1
|
Minori K, Gadelha FR, Bonsignore R, Alcántar GM, Fontes JV, Abbehausen C, Brioschi MBC, de Sousa LM, Consonni SR, Casini A, Miguel DC. An organogold compound impairs Leishmania amazonensis amastigotes survival and delays lesion progression in murine cutaneous leishmaniasis: Mechanistic insights. Biochem Pharmacol 2024; 232:116716. [PMID: 39674234 DOI: 10.1016/j.bcp.2024.116716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 12/08/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024]
Abstract
Leishmaniasis is one of the most important neglected diseases, classically characterized by three clinical forms that if left untreated can lead to skin lesions, lifelong scarring, or death depending on the parasite species. Unfortunately, treatment is unsatisfactory and the search for an improved therapy has been a priority. Gold compounds have emerged as promising candidates and among them, Au(I)bis-N-heterocyclic carbene (Au(BzTMX)2) has stood out. We have shown that it alters the plasma membrane permeability of Leishmania amazonensis and L. braziliensis, with superior activity for L. amazonensis. Herein, we moved a step forward towards the elucidation of its mechanism of action in L. amazonensis axenic amastigotes in vitro and in vivo. After 24 h incubation, Au(BzTMX)2 induced changes in safranin O uptake, reflecting the ultrastructural changes observed in mitochondria, especially cristae swelling, and oxygen consumption rates. Besides mitochondrial alterations, plasma membrane blebbing and the formation of multilamellar structures were also observed suggesting an autophagy-like process induction. In vivo, Au(BzTMX)2 was capable of delaying lesion progression, decreasing the total ulcerated area and leading to a marked reduction in the parasite burden of infected BALB/c mice. Taking all into consideration, our results give support to the current knowledge of the importance of gold compounds in therapeutics and open new possibilities for leishmaniasis treatment.
Collapse
Affiliation(s)
- Karen Minori
- Instituto de Biologia, Universidade Estadual de Campinas - UNICAMP, Campinas, São Paulo, Brazil
| | - Fernanda R Gadelha
- Instituto de Biologia, Universidade Estadual de Campinas - UNICAMP, Campinas, São Paulo, Brazil.
| | - Riccardo Bonsignore
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Università degli Studi di Palermo, Viale delle Scienze, Edificio 17, Palermo 90128, Italy.
| | - Guillermo Moreno Alcántar
- Department of Chemistry, Technical University of Munich (TUM), Lichtenbergstraβe 4, 85748 Garching b München, Germany.
| | - Josielle V Fontes
- Instituto de Química, Universidade Estadual de Campinas - UNICAMP, Campinas, São Paulo, Brazil
| | - Camilla Abbehausen
- Instituto de Química, Universidade Estadual de Campinas - UNICAMP, Campinas, São Paulo, Brazil.
| | - Mariana B C Brioschi
- Instituto de Biologia, Universidade Estadual de Campinas - UNICAMP, Campinas, São Paulo, Brazil
| | - Lizandra Maia de Sousa
- Instituto de Biologia, Universidade Estadual de Campinas - UNICAMP, Campinas, São Paulo, Brazil
| | - Sílvio R Consonni
- Instituto de Biologia, Universidade Estadual de Campinas - UNICAMP, Campinas, São Paulo, Brazil.
| | - Angela Casini
- Department of Chemistry, Technical University of Munich (TUM), Lichtenbergstraβe 4, 85748 Garching b München, Germany.
| | - Danilo C Miguel
- Instituto de Biologia, Universidade Estadual de Campinas - UNICAMP, Campinas, São Paulo, Brazil.
| |
Collapse
|
2
|
Oliveira IS, Garcia MSA, Cassani NM, Oliveira ALC, Freitas LCF, Bertolini VKS, Castro J, Clauss G, Honorato J, Gadelha FR, Miguel DC, Jardim ACG, Abbehausen C. Exploring antiviral and antiparasitic activity of gold N-heterocyclic carbenes with thiolate ligands. Dalton Trans 2024. [PMID: 39171417 DOI: 10.1039/d4dt01879f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Gold(I) N-heterocyclic carbenes have been explored for their therapeutic potential against several diseases. Neglected tropical diseases, including leishmaniasis, Chagas disease, and viral infections, such as zika, mayaro, and chikungunya, urgently require new treatment options. The emergent SARS-CoV-2 also demands significant attention. Gold complexes have shown promise as alternative treatments for these conditions. Previously, gold(I)(1,3-bis(mesityl)imidazole-2-ylidene)Cl (AuIMesCl) demonstrated significant leishmanicidal and anti-Chikungunya virus activities. In this study, we synthesized and fully characterized a series of gold(I)(1,3-bis(mesityl)imidazole-2-ylidene)(SR) complexes, where SR includes thiolate donor species such as 1,3-thiazolidine-2-thione, 1,3-benzothiazole-2-thione, 2-mercaptopyrimidine, and 2-thiouracil. These compounds were stable in solution, and ligand exchange reactions with N-acetyl-L-cysteine indicated that complexes with SR ligands are more labile than those with chloride. Although the reactions are rapid, they reach equilibrium at varying molar ratios depending on the SR ligand. The increased lability of these compounds results in higher cytotoxicity to host cells, such as Vero E6 and bone marrow-differentiated macrophages, compared to AuIMesCl. Despite this, the compounds effectively inhibited viral replication, achieving 95.5% inhibition of Zika virus replication at 2 μM with 96% host cell viability. Although active at low concentrations (∼2 μM) against Leishmania (L.) amazonensis and Trypanosoma cruzi, their high cytotoxicity for macrophages confirmed AuIMesCl as a better candidate with a higher selectivity index. This work correlates the coordination chemistry of pyrimidines and thiazolidines with their in vitro biological activities against significant diseases.
Collapse
Affiliation(s)
- Igor S Oliveira
- Institute of Chemistry, University of Campinas, Campinas, São Paulo, Brazil.
| | - Marcus S A Garcia
- Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
| | - Natasha M Cassani
- Laboratory of Antiviral Research (LAPAV), Institute of Biomedical Sciences, Federal University of Uberlândia, Brazil
| | - Ana L C Oliveira
- Laboratory of Antiviral Research (LAPAV), Institute of Biomedical Sciences, Federal University of Uberlândia, Brazil
| | - Lara C F Freitas
- Laboratory of Antiviral Research (LAPAV), Institute of Biomedical Sciences, Federal University of Uberlândia, Brazil
| | | | - Jennyfer Castro
- Institute of Chemistry, University of Campinas, Campinas, São Paulo, Brazil.
| | - Gustavo Clauss
- Institute of Chemistry, University of Campinas, Campinas, São Paulo, Brazil.
| | - João Honorato
- Institute of Chemistry, University of São Paulo, Brazil
| | - Fernanda R Gadelha
- Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
| | - Danilo C Miguel
- Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
| | - Ana C G Jardim
- Laboratory of Antiviral Research (LAPAV), Institute of Biomedical Sciences, Federal University of Uberlândia, Brazil
| | - Camilla Abbehausen
- Institute of Chemistry, University of Campinas, Campinas, São Paulo, Brazil.
| |
Collapse
|
3
|
Jentzsch J, Wunderlich H, Thein M, Bechthold J, Brehm L, Krauss SW, Weiss M, Ersfeld K. Microtubule polyglutamylation is an essential regulator of cytoskeletal integrity in Trypanosoma brucei. J Cell Sci 2024; 137:jcs261740. [PMID: 38205672 DOI: 10.1242/jcs.261740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024] Open
Abstract
Tubulin polyglutamylation, catalysed by members of the tubulin tyrosine ligase-like (TTLL) protein family, is an evolutionarily highly conserved mechanism involved in the regulation of microtubule dynamics and function in eukaryotes. In the protozoan parasite Trypanosoma brucei, the microtubule cytoskeleton is essential for cell motility and maintaining cell shape. In a previous study, we showed that T. brucei TTLL6A and TTLL12B are required to regulate microtubule dynamics at the posterior cell pole. Here, using gene deletion, we show that the polyglutamylase TTLL1 is essential for the integrity of the highly organised microtubule structure at the cell pole, with a phenotype distinct from that observed in TTLL6A- and TTLL12B-depleted cells. Reduced polyglutamylation in TTLL1-deficient cells also leads to increased levels in tubulin tyrosination, providing new evidence for an interplay between the tubulin tyrosination and detyrosination cycle and polyglutamylation. We also show that TTLL1 acts differentially on specific microtubule doublets of the flagellar axoneme, although the absence of TTLL1 appears to have no measurable effect on cell motility.
Collapse
Affiliation(s)
- Jana Jentzsch
- Molecular Parasitology, Department of Biology, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Hannes Wunderlich
- Experimental Physics I, Department of Physics, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Marinus Thein
- Molecular Parasitology, Department of Biology, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Julia Bechthold
- Molecular Parasitology, Department of Biology, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Lucas Brehm
- Molecular Parasitology, Department of Biology, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Sebastian W Krauss
- Experimental Physics I, Department of Physics, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Matthias Weiss
- Experimental Physics I, Department of Physics, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Klaus Ersfeld
- Molecular Parasitology, Department of Biology, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| |
Collapse
|
4
|
Tialiou A, Chin J, Keppler BK, Reithofer MR. Current Developments of N-Heterocyclic Carbene Au(I)/Au(III) Complexes toward Cancer Treatment. Biomedicines 2022; 10:biomedicines10061417. [PMID: 35740438 PMCID: PMC9219884 DOI: 10.3390/biomedicines10061417] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 11/29/2022] Open
Abstract
Since their first discovery, N-heterocyclic carbenes have had a significant impact on organometallic chemistry. Due to their nature as strong σ-donor and π-acceptor ligands, they are exceptionally well suited to stabilize Au(I) and Au(III) complexes in biological environments. Over the last decade, the development of rationally designed NHCAu(I/III) complexes to specifically target DNA has led to a new “gold rush” in bioinorganic chemistry. This review aims to summarize the latest advances of NHCAu(I/III) complexes that are able to interact with DNA. Furthermore, the latest advancements on acyclic diamino carbene gold complexes with anticancer activity are presented as these typically overlooked NHC alternatives offer great additional design possibilities in the toolbox of carbene-stabilized gold complexes for targeted therapy.
Collapse
Affiliation(s)
- Alexia Tialiou
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 42, 1090 Vienna, Austria; (A.T.); (B.K.K.)
- Vienna Doctoral School in Chemistry (DoSChem), University of Vienna, Währinger Str. 42, 1090 Vienna, Austria
| | - Jiamin Chin
- Institute of Inorganic Chemistry—Functional Materials, Faculty of Chemistry, University of Vienna, Währinger Str. 42, 1090 Vienna, Austria
- Correspondence: (J.C.); (M.R.R.)
| | - Bernhard K. Keppler
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 42, 1090 Vienna, Austria; (A.T.); (B.K.K.)
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Währinger Str. 42, 1090 Vienna, Austria
| | - Michael R. Reithofer
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 42, 1090 Vienna, Austria; (A.T.); (B.K.K.)
- Correspondence: (J.C.); (M.R.R.)
| |
Collapse
|
5
|
Novel Cytoskeleton-Associated Proteins in Trypanosoma brucei Are Essential for Cell Morphogenesis and Cytokinesis. Microorganisms 2021; 9:microorganisms9112234. [PMID: 34835360 PMCID: PMC8625193 DOI: 10.3390/microorganisms9112234] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/19/2021] [Accepted: 10/22/2021] [Indexed: 11/24/2022] Open
Abstract
Trypanosome brucei, the causative agent of African sleeping sickness, harbours a highly ordered, subpellicular microtubule cytoskeleton that defines many aspects of morphology, motility and virulence. This array of microtubules is associated with a large number of proteins involved in its regulation. Employing proximity-dependent biotinylation assay (BioID) using the well characterised cytoskeleton-associated protein CAP5.5 as a probe, we identified CAP50 (Tb927.11.2610). This protein colocalises with the subpellicular cytoskeleton microtubules but not with the flagellum. Depletion by RNAi results in defects in cytokinesis, morphology and partial disorganisation of microtubule arrays. Published proteomics data indicate a possible association of CAP50 with two other, yet uncharacterised, cytoskeletal proteins, CAP52 (Tb927.6.5070) and CAP42 (Tb927.4.1300), which were therefore included in our analysis. We show that their depletion causes phenotypes similar to those described for CAP50 and that they are essential for cellular integrity.
Collapse
|
6
|
Scarim CB, de Farias RL, Chiba DE, Chin CM. Insight into Recent Drug Discoveries against Trypanosomatids and Plasmodium spp Parasites: New Metal-based Compounds. Curr Med Chem 2021; 29:2334-2381. [PMID: 34533436 DOI: 10.2174/0929867328666210917114912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 11/22/2022]
Abstract
Scaffolds of metal-based compounds can act as pharmacophore groups in several ligands to treat various diseases, including tropical infectious diseases (TID). In this review article, we investigate the contribution of these moieties to medicinal inorganic chemistry in the last seven years against TID, including American trypanosomiasis (Chagas disease), human African trypanosomiasis (HAT, sleeping sickness), leishmania, and malaria. The most potent metal-based complexes are displayed and highlighted in figures, tables and graphics; according to their pharmacological activities (IC50 > 10µM) against Trypanosomatids and Plasmodium spp parasites. We highlight the current progresses and viewpoints of these metal-based complexes, with a specific focus on drug discovery.
Collapse
Affiliation(s)
- Cauê Benito Scarim
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, 14800-903, Brazil
| | - Renan Lira de Farias
- Sao Paulo State University (UNESP), Institute of Chemistry, 14800-060, Araraquara-SP, Brazil
| | - Diego Eidy Chiba
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, 14800-903, Brazil
| | - Chung Man Chin
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, 14800-903, Brazil
| |
Collapse
|
7
|
Navarro M, Justo RMS, Delgado GYS, Visbal G. Metallodrugs for the Treatment of Trypanosomatid Diseases: Recent Advances and New Insights. Curr Pharm Des 2021; 27:1763-1789. [PMID: 33185155 DOI: 10.2174/1381612826666201113104633] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/23/2020] [Accepted: 08/31/2020] [Indexed: 11/22/2022]
Abstract
Trypanosomatid parasites are responsible for many Neglected Tropical Diseases (NTDs). NTDs are a group of illnesses that prevail in low-income populations, such as in tropical and subtropical areas of Africa, Asia, and the Americas. The three major human diseases caused by trypanosomatids are African trypanosomiasis, Chagas disease and leishmaniasis. There are known drugs for the treatment of these diseases that are used extensively and are affordable; however, the use of these medicines is limited by several drawbacks such as the development of chemo-resistance, side effects such as cardiotoxicity, low selectivity, and others. Therefore, there is a need to develop new chemotherapeutic against these tropical parasitic diseases. Metal-based drugs against NTDs have been discussed over the years as alternative ways to overcome the difficulties presented by approved antiparasitic agents. The study of late transition metal-based drugs as chemotherapeutics is an exciting research field in chemistry, biology, and medicine due to the ability to develop multitarget antiparasitic agents. The evaluation of the late transition metal complexes for the treatment of trypanosomatid diseases is provided here, as well as some insights about their mechanism of action.
Collapse
Affiliation(s)
- Maribel Navarro
- Departamento de Quimica, Instituto de Ciencias Exatas, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
| | - Rodrigo M S Justo
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
| | - Giset Y Sánchez Delgado
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
| | - Gonzalo Visbal
- Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMETRO), Brazil
| |
Collapse
|
8
|
Miyamoto Y, Aggarwal S, Celaje JJA, Ihara S, Ang J, Eremin DB, Land KM, Wrischnik LA, Zhang L, Fokin VV, Eckmann L. Gold(I) Phosphine Derivatives with Improved Selectivity as Topically Active Drug Leads to Overcome 5-Nitroheterocyclic Drug Resistance in Trichomonas vaginalis. J Med Chem 2021; 64:6608-6620. [PMID: 33974434 DOI: 10.1021/acs.jmedchem.0c01926] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Trichomonas vaginalis causes the most common, nonviral sexually transmitted infection. Only metronidazole (Mz) and tinidazole are approved for treating trichomoniasis, yet resistance is a clinical problem. The gold(I) complex, auranofin, is active against T. vaginalis and other protozoa but has significant human toxicity. In a systematic structure-activity exploration, we show here that diversification of gold(I) complexes, particularly as halides with simple C1-C3 trialkyl phosphines or as bistrialkyl phosphine complexes, can markedly improve potency against T. vaginalis and selectivity over human cells compared to that of the existing antirheumatic gold(I) drugs. All gold(I) complexes inhibited the two most abundant isoforms of the presumed target enzyme, thioredoxin reductase, but a subset of compounds were markedly more active against live T. vaginalis than the enzyme, suggesting that alternative targets exist. Furthermore, all tested gold(I) complexes acted independently of Mz and were able to overcome Mz resistance, making them candidates for the treatment of Mz-refractory trichomoniasis.
Collapse
Affiliation(s)
- Yukiko Miyamoto
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Shubhangi Aggarwal
- Department of Chemistry, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California 90089, United States
| | - Jeff Joseph A Celaje
- Department of Chemistry, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California 90089, United States
| | - Sozaburo Ihara
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Jonathan Ang
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Dmitry B Eremin
- Department of Chemistry, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California 90089, United States
| | - Kirkwood M Land
- Department of Biological Sciences, University of the Pacific, Stockton, California 95211, United States
| | - Lisa A Wrischnik
- Department of Biological Sciences, University of the Pacific, Stockton, California 95211, United States
| | - Liangfang Zhang
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Valery V Fokin
- Department of Chemistry, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California 90089, United States
| | - Lars Eckmann
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| |
Collapse
|
9
|
Maheshwari KK, Bandyopadhyay D. Heterocycles in the Treatment of Neglected Tropical Diseases. Curr Med Chem 2021; 28:472-495. [PMID: 32072886 DOI: 10.2174/0929867327666200219141652] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 01/03/2020] [Accepted: 01/25/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Neglected Tropical Diseases (NTDs) affect a huge population of the world and the majority of the victims belong to the poor community of the developing countries. Until now, the World Health Organization (WHO) has identified 20 tropical diseases as NTDs that must be addressed with high priority. However, many heterocyclic scaffolds have demonstrated potent therapeutic activity against several NTDs. OBJECTIVE There are three major objectives: (1) To discuss the causes, symptoms, and current status of all the 20 NTDs; (2) To explore the available heterocyclic drugs, as well as their mechanisms of action (if known), that are being used to treat NTDs; (3) To develop general awareness on NTDs among the medicinal/health research community and beyond. METHODS The 20 NTDs have been discussed according to their alphabetic orders along with the possible heterocyclic remedies. The current status of treatment with an emphasis on the heterocyclic drugs (commercially available and investigational) has been outlined. In addition, a brief discussion of the impacts of NTDs on socio-economic conditions is included. RESULTS NTDs are often difficult to diagnose and the problem is worsened by the unhealthy hygiene, improper awareness, and inadequate healthcare in the developing countries where these diseases primarily affect poor people. The statistics include the duration of suffering, the number of individuals affected, and access to healthcare and medication. The mechanisms of action of various heterocyclic drugs, if reported, have been briefly summarized. CONCLUSION Scientists and pharmaceutical corporations should allocate more resources to reveal the in-depth mechanism of action of many heterocyclic drugs that are currently being used for the treatment of NTDs. Analysis of current heterocyclic compounds and the development of new medications can help in the fight to reduce/remove the devastating effects of NTDs. An opinion-based concise review has been presented. Based on the available literature, this is the first attempt to present all the 20 NTDs and related heterocyclic compounds under the same umbrella.
Collapse
Affiliation(s)
- Kush K Maheshwari
- Department of Chemistry, The University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, Texas 78539, United States
| | - Debasish Bandyopadhyay
- Department of Chemistry, The University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, Texas 78539, United States
| |
Collapse
|
10
|
Al Nasr IS, Jentzsch J, Shaikh A, Singh Shuveksh P, Koko WS, Khan TA, Ahmed K, Schobert R, Ersfeld K, Biersack B. New Pyrano-4H-benzo[g]chromene-5,10-diones with Antiparasitic and Antioxidant Activities. Chem Biodivers 2020; 18:e2000839. [PMID: 33231345 DOI: 10.1002/cbdv.202000839] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 11/23/2020] [Indexed: 11/08/2022]
Abstract
New pyranonaphthoquinone derivatives were synthesized and investigated for their activity against Trypanosoma brucei, Leishmania major, and Toxoplasma gondii parasites. The pentafluorophenyl derivative was efficacious against T. brucei with single digit micromolar EC50 values and against T. gondii with even sub-micromolar values. The 3-chloro-4,5-dimethoxyphenyl derivative showed an activity against amastigotes of Leishmania major parasites comparable to that of amphotericin B. In addition, antioxidant activities were observed for the bromophenyl derivatives, and their redox behavior was studied by cyclovoltammetry. Anti-parasitic and antioxidative activities of the new naphthoquinone derivatives appear uncorrelated.
Collapse
Affiliation(s)
- Ibrahim S Al Nasr
- Department of Biology, College of Science and Arts, Qassim University, Unaizah, 51911, Saudi Arabia.,Department of Science Laboratories, College of Science and Arts, Qassim University, Ar, Rass, 51921, Saudi Arabia
| | - Jana Jentzsch
- Laboratory of Molecular Parasitology, University of Bayreuth, Universitätsstrasse 30, 95440, Bayreuth, Germany
| | - Amin Shaikh
- Department of Chemistry, Abeda Inamdar Senior College, 2390-B, K.B. Hidayatullah Road, Pune, 411001, India
| | - Priti Singh Shuveksh
- Department of Chemistry, Abeda Inamdar Senior College, 2390-B, K.B. Hidayatullah Road, Pune, 411001, India
| | - Waleed S Koko
- Department of Science Laboratories, College of Science and Arts, Qassim University, Ar, Rass, 51921, Saudi Arabia
| | - Tariq A Khan
- Department of Clinical Nutrition, College of Health Sciences, Qassim University, Ar, Rass, 51921, Saudi Arabia
| | - Khursheed Ahmed
- Department of Chemistry, Abeda Inamdar Senior College, 2390-B, K.B. Hidayatullah Road, Pune, 411001, India
| | - Rainer Schobert
- Organic Chemistry 1, University of Bayreuth, Universitätsstrasse 30, 95440, Bayreuth, Germany
| | - Klaus Ersfeld
- Laboratory of Molecular Parasitology, University of Bayreuth, Universitätsstrasse 30, 95440, Bayreuth, Germany
| | - Bernhard Biersack
- Organic Chemistry 1, University of Bayreuth, Universitätsstrasse 30, 95440, Bayreuth, Germany
| |
Collapse
|
11
|
Koko WS, Jentzsch J, Kalie H, Schobert R, Ersfeld K, Al Nasr IS, Khan TA, Biersack B. Evaluation of the antiparasitic activities of imidazol‐2‐ylidene–gold(I) complexes. Arch Pharm (Weinheim) 2020; 353:e1900363. [DOI: 10.1002/ardp.201900363] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/20/2020] [Accepted: 02/25/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Waleed S. Koko
- College of Science and Arts in Ar RassQassim University Ar Rass Saudi Arabia
| | - Jana Jentzsch
- Laboratory of Molecular ParasitologyUniversity of Bayreuth Bayreuth Germany
| | - Hussein Kalie
- Organic Chemistry LaboratoryUniversity of Bayreuth Bayreuth Germany
| | - Rainer Schobert
- Organic Chemistry LaboratoryUniversity of Bayreuth Bayreuth Germany
| | - Klaus Ersfeld
- Laboratory of Molecular ParasitologyUniversity of Bayreuth Bayreuth Germany
| | - Ibrahim S. Al Nasr
- College of Science and Arts in Ar RassQassim University Ar Rass Saudi Arabia
- College of Science and Arts in UnaizahQassim University Unaizah Saudi Arabia
| | - Tariq A. Khan
- College of Applied Health Sciences in Ar RassQassim University Ar Rass Saudi Arabia
| | | |
Collapse
|
12
|
Jentzsch J, Koko WS, Al Nasr IS, Khan TA, Schobert R, Ersfeld K, Biersack B. New Antiparasitic Bis‐Naphthoquinone Derivatives. Chem Biodivers 2020; 17:e1900597. [DOI: 10.1002/cbdv.201900597] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 12/05/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Jana Jentzsch
- Laboratory of Molecular ParasitologyUniversity of Bayreuth Universitätsstrasse 30 95440 Bayreuth Germany
| | - Waleed S. Koko
- College of Science and Arts in Ar RassQassim University King Abdelaziz Road Ar Rass 51921 Saudi Arabia
| | - Ibrahim S. Al Nasr
- College of Science and Arts in Ar RassQassim University King Abdelaziz Road Ar Rass 51921 Saudi Arabia
- College of Science and Arts in UnaizahQassim University Unaizah 51911 Saudi Arabia
| | - Tariq A. Khan
- College of Applied Health Sciences in Ar RassQassim University Ar Rass 51921 Saudi Arabia
| | - Rainer Schobert
- Organic Chemistry LaboratoryUniversity of Bayreuth Universitätsstrasse 30 95440 Bayreuth Germany
| | - Klaus Ersfeld
- Laboratory of Molecular ParasitologyUniversity of Bayreuth Universitätsstrasse 30 95440 Bayreuth Germany
| | - Bernhard Biersack
- Organic Chemistry LaboratoryUniversity of Bayreuth Universitätsstrasse 30 95440 Bayreuth Germany
| |
Collapse
|
13
|
Paucar R, Martín-Escolano R, Moreno-Viguri E, Cirauqui N, Rodrigues CR, Marín C, Sánchez-Moreno M, Pérez-Silanes S, Ravera M, Gabano E. A step towards development of promising trypanocidal agents: Synthesis, characterization and in vitro biological evaluation of ferrocenyl Mannich base-type derivatives. Eur J Med Chem 2019; 163:569-582. [DOI: 10.1016/j.ejmech.2018.12.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 11/29/2018] [Accepted: 12/02/2018] [Indexed: 02/06/2023]
|
14
|
Mora M, Gimeno MC, Visbal R. Recent advances in gold–NHC complexes with biological properties. Chem Soc Rev 2019; 48:447-462. [DOI: 10.1039/c8cs00570b] [Citation(s) in RCA: 204] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This tutorial review covers the recent advances made in the study of gold complexes containing N-heterocyclic carbene ligands with biological properties.
Collapse
Affiliation(s)
- Malka Mora
- Departamento de Ciencias Naturales y Exactas
- Universidad de la Costa
- 080002 Barranquilla
- Colombia
| | - M. Concepción Gimeno
- Departamento de Química Inorgánica
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH)
- CSIC-Universidad de Zaragoza
- 50009 Zaragoza
- Spain
| | - Renso Visbal
- Departamento de Ciencias Naturales y Exactas
- Universidad de la Costa
- 080002 Barranquilla
- Colombia
- Departamento de Gestión Industrial
| |
Collapse
|
15
|
Medicinal Applications of Gold(I/III)-Based Complexes Bearing N-Heterocyclic Carbene and Phosphine Ligands. J Organomet Chem 2018. [DOI: 10.1016/j.jorganchem.2018.04.023] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
16
|
Organometallic compounds in the discovery of new agents against kinetoplastid-caused diseases. Eur J Med Chem 2018; 155:459-482. [PMID: 29908440 DOI: 10.1016/j.ejmech.2018.05.044] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/21/2018] [Accepted: 05/28/2018] [Indexed: 12/16/2022]
Abstract
The development of safe and affordable antiparasitic agents effective against neglected tropical diseases is a big challenge of the drug discovery. The drugs currently employed have limitations such as poor efficacy, drug resistance or side effects. Thus, the search for new promising drugs is more and more crucial. Metal complexes and, in particular, organometallic compounds may expand the list of the drug candidates due to the peculiar attributes that the presence of the metal core add to the organic fragment (e.g., redox and structural features, ability to interact with DNA or protein targets, etc.). To date, most organometallic compounds tested as anti-neglected tropical diseases are based on similarities or activity of the organic ligands against other diseases or parasites and/or consist in modification of existing drugs combining the features of the metal moiety and the organic ligands. This review focuses on recent studies (2012-2017) on organometallic compounds in treating kinetoplastid-caused diseases such as Human African trypanosomiasis, Chagas disease and leishmaniasis. This field of research, however, still lacks exhaustive studies to identify of parasitic targets and quantitative structure-activity relationships for a rational drug design.
Collapse
|