1
|
Peng Z, Liu H, Zhang C, Zhai Y, Hu W, Tan Y, Li X, Zhou Z, Gong X. Potential Strategy to Control the Organic Components of Condensable Particulate Matter: A Critical Review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:7691-7709. [PMID: 38664958 DOI: 10.1021/acs.est.3c10615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
More and more attention has been paid to condensable particulate matter (CPM) since its emissions have surpassed that of filterable particulate matter (FPM) with the large-scale application of ultralow-emission reform. CPM is a gaseous material in the flue stack but instantly turns into particles after leaving the stack. It is composed of inorganic and organic components. Organic components are an important part of CPM, and they are an irritant, teratogenic, and carcinogenic, which triggers photochemical smog, urban haze, and acid deposition. CPM organic components can aggravate air pollution and climate change; therefore, consideration should be given to them. Based on existing methods for removing atmospheric organic pollutants and combined with the characteristics of CPM organic components, we provide a critical overview from the aspects of (i) fundamental cognition of CPM, (ii) common methods to control CPM organic components, and (iii) catalytic oxidation of CPM organic components. As one of the most encouraging methods, catalytic oxidation is discussed in detail, especially in combination with selective catalytic reduction (SCR) technology, to meet the growing demands for multipollutant control (MPC). We believe that this review is inspiring for a fuller understanding and deeper exploration of promising approaches to control CPM organic components.
Collapse
Affiliation(s)
- Zhengkang Peng
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hanxiao Liu
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- Zhejiang Feida Environmental Science & Technology Co., Ltd., Zhuji 311800, China
- Zhejiang Environmental Protection Group Eco-Environmental Research Institute, Hangzhou 310030, China
| | - Chuxuan Zhang
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yunfei Zhai
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wei Hu
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yuyao Tan
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaomin Li
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zijian Zhou
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xun Gong
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
2
|
Liu Y, Zhu W, Zhang W, An Z, Liu J, Liu L. Thermally Inducing Viscous Fluids to Generate Co-Based Perovskites Enriched with Active Species for the Removal of VOCs. Inorg Chem 2023; 62:19366-19374. [PMID: 37948416 DOI: 10.1021/acs.inorgchem.3c03385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Various Co-based perovskites are synthesized through thermally driving viscous fluids. In this process, rare earth salts, cobalt salts, and citric acid do not require homogeneous mixing but only need to be heated until they melt into a molten viscous slurry. The physicochemical properties of cobalt-based perovskites were examined using techniques such as X-ray diffraction (XRD), electron paramagnetic resonance (EPR), scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-Mapping-EDS), X-ray photoelectron spectroscopy (XPS), hydrogen temperature-programmed reduction (H2-TPR), oxygen temperature-programmed desorption (O2-TPD), and N2 adsorption-desorption. The results indicate that the surface-active species can be controlled by altering the A-site elements of cobalt-based perovskites. All catalysts synthesized through the thermal treatment of viscous mixtures exhibited a low activation temperature and a low apparent activation energy for the catalytic oxidation of toluene. Among all cobalt-based perovskites, LaCoO3 demonstrated the most outstanding catalytic activity, primarily attributed to its capacity to expose a larger number of surface-active sites and oxygen species, as well as its superior reducibility. Furthermore, the formation process of optimal LaCoO3 was monitored using thermogravimetric analysis-differential scanning calorimetry (TGA-DSC), and the byproducts of the low-temperature catalytic oxidation of toluene by the catalyst were identified using gas chromatography-mass spectrometry (GC-MS). The possible mechanism of toluene oxidation was inferred by in situ diffuse reflection infrared Fourier transform spectroscopy (DRIFTS). Moreover, LaCoO3 exhibits a predominant resistance to high-temperature hydrothermal conditions. This work provides a scalable and innovative approach to fabricating exceptionally effective catalysts for the efficient purification of VOCs.
Collapse
Affiliation(s)
- Yuwei Liu
- School of Chemistry and Chemical Engineering, Nantong University, 9, Seyuan Road, Nantong 226019, Jiangsu, P. R. China
| | - Weili Zhu
- School of Chemistry and Chemical Engineering, Nantong University, 9, Seyuan Road, Nantong 226019, Jiangsu, P. R. China
| | - Wenjing Zhang
- School of Chemistry and Chemical Engineering, Nantong University, 9, Seyuan Road, Nantong 226019, Jiangsu, P. R. China
| | - Zeyao An
- School of Chemistry and Chemical Engineering, Nantong University, 9, Seyuan Road, Nantong 226019, Jiangsu, P. R. China
| | - Jingyin Liu
- School of Chemistry and Chemical Engineering, Nantong University, 9, Seyuan Road, Nantong 226019, Jiangsu, P. R. China
| | - Lizhong Liu
- School of Chemistry and Chemical Engineering, Nantong University, 9, Seyuan Road, Nantong 226019, Jiangsu, P. R. China
| |
Collapse
|
3
|
Hou Z, Pei W, Zhang X, Zhang K, Liu Y, Deng J, Jing L, Dai H. Rare earth oxides and their supported noble metals in application of environmental catalysis. J RARE EARTH 2020. [DOI: 10.1016/j.jre.2020.01.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
4
|
Zeng K, Li X, Wang C, Wang Z, Guo P, Yu J, Zhang C, Zhao XS. Three-dimensionally macroporous MnZrO x catalysts for propane combustion: Synergistic structure and doping effects on physicochemical and catalytic properties. J Colloid Interface Sci 2020; 572:281-296. [PMID: 32251907 DOI: 10.1016/j.jcis.2020.03.093] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/21/2020] [Accepted: 03/25/2020] [Indexed: 12/17/2022]
Abstract
Three-dimensionally macroporous (3DM) MnZrOx catalysts were fabricated to reveal the structure and Zr-doping effects on both physicochemical properties and propane combustion behaviors. The increasing addition of zirconium is favorable for the formation of 3DM structure and amorphous Mn-Zr solid solution, leading to tunable physicochemical properties. The significant activity improvement after zirconium addition was originally attributable to the superior redox ability, higher oxygen mobility and more abundant oxygen vacancy. The excellent catalytic activity, cycling stability and water resistant ability over 3DM Mn0.6Zr0.4Ox make it a promising material for hydrocarbons elimination. The comparative TPSR, in situ DRIFTs and kinetics study over 3DM and bulk catalysts emphasize the advantageous function of 3DM architecture on promoting propane adsorption, oxidation and lattice oxygen mobility.
Collapse
Affiliation(s)
- Kai Zeng
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Xingyun Li
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Chao Wang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Zhong Wang
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China
| | - Peng Guo
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Jun Yu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, PR China
| | - Chuanhui Zhang
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, PR China; Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China.
| | - Xiu Song Zhao
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, PR China; School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
5
|
Torregrosa-Rivero V, Moreno-Marcos C, Albaladejo-Fuentes V, Sánchez-Adsuar MS, Illán-Gómez MJ. BaFe 1-xCu xO 3 Perovskites as Active Phase for Diesel (DPF) and Gasoline Particle Filters (GPF). NANOMATERIALS 2019; 9:nano9111551. [PMID: 31683700 PMCID: PMC6915380 DOI: 10.3390/nano9111551] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/16/2019] [Accepted: 10/29/2019] [Indexed: 11/16/2022]
Abstract
BaFe1−xCuxO3 perovskites (x = 0, 0.1, 0.3 and 0.4) have been synthetized, characterized and tested for soot oxidation in both Diesel and Gasoline Direct Injection (GDI) exhaust conditions. The catalysts have been characterized by BET, ICP-OES, SEM-EDX, XRD, XPS, H2-TPR and O2-TPD and the results indicate the incorporation of copper in the perovskite lattice which leads to: (i) the deformation of the initial hexagonal perovskite structure for the catalyst with the lowest copper content (BFC1), (ii) the modification to cubic from hexagonal structure for the high copper content catalysts (BFC3 and BFC4), (iii) the creation of a minority segregated phase, BaOx-CuOx, in the highest copper content catalyst (BFC4), (iv) the rise in the quantity of oxygen vacancies/defects for the catalysts BFC3 and BFC4, and (v) the reduction in the amount of O2 released in the course of the O2-TPD tests as the copper content increases. The BaFe1−xCuxO3 perovskites catalyze both the NO2-assisted diesel soot oxidation (500 ppm NO, 5% O2) and, to a lesser extent, the soot oxidation under fuel cuts GDI operation conditions (1% O2). BFC0 is the most active catalysts as the activity seems to be mainly related with the amount of O2 evolved during an. O2-TPD, which decreases with copper content.
Collapse
Affiliation(s)
- Verónica Torregrosa-Rivero
- Carbon Materials and Environment Research Group, Department of Inorganic Chemistry, Faculty of Science, University of Alicante, Av. Alicante s/n, San Vicente del Raspeig, 03690 Alicante, Spain.
| | - Carla Moreno-Marcos
- Carbon Materials and Environment Research Group, Department of Inorganic Chemistry, Faculty of Science, University of Alicante, Av. Alicante s/n, San Vicente del Raspeig, 03690 Alicante, Spain.
| | - Vicente Albaladejo-Fuentes
- Carbon Materials and Environment Research Group, Department of Inorganic Chemistry, Faculty of Science, University of Alicante, Av. Alicante s/n, San Vicente del Raspeig, 03690 Alicante, Spain.
| | - María-Salvadora Sánchez-Adsuar
- Carbon Materials and Environment Research Group, Department of Inorganic Chemistry, Faculty of Science, University of Alicante, Av. Alicante s/n, San Vicente del Raspeig, 03690 Alicante, Spain.
| | - María-José Illán-Gómez
- Carbon Materials and Environment Research Group, Department of Inorganic Chemistry, Faculty of Science, University of Alicante, Av. Alicante s/n, San Vicente del Raspeig, 03690 Alicante, Spain.
| |
Collapse
|
6
|
Liu L, Sun J, Ding J, Zhang Y, Jia J, Sun T. Catalytic Oxidation of VOCs over SmMnO 3 Perovskites: Catalyst Synthesis, Change Mechanism of Active Species, and Degradation Path of Toluene. Inorg Chem 2019; 58:14275-14283. [PMID: 31589423 DOI: 10.1021/acs.inorgchem.9b02518] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Highly active samarium manganese perovskite oxides were successfully prepared by employing self-molten-polymerization, coprecipitation, sol-gel, and impregnation methods. The physicochemical properties of perovskite oxides were investigated by XRD, N2 adsorption-desorption, XPS, and H2-TPR. Their catalytic performances were compared via the catalytic oxidation of toluene. The perovskite prepared by self-molten-polymerization possessed the highest catalytic capacity, which can be ascribed to its higher oxygen adspecies concentration (Olatt/Oads = 0.53), higher surface Mn4+/Mn3+ ratio (Mn4+/Mn3+ = 0.95), and best low-temperature reducibility (H2 consumption = 0.27; below 350 °C). The most active catalyst also exhibited good cycling and long-term stability for toluene oxidation. After a multistep cycle reaction and a long-term reaction of 42 h, the toluene conversion maintained above 99.9% at 270 °C. Mechanistic study hinted that lattice oxygen was involved in toluene oxidation. The oxidation reaction was dependent on the synergism of lattice oxygen, adsorbed oxygen, and oxygen vacancies. The degradation pathway of toluene, researched by diffuse reflectance infrared Fourier transform spectroscopy and online mass spectrometry technologies, demonstrated that a series of organic byproducts existed at a relatively low temperature. This work provides an efficient and practical method for selecting highly active catalysts and for exploring the catalytic mechanism for the removal of atmospheric environmental pollution.
Collapse
Affiliation(s)
- Lizhong Liu
- School of Chemistry and Chemical Engineering , Nantong University , 9 Seyuan Road , Jiangsu Province , Nantong 226019 , P.R. China
| | - Jiangtian Sun
- Department of Chemistry , Xi'an Jiaotong-Liverpool University , 111 Ren'ai Road, Suzhou Dushu Lake Science and Education Innovation District, Suzhou Industrial Park , Suzhou 215123 , P.R. China
| | - Jiandong Ding
- School of Chemistry and Chemical Engineering , Nantong University , 9 Seyuan Road , Jiangsu Province , Nantong 226019 , P.R. China
| | - Yan Zhang
- School of Chemistry and Chemical Engineering , Nantong University , 9 Seyuan Road , Jiangsu Province , Nantong 226019 , P.R. China
| | - Jinping Jia
- School of Environmental Science and Engineering , Shanghai Jiao Tong University , 800 Dong Chuan Road , Shanghai 200240 , P.R. China
| | - Tonghua Sun
- School of Environmental Science and Engineering , Shanghai Jiao Tong University , 800 Dong Chuan Road , Shanghai 200240 , P.R. China
| |
Collapse
|
7
|
Zhang C, Zhao P, Liu S, Yu K. Three-dimensionally ordered macroporous perovskite materials for environmental applications. CHINESE JOURNAL OF CATALYSIS 2019. [DOI: 10.1016/s1872-2067(19)63341-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
8
|
Zhu X, Li K, Neal L, Li F. Perovskites as Geo-inspired Oxygen Storage Materials for Chemical Looping and Three-Way Catalysis: A Perspective. ACS Catal 2018. [DOI: 10.1021/acscatal.8b01973] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xing Zhu
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, North Carolina 27695-7905, United States
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Kongzhai Li
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Luke Neal
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, North Carolina 27695-7905, United States
| | - Fanxing Li
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, North Carolina 27695-7905, United States
| |
Collapse
|
9
|
Liu L, Zhang H, Jia J, Sun T, Sun M. Direct Molten Polymerization Synthesis of Highly Active Samarium Manganese Perovskites with Different Morphologies for VOC Removal. Inorg Chem 2018; 57:8451-8457. [DOI: 10.1021/acs.inorgchem.8b01125] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lizhong Liu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, P.R. China
| | - Hongbo Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, P.R. China
| | - Jinping Jia
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, P.R. China
| | - Tonghua Sun
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, P.R. China
| | - Mengmeng Sun
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, P.R. China
| |
Collapse
|
10
|
Arandiyan H, Wang Y, Sun H, Rezaei M, Dai H. Ordered meso- and macroporous perovskite oxide catalysts for emerging applications. Chem Commun (Camb) 2018; 54:6484-6502. [DOI: 10.1039/c8cc01239c] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hierarchically ordered perovskite materials which have potential applications in chemistry, energy and materials science.
Collapse
Affiliation(s)
- Hamidreza Arandiyan
- Laboratory of Advanced Catalysis for Sustainability
- School of Chemistry
- The University of Sydney
- Sydney 2006
- Australia
| | - Yuan Wang
- Particles and Catalysis Research Group
- School of Chemical Engineering
- The University of New South Wales
- Sydney 2052
- Australia
| | - Hongyu Sun
- Department of Micro- and Nanotechnology
- Technical University of Denmark
- Kongens Lyngby 2800
- Denmark
| | - Mehran Rezaei
- Catalyst and Advanced Materials Research Laboratory
- Chemical Engineering Department
- University of Kashan
- Kashan
- Iran
| | - Hongxing Dai
- Beijing Key Laboratory for Green Catalysis and Separation
- College of Environmental and Energy Engineering
- Beijing University of Technology
- Beijing 100124
- China
| |
Collapse
|
11
|
Huang C, Zhu Y, Wang X, Liu X, Wang J, Zhang T. Sn promoted BaFeO3− catalysts for N2O decomposition: Optimization of Fe active centers. J Catal 2017. [DOI: 10.1016/j.jcat.2016.12.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
Catalytic removal of volatile organic compounds using ordered porous transition metal oxide and supported noble metal catalysts. CHINESE JOURNAL OF CATALYSIS 2016. [DOI: 10.1016/s1872-2067(16)62457-9] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
13
|
Royer S, Duprez D, Can F, Courtois X, Batiot-Dupeyrat C, Laassiri S, Alamdari H. Perovskites as substitutes of noble metals for heterogeneous catalysis: dream or reality. Chem Rev 2014; 114:10292-368. [PMID: 25253387 DOI: 10.1021/cr500032a] [Citation(s) in RCA: 358] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Sébastien Royer
- Université de Poitiers , CNRS UMR 7285, IC2MP, 4 Rue Michel Brunet, TSA 51106, 86073 Poitiers Cedex, France
| | | | | | | | | | | | | |
Collapse
|
14
|
Xie S, Dai H, Deng J, Yang H, Han W, Arandiyan H, Guo G. Preparation and high catalytic performance of Au/3DOM Mn2O3 for the oxidation of carbon monoxide and toluene. JOURNAL OF HAZARDOUS MATERIALS 2014; 279:392-401. [PMID: 25093549 DOI: 10.1016/j.jhazmat.2014.07.033] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 06/20/2014] [Accepted: 07/12/2014] [Indexed: 06/03/2023]
Abstract
Three-dimensionally ordered macroporous (3DOM) Mn2O3 and its supported gold (xAu/3DOM Mn2O3, x=1.9-7.5wt%) nanocatalysts were prepared using the polymethyl methacrylate-templating and polyvinyl alcohol-protected reduction methods, respectively. The 3DOM Mn2O3 and xAu/3DOM Mn2O3 samples exhibited a surface area of 34-38m(2)/g. The Au nanoparticles (NPs) with a size of 3.0-3.5nm were uniformly dispersed on the skeletons of 3DOM Mn2O3. The 5.8Au/3DOM Mn2O3 sample performed the best, giving the T90% (the temperature required for a conversion of 90%) of -15°C at space velocity (SV)=20,000mL/(gh) for CO oxidation and 244°C at SV=40,000mL/(gh) for toluene oxidation. The apparent activation energies (30 and 54kJ/mol) over 5.8Au/3DOM Mn2O3 were much lower than those (80 and 95kJ/mol) over 3DOM Mn2O3 for CO and toluene oxidation, respectively. The effects of SV, water vapor, CO2, and SO2 on catalytic activity were also examined. It is concluded that the excellent catalytic performance of 5.8Au/3DOM Mn2O3 was associated with its high oxygen adspecies concentration, good low-temperature reducibility, and strong interaction between Au NPs and 3DOM Mn2O3 as well as high-quality porous architecture.
Collapse
Affiliation(s)
- Shaohua Xie
- Laboratory of Catalysis Chemistry and Nanoscience, Department of Chemistry and Chemical Engineering, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Hongxing Dai
- Laboratory of Catalysis Chemistry and Nanoscience, Department of Chemistry and Chemical Engineering, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, PR China.
| | - Jiguang Deng
- Laboratory of Catalysis Chemistry and Nanoscience, Department of Chemistry and Chemical Engineering, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, PR China.
| | - Huanggen Yang
- Laboratory of Catalysis Chemistry and Nanoscience, Department of Chemistry and Chemical Engineering, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Wen Han
- Laboratory of Catalysis Chemistry and Nanoscience, Department of Chemistry and Chemical Engineering, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Hamidreza Arandiyan
- Particles and Catalysis Research Group, School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Guangsheng Guo
- Laboratory of Catalysis Chemistry and Nanoscience, Department of Chemistry and Chemical Engineering, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, PR China
| |
Collapse
|
15
|
Zhu J, Li H, Zhong L, Xiao P, Xu X, Yang X, Zhao Z, Li J. Perovskite Oxides: Preparation, Characterizations, and Applications in Heterogeneous Catalysis. ACS Catal 2014. [DOI: 10.1021/cs500606g] [Citation(s) in RCA: 556] [Impact Index Per Article: 55.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Junjiang Zhu
- Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission & Ministry of Education, South-central University for Nationalities, 182 minzudadao, Wuhan 430074, China
| | - Hailong Li
- Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission & Ministry of Education, South-central University for Nationalities, 182 minzudadao, Wuhan 430074, China
| | - Linyun Zhong
- Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission & Ministry of Education, South-central University for Nationalities, 182 minzudadao, Wuhan 430074, China
| | - Ping Xiao
- Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission & Ministry of Education, South-central University for Nationalities, 182 minzudadao, Wuhan 430074, China
| | - Xuelian Xu
- Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission & Ministry of Education, South-central University for Nationalities, 182 minzudadao, Wuhan 430074, China
| | - Xiangguang Yang
- State
Key Laboratory of Rare Earth Resource Utilization, Changchun Institute
of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin
Street, Changchun 130022, China
| | - Zhen Zhao
- State
Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, 18 Fuxue Road, Chang Ping, Beijing 102249, China
| | - Jinlin Li
- Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission & Ministry of Education, South-central University for Nationalities, 182 minzudadao, Wuhan 430074, China
| |
Collapse
|
16
|
Xie S, Dai H, Deng J, Liu Y, Yang H, Jiang Y, Tan W, Ao A, Guo G. Au/3DOM Co3O4: highly active nanocatalysts for the oxidation of carbon monoxide and toluene. NANOSCALE 2013; 5:11207-11219. [PMID: 24080987 DOI: 10.1039/c3nr04126c] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Three-dimensionally ordered macroporous Co3O4 (3DOM Co3O4) and its supported gold (xAu/3DOM Co3O4, x = 1.1-8.4 wt%) nanocatalysts were prepared using the polymethyl methacrylate-templating and bubble-assisted polyvinyl alcohol-protected reduction methods, respectively. The 3DOM Co3O4 and xAu/3DOM Co3O4 samples exhibited a surface area of 22-27 m(2) g(-1). The Au nanoparticles with a size of 2.4-3.7 nm were uniformly deposited on the macropore walls of 3DOM Co3O4. There were good correlations of oxygen adspecies concentration and low-temperature reducibility with catalytic activity of the sample for CO and toluene oxidation. Among 3DOM Co3O4 and xAu/3DOM Co3O4, the 6.5Au/3DOM Co3O4 sample performed the best, giving a T90% (the temperature required for achieving a conversion of 90%) of -35 °C at a space velocity of 20 000 mL g(-1) h(-1) for CO oxidation and 256 °C at a space velocity of 40 000 mL g(-1) h(-1) for toluene oxidation. The effect of water vapor was more significant in toluene oxidation than in CO oxidation. The apparent activation energies (26 and 74 kJ mol(-1)) over 6.5Au/3DOM Co3O4 were lower than those (34 and 113 kJ mol(-1)) over 3DOM Co3O4 for CO and toluene oxidation, respectively. It is concluded that the higher oxygen adspecies concentration, better low-temperature reducibility, and strong interaction between Au and 3DOM Co3O4 were responsible for the excellent catalytic performance of 6.5Au/3DOM Co3O4.
Collapse
Affiliation(s)
- Shaohua Xie
- Laboratory of Catalysis Chemistry and Nanoscience, Department of Chemistry and Chemical Engineering, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China. ;
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Arandiyan H, Chang H, Liu C, Peng Y, Li J. Dextrose-aided hydrothermal preparation with large surface area on 1D single-crystalline perovskite La0.5Sr0.5CoO3 nanowires without template: Highly catalytic activity for methane combustion. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.molcata.2013.06.019] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|