analysis of these networks are being developed today. Protein network-based drug target identification methods usually return protein hubs with large degrees in the networks as potentially important targets. Some known, important protein targets, however, are not hubs at all, and perturbing protein hubs in these networks may have several unwanted physiological effects, due to their interaction with numerous partners. Here, we show a novel method applicable in networks with directed edges (such as metabolic networks) that compensates for the low degree (non-hub) vertices in the network, and identifies important nodes, regardless of their hub properties. Our method computes the PageRank for the nodes of the network, and divides the PageRank by the in-degree (i.e., the number of incoming edges) of the node. This quotient is the same in all nodes in an undirected graph (even for large- and low-degree nodes, that is, for hubs and non-hubs as well), but may differ significantly from node to node in directed graphs. We suggest to assign importance to non-hub nodes with large PageRank/in-degree quotient. Consequently, our method gives high scores to nodes with large PageRank, relative to their degrees: therefore non-hub important nodes can easily be identified in large networks. We demonstrate that these relatively high PageRank scores have biological relevance: the method correctly finds numerous already validated drug targets in distinct organisms (Mycobacterium tuberculosis, Plasmodium falciparum and MRSA Staphylococcus aureus), and consequently, it may suggest new possible protein targets as well. Additionally, our scoring method was not chosen arbitrarily: its value for all nodes of all undirected graphs is constant; therefore its high value captures importance in the directed edge structure of the graph.
Collapse
Affiliation(s)
- Dániel Bánky
- Protein Information Technology Group, Eötvös University, Pázmány Péter stny. 1/C, Budapest, Hungary
- Uratim Ltd., Budapest, Hungary
| | - Gábor Iván
- Protein Information Technology Group, Eötvös University, Pázmány Péter stny. 1/C, Budapest, Hungary
- Uratim Ltd., Budapest, Hungary
| | - Vince Grolmusz
- Protein Information Technology Group, Eötvös University, Pázmány Péter stny. 1/C, Budapest, Hungary
- Uratim Ltd., Budapest, Hungary
- * E-mail:
| |
Collapse
|
8
|
Ludin P, Woodcroft B, Ralph SA, Mäser P. In silico prediction of antimalarial drug target candidates. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2012; 2:191-9. [PMID: 24533280 DOI: 10.1016/j.ijpddr.2012.07.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 06/28/2012] [Accepted: 07/03/2012] [Indexed: 10/28/2022]
Abstract
The need for new antimalarials is persistent due to the emergence of drug resistant parasites. Here we aim to identify new drug targets in Plasmodium falciparum by phylogenomics among the Plasmodium spp. and comparative genomics to Homo sapiens. The proposed target discovery pipeline is largely independent of experimental data and based on the assumption that P. falciparum proteins are likely to be essential if (i) there are no similar proteins in the same proteome and (ii) they are highly conserved across the malaria parasites of mammals. This hypothesis was tested using sequenced Saccharomycetaceae species as a touchstone. Consecutive filters narrowed down the potential target space of P. falciparum to proteins that are likely to be essential, matchless in the human proteome, expressed in the blood stages of the parasite, and amenable to small molecule inhibition. The final set of 40 candidate drug targets was significantly enriched in essential proteins and comprised proven targets (e.g. dihydropteroate synthetase or enzymes of the non-mevalonate pathway), targets currently under investigation (e.g. calcium-dependent protein kinases), and new candidates of potential interest such as phosphomannose isomerase, phosphoenolpyruvate carboxylase, signaling components, and transporters. The targets were prioritized based on druggability indices and on the availability of in vitro assays. Potential inhibitors were inferred from similarity to known targets of other disease systems. The identified candidates from P. falciparum provide insight into biochemical peculiarities and vulnerable points of the malaria parasite and might serve as starting points for rational drug discovery.
Collapse
Affiliation(s)
- Philipp Ludin
- Swiss Tropical and Public Health Institute, 4002 Basel, Switzerland ; University of Basel, 4000 Basel, Switzerland
| | - Ben Woodcroft
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Victoria 3010, Australia
| | - Stuart A Ralph
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Victoria 3010, Australia
| | - Pascal Mäser
- Swiss Tropical and Public Health Institute, 4002 Basel, Switzerland ; University of Basel, 4000 Basel, Switzerland
| |
Collapse
|
9
|
Zocher K, Fritz-Wolf K, Kehr S, Fischer M, Rahlfs S, Becker K. Biochemical and structural characterization of Plasmodium falciparum glutamate dehydrogenase 2. Mol Biochem Parasitol 2012; 183:52-62. [DOI: 10.1016/j.molbiopara.2012.01.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 01/23/2012] [Accepted: 01/31/2012] [Indexed: 02/01/2023]
|
10
|
Storm J, Perner J, Aparicio I, Patzewitz EM, Olszewski K, Llinas M, Engel PC, Müller S. Plasmodium falciparum glutamate dehydrogenase a is dispensable and not a drug target during erythrocytic development. Malar J 2011; 10:193. [PMID: 21756354 PMCID: PMC3163627 DOI: 10.1186/1475-2875-10-193] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Accepted: 07/14/2011] [Indexed: 11/10/2022] Open
Abstract
Background Plasmodium falciparum contains three genes encoding potential glutamate dehydrogenases. The protein encoded by gdha has previously been biochemically and structurally characterized. It was suggested that it is important for the supply of reducing equivalents during intra-erythrocytic development of Plasmodium and, therefore, a suitable drug target. Methods The gene encoding the NADP(H)-dependent GDHa has been disrupted by reverse genetics in P. falciparum and the effect on the antioxidant and metabolic capacities of the resulting mutant parasites was investigated. Results No growth defect under low and elevated oxygen tension, no up- or down-regulation of a number of antioxidant and NADP(H)-generating proteins or mRNAs and no increased levels of GSH were detected in the D10Δgdha parasite lines. Further, the fate of the carbon skeleton of [13C] labelled glutamine was assessed by metabolomic studies, revealing no differences in the labelling of α-ketoglutarate and other TCA pathway intermediates between wild type and mutant parasites. Conclusions First, the data support the conclusion that D10Δgdha parasites are not experiencing enhanced oxidative stress and that GDHa function may not be the provision of NADP(H) for reductive reactions. Second, the results imply that the cytosolic, NADP(H)-dependent GDHa protein is not involved in the oxidative deamination of glutamate but that the protein may play a role in ammonia assimilation as has been described for other NADP(H)-dependent GDH from plants and fungi. The lack of an obvious phenotype in the absence of GDHa may point to a regulatory role of the protein providing glutamate (as nitrogen storage molecule) in situations where the parasites experience a limiting supply of carbon sources and, therefore, under in vitro conditions the enzyme is unlikely to be of significant importance. The data imply that the protein is not a suitable target for future drug development against intra-erythrocytic parasite development.
Collapse
Affiliation(s)
- Janet Storm
- Institute of Infection, Immunity & Inflammation, Wellcome Trust Centre for Molecular Parasitology, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Olszewski KL, Llinás M. Central carbon metabolism of Plasmodium parasites. Mol Biochem Parasitol 2010; 175:95-103. [PMID: 20849882 DOI: 10.1016/j.molbiopara.2010.09.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 09/01/2010] [Accepted: 09/02/2010] [Indexed: 12/22/2022]
Abstract
The central role of metabolic perturbation to the pathology of malaria, the promise of antimetabolites as antimalarial drugs and a basic scientific interest in understanding this fascinating example of highly divergent microbial metabolism has spurred a major and concerted research effort towards elucidating the metabolic network of the Plasmodium parasites. Central carbon metabolism, broadly comprising the flow of carbon from nutrients into biomass, has been a particular focus due to clear and early indications that it plays an essential role in this network. Decades of painstaking efforts have significantly clarified our understanding of these pathways of carbon flux, and this foundational knowledge, coupled with the advent of advanced analytical technologies, have set the stage for the development of a holistic, network-level model of plasmodial carbon metabolism. In this review we summarize the current state of knowledge regarding central carbon metabolism and suggest future avenues of research. We focus primarily on the blood stages of Plasmodium falciparum, the most lethal of the human malaria parasites, but also integrate results from simian, avian and rodent models of malaria that were a major focus of early investigations into plasmodial metabolism.
Collapse
Affiliation(s)
- Kellen L Olszewski
- Department of Molecular Biology & Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | | |
Collapse
|