• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4632649)   Today's Articles (85)   Subscriber (49912)
For: Luo Q, Wang T, Beller M, Jiao H. Hydrogen generation from formic acid decomposition on Ni(211), Pd(211) and Pt(211). ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.molcata.2013.08.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Number Cited by Other Article(s)
1
Lee H, Kwon S, Park N, Cha SG, Lee E, Kong TH, Cha J, Kwon Y. Scalable Low-Temperature CO2 Electrolysis: Current Status and Outlook. JACS AU 2024;4:3383-3399. [PMID: 39328755 PMCID: PMC11423314 DOI: 10.1021/jacsau.4c00583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/04/2024] [Accepted: 08/20/2024] [Indexed: 09/28/2024]
2
Fingerhut J, Lecroart L, Schwarzer M, Hörandl S, Borodin D, Kandratsenka A, Kitsopoulos TN, Auerbach DJ, Wodtke AM. Identification of reaction intermediates in the decomposition of formic acid on Pd. Faraday Discuss 2024;251:412-434. [PMID: 38779946 DOI: 10.1039/d3fd00174a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
3
Bae J, Park K, Usosky D, Jung KD, Lee U, Kim C. Protocol to operate a large-scale CO2 hydrogenation process for formic acid production. STAR Protoc 2024;5:103093. [PMID: 38796846 PMCID: PMC11152721 DOI: 10.1016/j.xpro.2024.103093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/15/2024] [Accepted: 05/06/2024] [Indexed: 05/29/2024]  Open
4
Nishchakova AD, Bulushev DA, Trubina SV, Stonkus OA, Shubin YV, Asanov IP, Kriventsov VV, Okotrub AV, Bulusheva LG. Highly Dispersed Ni on Nitrogen-Doped Carbon for Stable and Selective Hydrogen Generation from Gaseous Formic Acid. NANOMATERIALS (BASEL, SWITZERLAND) 2023;13:545. [PMID: 36770506 PMCID: PMC9921425 DOI: 10.3390/nano13030545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/23/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
5
Fingerhut J, Lecroart L, Borodin D, Schwarzer M, Hörandl S, Kandratsenka A, Auerbach DJ, Wodtke AM, Kitsopoulos TN. Binding Energy and Diffusion Barrier of Formic Acid on Pd(111). J Phys Chem A 2022;127:142-152. [PMID: 36583672 PMCID: PMC9841570 DOI: 10.1021/acs.jpca.2c07414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
6
Bulushev DA, Nishchakova AD, Trubina SV, Stonkus OA, Asanov IP, Okotrub AV, Bulusheva LG. Ni-N4 sites in a single-atom Ni catalyst on N-doped carbon for hydrogen production from formic acid. J Catal 2021. [DOI: 10.1016/j.jcat.2021.08.044] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
7
Akça A, Karaman O. Electrocatalytic Decomposition of Formic Acid Catalyzed by M-Embedded Graphene (M = Ni and Cu): A DFT Study. Top Catal 2021. [DOI: 10.1007/s11244-021-01499-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
8
Zhan X, Michaud-Chevallier S, Hérault D, Duprat F. On-Line Analysis of the Heterogeneous Pd-Catalyzed Transfer Hydrogenation of p-Nitrophenol in Water with Formic Acid in a Flow Reactor. Org Process Res Dev 2019. [DOI: 10.1021/acs.oprd.9b00291] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
9
Pan Y, Shen X, Yao L, Bentalib A, Yang J, Zeng J, Peng Z. Competitive Transient Electrostatic Adsorption for In Situ Regeneration of Poisoned Catalyst. ChemCatChem 2019. [DOI: 10.1002/cctc.201802055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
10
Yang K, Zhang M, Yu Y. Theoretical insights into the effect of terrace width and step edge coverage on CO adsorption and dissociation over stepped Ni surfaces. Phys Chem Chem Phys 2017;19:17918-17927. [DOI: 10.1039/c7cp03050a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
11
Wang Y, Zhang D, Liu P, Liu C. Reexamination of CO formation during formic acid decomposition on the Pt(1 1 1) surface in the gas phase. Chem Phys Lett 2016. [DOI: 10.1016/j.cplett.2016.06.052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
12
He N, Li ZH. Palladium-atom catalyzed formic acid decomposition and the switch of reaction mechanism with temperature. Phys Chem Chem Phys 2016;18:10005-17. [DOI: 10.1039/c6cp00186f] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
13
Conti F, Hanss A, Fischer C, Elger G. Thermogravimetric investigation on the interaction of formic acid with solder joint materials. NEW J CHEM 2016. [DOI: 10.1039/c6nj02396g] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
14
Singh AK, Singh S, Kumar A. Hydrogen energy future with formic acid: a renewable chemical hydrogen storage system. Catal Sci Technol 2016. [DOI: 10.1039/c5cy01276g] [Citation(s) in RCA: 363] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
15
Yin W, Kloekhorst A, Venderbosch RH, Bykova MV, Khromova SA, Yakovlev VA, Heeres HJ. Catalytic hydrotreatment of fast pyrolysis liquids in batch and continuous set-ups using a bimetallic Ni–Cu catalyst with a high metal content. Catal Sci Technol 2016. [DOI: 10.1039/c6cy00503a] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
16
Qi Y, Gao J, Zhang D, Liu C. Comparative theoretical study of formic acid decomposition on PtAg(111) and Pt(111) surfaces. RSC Adv 2015. [DOI: 10.1039/c5ra01925g] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]  Open
17
Qi Y, Li J, Zhang D, Liu C. Reexamination of formic acid decomposition on the Pt(111) surface both in the absence and in the presence of water, from periodic DFT calculations. Catal Sci Technol 2015. [DOI: 10.1039/c5cy00159e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA