1
|
Kotovshchikov YN, Sultanov RH, Latyshev GV, Lukashev NV, Beletskaya IP. Domino assembly of dithiocarbamates via Cu-catalyzed denitrogenative thiolation of iodotriazole-based diazo precursors. Org Biomol Chem 2022; 20:5764-5770. [PMID: 35815554 DOI: 10.1039/d2ob00909a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient domino approach to assemble benzoxazoles and anthranilamides bearing dithiocarbamate moieties has been developed. The proposed route represents a Cu-catalyzed three-component reaction between readily available 5-iodo-1,2,3-triazoles, amines, and CS2. The cascade transformation is based on a denitrogenative coupling of in situ formed dithiocarbamic acids with diazo intermediates, generated via annulation-triggered triazole ring-opening. This method is applicable to nucleophilic secondary amines and features good functional group compatibility.
Collapse
Affiliation(s)
- Yury N Kotovshchikov
- Chemistry Department, M. V. Lomonosov Moscow State University, Leninskiye Gory 1/3, Moscow 119991, Russia.
| | - Rinat H Sultanov
- Chemistry Department, M. V. Lomonosov Moscow State University, Leninskiye Gory 1/3, Moscow 119991, Russia.
| | - Gennadij V Latyshev
- Chemistry Department, M. V. Lomonosov Moscow State University, Leninskiye Gory 1/3, Moscow 119991, Russia.
| | - Nikolay V Lukashev
- Chemistry Department, M. V. Lomonosov Moscow State University, Leninskiye Gory 1/3, Moscow 119991, Russia.
| | - Irina P Beletskaya
- Chemistry Department, M. V. Lomonosov Moscow State University, Leninskiye Gory 1/3, Moscow 119991, Russia.
| |
Collapse
|
2
|
Gutiérrez S, Tomás-Gamasa M, Mascareñas JL. Organometallic catalysis in aqueous and biological environments: harnessing the power of metal carbenes. Chem Sci 2022; 13:6478-6495. [PMID: 35756533 PMCID: PMC9172117 DOI: 10.1039/d2sc00721e] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/15/2022] [Indexed: 11/24/2022] Open
Abstract
Translating the power of transition metal catalysis to the native habitats of enzymes can significantly expand the possibilities of interrogating or manipulating natural biological systems, including living cells and organisms. This is especially relevant for organometallic reactions that have shown great potential in the field of organic synthesis, like the metal-catalyzed transfer of carbenes. While, at first sight, performing metal carbene chemistry in aqueous solvents, and especially in biologically relevant mixtures, does not seem obvious, in recent years there has been a growing number of reports demonstrating the feasibility of the task. Either using small molecule metal catalysts or artificial metalloenzymes, a number of carbene transfer reactions that tolerate aqueous and biorelevant media are being developed. This review intends to summarize the most relevant contributions, and establish the state of the art in this emerging research field.
Collapse
Affiliation(s)
- Sara Gutiérrez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela 15705 Santiago de Compostela Spain
| | - María Tomás-Gamasa
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela 15705 Santiago de Compostela Spain
| | - José Luis Mascareñas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela 15705 Santiago de Compostela Spain
| |
Collapse
|
3
|
Wang L, Perveen S, Ouyang Y, Zhang S, Jiao J, He G, Nie Y, Li P. Well-Defined, Versatile and Recyclable Half-Sandwich Nickelacarborane Catalyst for Selective Carbene-Transfer Reactions. Chemistry 2021; 27:5754-5760. [PMID: 33458881 DOI: 10.1002/chem.202005014] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/30/2020] [Indexed: 11/11/2022]
Abstract
Catalytic carbene-transfer reactions constitute a class of highly useful transformations in organic synthesis. Although catalysts based on a range of transition-metals have been reported, the readily accessible nickel(II)-based complexes have been rarely used. Herein, an air-stable nickel(II)-carborane complex is reported as a well-defined, versatile and recyclable catalyst for selective carbene transfer reactions with low catalyst loading under mild conditions. This catalyst is effective for several types of reactions including diastereoselective cyclopropanation, epoxidation, selective X-H insertions (X = C, N, O, S, Si), particularly for the unprotected substrates. This represents a rare example of carborane ligands in base metal catalysis.
Collapse
Affiliation(s)
- Linghua Wang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, P. R. China
| | - Saima Perveen
- Department of Applied Chemistry, School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Yizhao Ouyang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, P. R. China
| | - Shuai Zhang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, P. R. China
| | - Jiao Jiao
- Department of Applied Chemistry, School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China.,Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Gang He
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, P. R. China
| | - Yong Nie
- Institute for Smart Materials & Engineering, University of Jinan, Jinan, Shandong, 250022, P. R. China
| | - Pengfei Li
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, P. R. China.,State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China.,Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| |
Collapse
|
4
|
Hu S, Wu J, Lu Z, Wang J, Tao Y, Jiang M, Chen F. TfOH-Catalyzed N-H Insertion of α-Substituted-α-Diazoesters with Anilines Provides Access to Unnatural α-Amino Esters. J Org Chem 2021; 86:3223-3231. [PMID: 33378204 DOI: 10.1021/acs.joc.0c02588] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A time-economical TfOH-catalyzed N-H insertion between anilines and α-alkyl and α-aryl-α-diazoacetates provides a straightforward approach to access unnatural α-amino esters, which readily undergo various transformations and can thus be used for the synthesis of pharmaceutically relevant molecules. The α-amino esters were obtained in moderate to excellent yields.
Collapse
Affiliation(s)
- Sha Hu
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China.,Shanghai Engineering Center of Industrial Catalysis for Chiral Drugs, Shanghai 200433, China
| | - Jiale Wu
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China.,Shanghai Engineering Center of Industrial Catalysis for Chiral Drugs, Shanghai 200433, China
| | - Zuolin Lu
- Institute of Pharmaceutical Science and Technology, Zhejiang University of Technology, 18 Chao Wang Road, Hangzhou 310014, China
| | - Jiaqi Wang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China.,Shanghai Engineering Center of Industrial Catalysis for Chiral Drugs, Shanghai 200433, China
| | - Yuan Tao
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China.,Shanghai Engineering Center of Industrial Catalysis for Chiral Drugs, Shanghai 200433, China
| | - Meifen Jiang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China.,Shanghai Engineering Center of Industrial Catalysis for Chiral Drugs, Shanghai 200433, China
| | - Fener Chen
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China.,Shanghai Engineering Center of Industrial Catalysis for Chiral Drugs, Shanghai 200433, China.,Institute of Pharmaceutical Science and Technology, Zhejiang University of Technology, 18 Chao Wang Road, Hangzhou 310014, China
| |
Collapse
|
5
|
Yang J, Wang G, Chen S, Ma B, Zhou H, Song M, Liu C, Huo C. Catalyst-free, visible-light-promoted S-H insertion reaction between thiols and α-diazoesters. Org Biomol Chem 2020; 18:9494-9498. [PMID: 33180081 DOI: 10.1039/d0ob02006k] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A visible-light-promoted S-H insertion reaction between thiols and α-diazoesters was developed. The reaction proceeded smoothly at room temperature with a broad substrate scope, affording various thioethers in moderate to excellent yields. The catalyst- and additive-free nature, sustainable energy source and mild reaction conditions make this strategy more eco-friendly.
Collapse
Affiliation(s)
- Jingya Yang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| | - Ganggang Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| | - Shuwen Chen
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| | - Ben Ma
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| | - Hongyan Zhou
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China. and College of Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Menghui Song
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| | - Cai Liu
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| | - Congde Huo
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| |
Collapse
|
6
|
Kotovshchikov YN, Latyshev GV, Kirillova EA, Moskalenko UD, Lukashev NV, Beletskaya IP. Assembly of Thiosubstituted Benzoxazoles via Copper-Catalyzed Coupling of Thiols with 5-Iodotriazoles Serving as Diazo Surrogates. J Org Chem 2020; 85:9015-9028. [PMID: 32508100 DOI: 10.1021/acs.joc.0c00931] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An efficient cascade approach to thiosubstituted benzoxazoles has been developed. The transformation starts with in situ generation of a diazo compound via annulation-triggered electrocyclic opening of the 1,2,3-triazole ring. The subsequent Cu-catalyzed trapping of diazo intermediates by various thiols affords the desired heterocycles in generally good yields of up to 91%. The protocol features very good functional group tolerance and is applicable to substrates with different electronic properties.
Collapse
Affiliation(s)
- Yury N Kotovshchikov
- Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskiye Gory 1, Moscow 119991, Russia
| | - Gennadij V Latyshev
- Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskiye Gory 1, Moscow 119991, Russia
| | - Elena A Kirillova
- Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskiye Gory 1, Moscow 119991, Russia
| | - Uliana D Moskalenko
- Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskiye Gory 1, Moscow 119991, Russia.,Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Nikolay V Lukashev
- Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskiye Gory 1, Moscow 119991, Russia
| | - Irina P Beletskaya
- Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskiye Gory 1, Moscow 119991, Russia
| |
Collapse
|
7
|
Keipour H, Jalba A, Tanbouza N, Carreras V, Ollevier T. α-Thiocarbonyl synthesisviathe FeII-catalyzed insertion reaction of α-diazocarbonyls into S–H bonds. Org Biomol Chem 2019; 17:3098-3102. [DOI: 10.1039/c9ob00261h] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fe(OTf)2was used to catalyze the insertion reaction of α-diazocarbonyls into S–H bonds at 40 °C.
Collapse
Affiliation(s)
- Hoda Keipour
- Département de chimie
- Université Laval
- Québec
- Canada
| | - Angela Jalba
- Département de chimie
- Université Laval
- Québec
- Canada
| | | | | | | |
Collapse
|
8
|
Cifuentes JMC, Ferreira BX, Esteves PM, Buarque CD. Decarboxylative Cross-Coupling of Cinnamic Acids Catalyzed by Iron-Based Covalent Organic Frameworks. Top Catal 2018. [DOI: 10.1007/s11244-018-0910-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Chen L, Cui H, Wang Y, Liang X, Zhang L, Su CY. Carbene insertion into N–H bonds with size-selectivity induced by a microporous ruthenium–porphyrin metal–organic framework. Dalton Trans 2018; 47:3940-3946. [DOI: 10.1039/c8dt00434j] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A stable and porous porphyrinic metal–organic framework Ru-PMOF-1(Hf) has been prepared and used for N–H insertion reactions with high efficiency and selectivity.
Collapse
Affiliation(s)
- Lianfen Chen
- MOE Laboratory of Bioinorganic and Synthetic Chemistry
- Lehn Institute of Functional Materials
- School of Chemistry
- Sun Yat-sen University
- Guangzhou 510275
| | - Hao Cui
- MOE Laboratory of Bioinorganic and Synthetic Chemistry
- Lehn Institute of Functional Materials
- School of Chemistry
- Sun Yat-sen University
- Guangzhou 510275
| | - Yanhu Wang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry
- Lehn Institute of Functional Materials
- School of Chemistry
- Sun Yat-sen University
- Guangzhou 510275
| | - Xiang Liang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry
- Lehn Institute of Functional Materials
- School of Chemistry
- Sun Yat-sen University
- Guangzhou 510275
| | - Li Zhang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry
- Lehn Institute of Functional Materials
- School of Chemistry
- Sun Yat-sen University
- Guangzhou 510275
| | - Cheng-Yong Su
- MOE Laboratory of Bioinorganic and Synthetic Chemistry
- Lehn Institute of Functional Materials
- School of Chemistry
- Sun Yat-sen University
- Guangzhou 510275
| |
Collapse
|
10
|
Anding BJ, Dairo TO, Woo LK. Reactivity Comparison of Primary Aromatic Amines and Thiols in E–H Insertion Reactions with Diazoacetates Catalyzed by Iridium(III) Tetratolylporphyrin. Organometallics 2017. [DOI: 10.1021/acs.organomet.7b00185] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Bernie J. Anding
- Department of Chemistry, Iowa State University, 1605 Gilman Hall, 2415 Osborn Drive, Ames, Iowa 50011-1021, United States
| | - Taiwo O. Dairo
- Department of Chemistry, Iowa State University, 1605 Gilman Hall, 2415 Osborn Drive, Ames, Iowa 50011-1021, United States
| | - L. Keith Woo
- Department of Chemistry, Iowa State University, 1605 Gilman Hall, 2415 Osborn Drive, Ames, Iowa 50011-1021, United States
| |
Collapse
|
11
|
Keipour H, Jalba A, Delage-Laurin L, Ollevier T. Copper-Catalyzed Carbenoid Insertion Reactions of α-Diazoesters and α-Diazoketones into Si–H and S–H Bonds. J Org Chem 2017; 82:3000-3010. [DOI: 10.1021/acs.joc.6b02998] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hoda Keipour
- Département de chimie, Université Laval, 1045 avenue de la Médecine, Québec, QC G1V 0A6, Canada
| | - Angela Jalba
- Département de chimie, Université Laval, 1045 avenue de la Médecine, Québec, QC G1V 0A6, Canada
| | - Léo Delage-Laurin
- Département de chimie, Université Laval, 1045 avenue de la Médecine, Québec, QC G1V 0A6, Canada
| | - Thierry Ollevier
- Département de chimie, Université Laval, 1045 avenue de la Médecine, Québec, QC G1V 0A6, Canada
| |
Collapse
|
12
|
Ramakrishna K, Sivasankar C. Iridium catalyzed acceptor/acceptor carbene insertion into N–H bonds in water. Org Biomol Chem 2017; 15:2392-2396. [DOI: 10.1039/c7ob00177k] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Carbenes from highly stable acceptor/acceptor diazo compounds can be inserted into the N–H bonds of aromatic amines using an Ir(i) catalyst in an aqueous medium.
Collapse
Affiliation(s)
- Kankanala Ramakrishna
- Catalysis and Energy Laboratory
- Department of Chemistry
- Pondicherry University (A Central University)
- Puducherry 605014
- India
| | - Chinnappan Sivasankar
- Catalysis and Energy Laboratory
- Department of Chemistry
- Pondicherry University (A Central University)
- Puducherry 605014
- India
| |
Collapse
|
13
|
Ramakrishna K, Thomas JM, Sivasankar C. A Green Approach to the Synthesis of α-Amino Phosphonate in Water Medium: Carbene Insertion into the N–H Bond by Cu(I) Catalyst. J Org Chem 2016; 81:9826-9835. [DOI: 10.1021/acs.joc.6b01940] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Kankanala Ramakrishna
- Catalysis and Energy Laboratory
(A Central University), Department of Chemistry Pondicherry University, Puducherry 605014, India
| | - Jisha Mary Thomas
- Catalysis and Energy Laboratory
(A Central University), Department of Chemistry Pondicherry University, Puducherry 605014, India
| | - Chinnappan Sivasankar
- Catalysis and Energy Laboratory
(A Central University), Department of Chemistry Pondicherry University, Puducherry 605014, India
| |
Collapse
|