1
|
Wong Min M, Liu L, Karboune S. Investigating the Potential of Phenolic Compounds and Carbohydrates as Acceptor Substrates for Levansucrase-Catalyzed Transfructosylation Reaction. Chembiochem 2024; 25:e202400107. [PMID: 38536122 DOI: 10.1002/cbic.202400107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/24/2024] [Indexed: 05/03/2024]
Abstract
This study characterizes the acceptor specificity of levansucrases (LSs) from Gluconobacter oxydans (LS1), Vibrio natriegens (LS2), Novosphingobium aromaticivorans (LS3), and Paraburkholderia graminis (LS4) using sucrose as fructosyl donor and selected phenolic compounds and carbohydrates as acceptors. Overall, V. natriegens LS2 proved to be the best biocatalyst for the transfructosylation of phenolic compounds. More than one fructosyl unit could be attached to fructosylated phenolic compounds. The transfructosylation of epicatechin by P. graminis LS4 resulted in the most diversified products, with up to five fructosyl units transferred. In addition to the LS source, the acceptor specificity of LS towards phenolic compounds and their transfructosylation products were found to greatly depend on their chemical structure: the number of phenolic rings, the reactivity of hydroxyl groups and the presence of aliphatic chains or methoxy groups. Similarly, for carbohydrates, the transfructosylation yield was dependent on both the LS source and the acceptor type. The highest yield of fructosylated-trisaccharides was Erlose from the transfructosylation of maltose catalyzed by LS2, with production reaching 200 g/L. LS2 was more selective towards the transfructosylation of phenolic compounds and carbohydrates, while reactions catalyzed by LS1, LS3 and LS4 also produced fructooligosaccharides. This study shows the high potential for the application of LSs in the glycosylation of phenolic compounds and carbohydrates.
Collapse
Affiliation(s)
- Muriel Wong Min
- Department of Food Science & Agricultural Chemistry, McGill University, 21111, Lakeshore, Ste-Anne-de-Bellevue, Quebec, Canada
| | - Lan Liu
- Department of Food Science & Agricultural Chemistry, McGill University, 21111, Lakeshore, Ste-Anne-de-Bellevue, Quebec, Canada
| | - Salwa Karboune
- Department of Food Science & Agricultural Chemistry, McGill University, 21111, Lakeshore, Ste-Anne-de-Bellevue, Quebec, Canada
| |
Collapse
|
2
|
Hu RH, Zhou YQ, Lei CW, Wang CB, Zhu WQ, Yin X, Zhou Y. A New Alkyl Polyglycoside from Ardisia crispa. Chem Nat Compd 2022. [DOI: 10.1007/s10600-022-03748-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
3
|
Synthesis of Tyrosol and Hydroxytyrosol Glycofuranosides and Their Biochemical and Biological Activities in Cell-Free and Cellular Assays. Molecules 2021; 26:molecules26247607. [PMID: 34946703 PMCID: PMC8709365 DOI: 10.3390/molecules26247607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 11/16/2022] Open
Abstract
Tyrosol (T) and hydroxytyrosol (HOT) and their glycosides are promising candidates for applications in functional food products or in complementary therapy. A series of phenylethanoid glycofuranosides (PEGFs) were synthesized to compare some of their biochemical and biological activities with T and HOT. The optimization of glycosylation promoted by environmentally benign basic zinc carbonate was performed to prepare HOT α-L-arabino-, β-D-apio-, and β-D-ribofuranosides. T and HOT β-D-fructofuranosides, prepared by enzymatic transfructosylation of T and HOT, were also included in the comparative study. The antioxidant capacity and DNA-protective potential of T, HOT, and PEGFs on plasmid DNA were determined using cell-free assays. The DNA-damaging potential of the studied compounds for human hepatoma HepG2 cells and their DNA-protective potential on HepG2 cells against hydrogen peroxide were evaluated using the comet assay. Experiments revealed a spectrum of different activities of the studied compounds. HOT and HOT β-D-fructofuranoside appear to be the best-performing scavengers and protectants of plasmid DNA and HepG2 cells. T and T β-D-fructofuranoside display almost zero or low scavenging/antioxidant activity and protective effects on plasmid DNA or HepG2 cells. The results imply that especially HOT β-D-fructofuranoside and β-D-apiofuranoside could be considered as prospective molecules for the subsequent design of supplements with potential in food and health protection.
Collapse
|
4
|
Hollá V, Karkeszová K, Antošová M, Polakovič M. Transglycosylation properties of a Kluyveromyces lactis enzyme preparation: Production of tyrosol β-fructoside using free and immobilized enzyme. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.08.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
5
|
Piedrabuena D, Rumbero Á, Pires E, Leal-Duaso A, Civera C, Fernández-Lobato M, Hernaiz MJ. Enzymatic synthesis of novel fructosylated compounds by Ffase from Schwanniomyces occidentalis in green solvents. RSC Adv 2021; 11:24312-24319. [PMID: 35479057 PMCID: PMC9036678 DOI: 10.1039/d1ra01391b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 05/26/2021] [Indexed: 11/21/2022] Open
Abstract
The β-fructofuranosidase from the yeast Schwanniomyces occidentalis (Ffase) produces potential prebiotic fructooligosaccharides (FOS) by self-transfructosylation of sucrose, being one of the highest known producers of 6-kestose. The use of Green Solvents (GS) in biocatalysis has emerged as a sustainable alternative to conventional organic media for improving product yields and generating new molecules. In this work, the Ffase hydrolytic and transfructosylating activity was analysed using different GS, including biosolvents and ionic liquids. Among them, 11 were compatible for the net synthesis of FOS. Besides, two glycerol derivatives improved the yield of total FOS. Interestingly, polyols ethylene glycol and glycerol were found to be efficient alternative fructosyl-acceptors, both substantially decreasing the sucrose fructosylation. The main transfer product of the reaction with glycerol was a 62 g L-1 isomeric mixture of 1-O and 2-O-β-d-fructofuranosylglycerol, representing 95% of all chemicals generated by transfructosylation. Unexpectedly, the non-terminal 2-O fructo-conjugate was the major molecule catalysed during the process, while the 1-O isomer was the minor one. This fact made Ffase the first known enzyme from yeast showing this catalytic ability. Thus, novel fructosylated compounds with potential applications in food, cosmetics, and pharmaceutical fields have been obtained in this work, increasing the biotechnological interest of Ffase with innocuous GS.
Collapse
Affiliation(s)
- David Piedrabuena
- Centro de Biología Molecular Severo Ochoa (CBMSO; UAM-CSIC), Departamento de Biología Molecular, Facultad de Ciencias, Universidad Autónoma de Madrid Nicolás Cabrera 1 28049 Madrid Spain
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Zaragoza-Instituto de Síntesis Química y Catálisis Homogénea (ISQCH-CSIC) 50009 Zaragoza Spain
| | - Ángel Rumbero
- Departamento de Química en Ciencias Farmacéuticas, Universidad Complutense de Madrid Plaza Ramón y Cajal s/n 28040 Madrid Spain
| | - Elísabet Pires
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid Francisco Tomás y Valiente 7 28049 Madrid Spain
| | - Alejandro Leal-Duaso
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid Francisco Tomás y Valiente 7 28049 Madrid Spain
| | - Concepción Civera
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Zaragoza-Instituto de Síntesis Química y Catálisis Homogénea (ISQCH-CSIC) 50009 Zaragoza Spain
| | - María Fernández-Lobato
- Centro de Biología Molecular Severo Ochoa (CBMSO; UAM-CSIC), Departamento de Biología Molecular, Facultad de Ciencias, Universidad Autónoma de Madrid Nicolás Cabrera 1 28049 Madrid Spain
| | - María J Hernaiz
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Zaragoza-Instituto de Síntesis Química y Catálisis Homogénea (ISQCH-CSIC) 50009 Zaragoza Spain
| |
Collapse
|
6
|
Núñez-López G, Herrera-González A, Hernández L, Amaya-Delgado L, Sandoval G, Gschaedler A, Arrizon J, Remaud-Simeon M, Morel S. Fructosylation of phenolic compounds by levansucrase from Gluconacetobacter diazotrophicus. Enzyme Microb Technol 2019; 122:19-25. [DOI: 10.1016/j.enzmictec.2018.12.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/11/2018] [Accepted: 12/03/2018] [Indexed: 02/06/2023]
|
7
|
Karnišová Potocká E, Mastihubová M, Mastihuba V. Enzymatic synthesis of tyrosol and hydroxytyrosol β-d-fructofuranosides. BIOCATAL BIOTRANSFOR 2018. [DOI: 10.1080/10242422.2017.1423060] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | - Mária Mastihubová
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Vladimír Mastihuba
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovak Republic
| |
Collapse
|
8
|
Functionalization of natural compounds by enzymatic fructosylation. Appl Microbiol Biotechnol 2017; 101:5223-5234. [DOI: 10.1007/s00253-017-8359-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/22/2017] [Accepted: 05/23/2017] [Indexed: 10/19/2022]
|
9
|
Sheng L, Tong Q, Ma M. Why sucrose is the most suitable substrate for pullulan fermentation by Aureobasidium pullulans CGMCC1234? Enzyme Microb Technol 2016; 92:49-55. [PMID: 27542744 DOI: 10.1016/j.enzmictec.2016.06.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 06/23/2016] [Accepted: 06/24/2016] [Indexed: 10/21/2022]
Abstract
This paper studies the metabolic pathway of sucrose in pullulan fermentation by Aureobasidium pullulans. Because of its high pullulan production, sucrose proved to be the best carbon source for pullulan synthesis by A. pullulans CGMCC1234 (36.3g/L). Compared to other carbon sources, A. pullulans cells reached the stationary phase more quickly in the presence of sucrose. The specific sugar types and concentrations occurring during pullulan fermentation were detected using High Performance Liquid Chromatography (HPLC). HPLC results revealed that sucrose did not simply break down into glucose and fructose in the medium employed. Kestose (22.69g/L) also accumulated during early stages of fermentation (24h), which reduced the osmotic pressure of the extracellular fluid and diminished the inhibition of cell growth and pullulan production. β-Fructofuranosidase activity strongly depended on the carbon source. Sucrose was the best inducer of β-fructofuranosidase production. However, β-fructofuranosidase production did not directly and/or proportionally correlate with the growth of A. pullulans cells.
Collapse
Affiliation(s)
- Long Sheng
- National R&D Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qunyi Tong
- The State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Meihu Ma
- National R&D Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
10
|
|
11
|
Tris–sucrose buffer system: a new specially designed medium for extracellular invertase production by immobilized cells of isolated yeast Cryptococcus laurentii MT-61. Folia Microbiol (Praha) 2013; 59:9-16. [DOI: 10.1007/s12223-013-0258-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 05/12/2013] [Indexed: 10/26/2022]
|
12
|
Zhao J, Zeng LH, Li X, Dong XP, Yan YM, Cheng YX. Brachystemols A-C, three new furan derivatives from Brachystemma calycinum. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2011; 13:915-919. [PMID: 21972806 DOI: 10.1080/10286020.2011.600250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Three new furan derivatives, brachystemols A-C (1-3), and 13 known compounds (4-15) were isolated from the EtOH extract of Brachystemma calycinum. Their structures were identified by means of spectroscopic methods. Compounds 4-13 were isolated from this plant for the first time.
Collapse
Affiliation(s)
- Jun Zhao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China
| | | | | | | | | | | |
Collapse
|
13
|
Smrtičová H, Čanigová M, Mastihubová M, Mastihuba V. Enzymatic preparation of melibiose and alkyl β-d-fructofuranosides by commercial lactase. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.molcatb.2011.04.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Mena-Arizmendi A, Alderete J, Águila S, Marty A, Miranda-Molina A, López-Munguía A, Castillo E. Enzymatic fructosylation of aromatic and aliphatic alcohols by Bacillus subtilis levansucrase: Reactivity of acceptors. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.molcatb.2011.02.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
FENG X, LU J, XIN H, ZHANG L, WANG Y, TANG K. Anti-arthritic Active Fraction of Capparis Spinosa L. Fruits and Its Chemical Constituents. YAKUGAKU ZASSHI 2011; 131:423-9. [DOI: 10.1248/yakushi.131.423] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Xiaolu FENG
- Plant Biotechnology Research Center, School of Agriculture and Biology, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, Shanghai Jiao Tong University
- Department of Pharmacognosy, Shenyang Pharmaceutical University
| | - Jincai LU
- Department of Pharmacognosy, Shenyang Pharmaceutical University
| | - Hailiang XIN
- Department of Traditional Chinese Medicine, Second Military Medical University
| | - Lei ZHANG
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University
| | - Yuliang WANG
- Plant Biotechnology Research Center, School of Agriculture and Biology, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, Shanghai Jiao Tong University
| | - Kexuan TANG
- Plant Biotechnology Research Center, School of Agriculture and Biology, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, Shanghai Jiao Tong University
| |
Collapse
|
16
|
Zhang Z, Wang D, Zhao Y, Gao H, Hu YH, Hu JF. Fructose-derived carbohydrates from Alisma orientalis. Nat Prod Res 2009; 23:1013-20. [PMID: 19521916 DOI: 10.1080/14786410802391120] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Nine fructose-derived carbohydrates were obtained from the methanol extract from the rhizome of Alisma orientalis. On the basis of spectroscopic analysis, their structures were determined to be alpha-D-fructofuranose (1), beta-D-fructofuranose (2), ethyl alpha-D-fructofuranoside (3), ethyl beta-D-fructofuranoside (4), 5-hydroxymethyl-furaldehyde (5), sucrose (6), raffinose (7), stachyose (8) and verbascose (9), along with two oligosaccharides of manninotriose (10) and verbascotetraose (11). Compounds 3, 4 and 7-11 were isolated from this plant for the first time. A hypothetical biosynthesis pathway among these isolated carbohydrates (1-11) was briefly introduced.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Natural Products for Chemical Genetic Research, Key Laboratory of Brain Functional Genomics, Ministry of Education & Shanghai Key Laboratory of Brain Functional Genomics (MOE & SBFG), East China Normal University, Shanghai 200062, China
| | | | | | | | | | | |
Collapse
|
17
|
Current awareness on yeast. Yeast 2007. [DOI: 10.1002/yea.1575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|