1
|
Mandal S, Erimban S, Banerjee S, Daschakraborty S, Das P. Elucidating the relationship between red fluorescence and structural dynamics of carbon dots dispersed in different solvents. Phys Chem Chem Phys 2023; 25:23645-23657. [PMID: 37609834 DOI: 10.1039/d3cp02498a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
The mechanism of intrinsic fluorescence of carbon dots (CDs), the latest nanomaterial from the carbon family, was supposedly deciphered through multiple theories. However, the much sought-after persistent red emission of CDs as a foreseeable consequence of experiments remains elusive prompting the question of whether tuning of the red emission of CDs is a predictable outcome or a serendipitous coincidence. Herein, we tried to decode the same by exploring Alizarin Red S (ARS)-based red emitting CDs in different solvents with wisely chosen analytical tools. The findings are aptly supported by molecular dynamics studies through an experimental intuition-driven model-building approach. Parallel interception of the CDs with powder X-ray diffraction (pXRD) and photophysical spectroscopic studies revealed an important relationship between the solvent and CDs. Tautomerism, a well-known phenomenon with chemical entities, was found to be operative for CDs that greatly influence the Stokes shift and ultimately the fluorescence outcome. Most importantly, pXRD studies established the turbostratism of the CDs where the well-ordered graphitic structure of CDs gets disrupted with solvent molecules. The extent of such disruption is a function of solvent and CD composition that plays a formidable role in obtaining red fluorescence. Thus, for the first time, we demonstrate that the red emission of CDs is related to its structural integrity and if taken care of could be sustained, a tremendously desirable outcome for relevant applications.
Collapse
Affiliation(s)
- Saptarshi Mandal
- Department of Biomedical Engineering, University of Kentucky, Lexington, 40536, USA
- Department of Chemistry, Indian Institute of Technology Patna, Bihta, 801103, India.
| | - Shakkira Erimban
- Department of Chemistry, Indian Institute of Technology Patna, Bihta, 801103, India.
- Department of Chemistry, The University of Utah, Salt Lake City, Utah 84112-0850, USA
| | - Subhrajeet Banerjee
- Department of Chemistry, Indian Institute of Technology Patna, Bihta, 801103, India.
| | | | - Prolay Das
- Department of Chemistry, Indian Institute of Technology Patna, Bihta, 801103, India.
| |
Collapse
|
2
|
Eizi R, Bastami TR, Mahmoudi V, Ayati A, Babaei H. Facile ultrasound-assisted synthesis of CuFe-Layered double hydroxides/g-C3N4 nanocomposite for alizarin red S sono-sorption. J Taiwan Inst Chem Eng 2023. [DOI: 10.1016/j.jtice.2023.104844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
|
3
|
Xue X, Zhang M, Gong H, Ye L. Recyclable nanoparticles based on a boronic acid-diol complex for the real-time monitoring of imprinting, molecular recognition and copper ion detection. J Mater Chem B 2021; 10:6698-6706. [PMID: 34807213 DOI: 10.1039/d1tb02226a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Molecularly imprinted polymers (MIPs) have now become one of the most remarkable materials in the field of molecular recognition. Although many efforts have been made to study the process and mechanism of molecular imprinting, it has not been possible to monitor the interactions between the template and the growing polymer chains under real-time experimental conditions. The behavior of the template-monomer complex during the whole polymerization process has remained largely unknown. In this work, we introduce a fluorescence technique that allows monitoring of the template-functional monomer complex during an actual imprinting process, as well as the real-time signaling of template binding and dissociation from the imprinted polymer. For the first proof-of-principle, we select Alizarin Red S (ARS) and 4-vinylphenylboronic acid as the template and functional monomer, respectively, to synthesize MIP particles via precipitation polymerization. As the formation of the template-functional monomer complex leads to strong fluorescence emission, it allows the status of the template binding to be monitored throughout the whole reaction process in real time. Using the same fluorescence technique, the kinetics of template binding and dissociation can be studied directly without particle separation. The hydrophilic MIP particles can be used as a scavenger to remove ARS from water. In addition, the MIP particles can be used as a recyclable sensor to detect Cu ions. As the Cu ion forms a stable complex with ARS, it causes ARS to dissociate from the MIP nanoparticles, leading to effective fluorescence quenching. The non-separation analytical method based on fluorescence measurement provides a convenient means to study molecular imprinting reactions and the kinetics of molecular recognition using imprinted polymers. The recyclable nanoparticle sensor allows toxic Cu ions to be detected directly in water in the range of 0.1-100 μM with a recovery of 84-95%.
Collapse
Affiliation(s)
- Xiaoting Xue
- Division of Pure and Applied Biochemistry, Department of Chemistry, Lund University, Box 124, Lund 221 00, Sweden.
| | - Man Zhang
- Division of Pure and Applied Biochemistry, Department of Chemistry, Lund University, Box 124, Lund 221 00, Sweden.
| | - Haiyue Gong
- Division of Pure and Applied Biochemistry, Department of Chemistry, Lund University, Box 124, Lund 221 00, Sweden.
| | - Lei Ye
- Division of Pure and Applied Biochemistry, Department of Chemistry, Lund University, Box 124, Lund 221 00, Sweden.
| |
Collapse
|
4
|
Gul A, Sun J, Ullah R, Munir T, Bai S. Incorporation of Anatase TiO
2
to Highly Porous Silica (BMMs) for Photo‐Degradation of Alizarin Red Dye in Aqueous Solution. ChemistrySelect 2021. [DOI: 10.1002/slct.202100813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Anadil Gul
- Beijing Key Laboratory for Green Catalysis and Separation Department of Environmental and Chemical Engineering Beijing University of Technology Beijing 100124 China
| | - Jihong Sun
- Beijing Key Laboratory for Green Catalysis and Separation Department of Environmental and Chemical Engineering Beijing University of Technology Beijing 100124 China
| | - Raza Ullah
- Beijing Key Laboratory for Green Catalysis and Separation Department of Environmental and Chemical Engineering Beijing University of Technology Beijing 100124 China
| | - Tallat Munir
- Beijing Key Laboratory for Green Catalysis and Separation Department of Environmental and Chemical Engineering Beijing University of Technology Beijing 100124 China
| | - Shiyang Bai
- Beijing Key Laboratory for Green Catalysis and Separation Department of Environmental and Chemical Engineering Beijing University of Technology Beijing 100124 China
| |
Collapse
|
5
|
A trio of quinoline-isoniazid-phthalimide with promising antiplasmodial potential: Synthesis, in-vitro evaluation and heme-polymerization inhibition studies. Bioorg Med Chem 2021; 39:116159. [PMID: 33895706 DOI: 10.1016/j.bmc.2021.116159] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/31/2021] [Accepted: 04/06/2021] [Indexed: 11/21/2022]
Abstract
Quinoline-isoniazid-phthalimide triads have been synthesised to assess their antiplasmodial efficacy and cytotoxicity against chloroquine-resistant W2 strain of P. falciparum and Vero cells, respectively. Most of the synthesized compounds displayed IC50 in lower nM range and appeared to be approximately five to twelve fold more active than chloroquine. Heme-binding studies were also carried out to delineate the mode of action. The promising compounds with IC50s in range of 11-30 nM and selectivity index >2800, may act as promising template for the design of new antiplasmodials.
Collapse
|
6
|
Rani A, Kumar S, Legac J, Adeniyi AA, Awolade P, Singh P, Rosenthal PJ, Kumar V. Design, synthesis, heme binding and density functional theory studies of isoindoline-dione-4-aminoquinolines as potential antiplasmodials. Future Med Chem 2020; 12:193-205. [PMID: 31802710 PMCID: PMC7099627 DOI: 10.4155/fmc-2019-0260] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 11/14/2019] [Indexed: 01/04/2023] Open
Abstract
Aim: WHO Malaria report 2017 estimated 216 million cases of malaria and 445,000 deaths worldwide, with 91% of deaths affecting the African region. Results/methodology: Microwave promoted the synthesis of cycloalkyl amine substituted isoindoline-1,3-dione-4-aminoquinolines was urbanized for evaluating their antiplasmodial activities. Compound with the optimum combination of propyl chain length and hydroxyethyl piperazine proved to be the most potent among the synthesized scaffolds against chloroquine-resistant W2 strain of Plasmodium falciparum with an IC50 value of 0.006 μM. Heme-binding along with density functional theory studies were further carried out in order to delineate the mechanism of action of the most active compound. Conclusion: The synthesized scaffold can act as a therapeutic template for further synthetic modifications toward the search for a new antimalarial agent.
Collapse
Affiliation(s)
- Anu Rani
- Department of Chemistry, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Sumit Kumar
- Department of Chemistry, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Jenny Legac
- Department of Medicine, University of California, San Francisco, CA 94143, USA
| | - Adebayo A Adeniyi
- Department of Pharmaceutical Chemistry, University of KwaZulu-Natal, Durban 4000, South Africa
- Department of Industrial Chemistry, Federal University of Oye-Ekiti, Nigeria
| | - Paul Awolade
- School of Chemistry & Physics, University of KwaZulu-Natal, Westville, Durban 4000, South Africa
| | - Parvesh Singh
- School of Chemistry & Physics, University of KwaZulu-Natal, Westville, Durban 4000, South Africa
| | - Philip J Rosenthal
- Department of Medicine, University of California, San Francisco, CA 94143, USA
| | - Vipan Kumar
- Department of Chemistry, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| |
Collapse
|
7
|
Parodi AR, Merlo C, Córdoba A, Palopoli C, Ferreyra J, Signorella S, Ferreira ML, Magario I. Application of metal complexes as biomimetic catalysts on glycerol oxidation. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2018.11.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Cabrera C, Cornaglia A, Córdoba A, Magario I, Ferreira ML. Kinetic modelling of the hematin catalysed decolourization of Orange II solutions. Chem Eng Sci 2017. [DOI: 10.1016/j.ces.2016.11.049] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Córdoba A, Alasino N, Asteasuain M, Magario I, Ferreira M. Mechanistic evaluation of hematin action as a horseradish peroxidase biomimetic on the 4-aminoantipyrine/phenol oxidation reaction. Chem Eng Sci 2015. [DOI: 10.1016/j.ces.2015.02.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
10
|
Removal of Alizarin Red S by gold nanoparticles loaded on activated carbon combined with ultrasound device: Optimization by experimental design methodology. POWDER TECHNOL 2014. [DOI: 10.1016/j.powtec.2014.06.052] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Zucca P, Rescigno A, Pintus M, Rinaldi AC, Sanjust E. Degradation of textile dyes using immobilized lignin peroxidase-like metalloporphines under mild experimental conditions. Chem Cent J 2012; 6:161. [PMID: 23256784 PMCID: PMC3567428 DOI: 10.1186/1752-153x-6-161] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 12/19/2012] [Indexed: 12/01/2022] Open
Abstract
Background Synthetic dyes represent a broad and heterogeneous class of durable pollutants, that are released in large amounts by the textile industry. The ability of two immobilized metalloporphines (structurally emulating the ligninolytic peroxidases) to bleach six chosen dyes (alizarin red S, phenosafranine, xylenol orange, methylene blue, methyl green, and methyl orange) was compared to enzymatic catalysts. To achieve a green and sustainable process, very mild conditions were chosen. Results IPS/MnTSPP was the most promising biomimetic catalyst as it was able to effectively and quickly bleach all tested dyes. Biomimetic catalysis was fully characterized: maximum activity was centered at neutral pH, in the absence of any organic solvent, using hydrogen peroxide as the oxidant. The immobilized metalloporphine kept a large part of its activity during multi-cycle use; however, well-known redox mediators were not able to increase its catalytic activity. IPS/MnTSPP was also more promising for use in industrial applications than its enzymatic counterparts (lignin peroxidase, laccase, manganese peroxidase, and horseradish peroxidase). Conclusions On the whole, the conditions were very mild (standard pressure, room temperature and neutral pH, using no organic solvents, and the most environmental-friendly oxidant) and a significant bleaching and partial mineralization of the dyes was achieved in approximately 1 h. Therefore, the process was consistent with large-scale applications. The biomimetic catalyst also had more promising features than the enzymatic catalysts.
Collapse
Affiliation(s)
- Paolo Zucca
- Dipartimento di Scienze Biomediche, Università di Cagliari, Cittadella Universitaria, 09042, Monserrato, CA, Italy.
| | | | | | | | | |
Collapse
|