Qi N, Liu J, Song W, Liu J, Gao C, Chen X, Guo L, Liu L, Wu J. Rational Design of Phospholipase D to Improve the Transphosphatidylation Activity for Phosphatidylserine Synthesis.
JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022;
70:6709-6718. [PMID:
35616637 DOI:
10.1021/acs.jafc.2c02212]
[Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Phosphatidylserine (PS) has been widely used in the fields of food and medicine, among others, owing to its unique chemical structure and health benefits. However, the phospholipase D (PLD)-mediated enzymatic production of PS remains a challenge due to the low transphosphatidylation activity of PLD. Therefore, in the present study, we designed a maltose-binding protein (MBP) tag and a PLD co-expression method to achieve the expression of soluble PLD in Escherichia coli. A "reconstruct substrate pocket" strategy was then proposed based on the catalytic mechanism and molecular dynamics simulation, expanding the substrate pocket and manipulating the coordination of l-Ser within the active site. The best mutant (SrMBPPLDMu6) exhibited a 2.04-fold higher transphosphatidylation/hydrolysis ratio than the wild-type Furthermore, under optimal conditions, Mu6 produced 58.6 g/L PS with 77.2% conversion, within 12 h on a 3 L scale, which demonstrates the potential of the proposed method for industrial application.
Collapse