Du F, Xian X, Tang P, Li Y. Catalytic Degradation of Lignin over Sulfonyl-Chloride-Modified Lignin-Based Porous Carbon-Supported Metal Phthalocyanine: Effect of Catalyst Concentrations.
Molecules 2024;
29:347. [PMID:
38257260 PMCID:
PMC10820591 DOI:
10.3390/molecules29020347]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/19/2023] [Accepted: 12/24/2023] [Indexed: 01/24/2024] Open
Abstract
A sulfonyl-chloride-modified lignin-based porous carbon-supported metal phthalocyanine catalyst was prepared and used to replace the traditional Fenton's reagent for lignin degradation. The catalyst underwent a detailed characterization analysis in terms of functional group distributions, surface area, morphological structure, via FT-IR, XPS, BET, and SEM. The catalyst possessed a specific surface area of 638.98 m2/g and a pore volume of 0.291 cm3/g. The prepared catalyst was studied for its ability of oxidative degradation of lignin under different reaction conditions. By optimizing the reaction conditions, a maximum liquid product yield of 38.94% was obtained at 135 °C with 3.5 wt% of catalyst and 15 × 10-2 mol/L H2O2; at the same time, a maximum phenols selectivity of 32.58% was achieved. The compositions and properties of liquid products obtained from lignin degradation using different catalyst concentrations were studied comparatively via GC-MS, FT-IR, 1H-NMR, and EA. Furthermore, the structure changes of solid residues are also discussed.
Collapse