1
|
Shaffer JMC, Giddings LA, Samples RM, Mikucki JA. Genomic and phenotypic characterization of a red-pigmented strain of Massilia frigida isolated from an Antarctic microbial mat. Front Microbiol 2023; 14:1156033. [PMID: 37250028 PMCID: PMC10213415 DOI: 10.3389/fmicb.2023.1156033] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/20/2023] [Indexed: 05/31/2023] Open
Abstract
The McMurdo Dry Valleys of Antarctica experience a range of selective pressures, including extreme seasonal variation in temperature, water and nutrient availability, and UV radiation. Microbial mats in this ecosystem harbor dense concentrations of biomass in an otherwise desolate environment. Microbial inhabitants must mitigate these selective pressures via specialized enzymes, changes to the cellular envelope, and the production of secondary metabolites, such as pigments and osmoprotectants. Here, we describe the isolation and characterization of a Gram-negative, rod-shaped, motile, red-pigmented bacterium, strain DJPM01, from a microbial mat within the Don Juan Pond Basin of Wright Valley. Analysis of strain DJMP01's genome indicates it can be classified as a member of the Massilia frigida species. The genome contains several genes associated with cold and salt tolerance, including multiple RNA helicases, protein chaperones, and cation/proton antiporters. In addition, we identified 17 putative secondary metabolite gene clusters, including a number of nonribosomal peptides and ribosomally synthesized and post-translationally modified peptides (RiPPs), among others, and the biosynthesis pathway for the antimicrobial pigment prodigiosin. When cultivated on complex agar, multiple prodiginines, including the antibiotic prodigiosin, 2-methyl-3-propyl-prodiginine, 2-methyl-3-butyl-prodiginine, 2-methyl-3-heptyl-prodiginine, and cycloprodigiosin, were detected by LC-MS. Genome analyses of sequenced members of the Massilia genus indicates prodigiosin production is unique to Antarctic strains. UV-A radiation, an ecological stressor in the Antarctic, was found to significantly decrease the abundance of prodiginines produced by strain DJPM01. Genomic and phenotypic evidence indicates strain DJPM01 can respond to the ecological conditions of the DJP microbial mat, with prodiginines produced under a range of conditions, including extreme UV radiation.
Collapse
Affiliation(s)
- Jacob M. C. Shaffer
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States
| | | | - Robert M. Samples
- Department of Chemistry, Smith College, Northampton, MA, United States
| | - Jill A. Mikucki
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
2
|
Strategies to Enhance the Biosynthesis of Monounsaturated Fatty Acids in Escherichia coli. BIOTECHNOL BIOPROC E 2023. [DOI: 10.1007/s12257-022-0295-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
3
|
Halim NFAA, Ali MSM, Leow ATC, Rahman RNZRA. Membrane-bound Δ12 fatty acid desaturase (FAD12); From Brassica napus to E. coli expression system. Int J Biol Macromol 2021; 180:242-251. [PMID: 33737181 DOI: 10.1016/j.ijbiomac.2021.03.072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/12/2021] [Accepted: 03/13/2021] [Indexed: 11/17/2022]
Abstract
Fatty acid desaturase catalyzes the desaturation reactions by insertion of double bonds into the fatty acyl chain, producing unsaturated fatty acids. Though soluble fatty acid desaturases have been studied widely in advanced organisms, there are very limited studies of membrane fatty acid desaturases due to the difficulty of generating recombinant desaturase. Brassica napus is a rapeseed, which possesses a range of different membrane-bound desaturases capable of producing fatty acids including Δ3, Δ4, Δ8, Δ9, Δ12, and Δ15 fatty acids. The 1155 bp open reading frame of Δ12 fatty acid desaturase (FAD12) from Brassica napus codes for 383 amino acid residues with a molecular weight of 44 kDa. It was expressed in Escherichia coli at 37 °C in soluble and insoluble forms when induced with 0.5 mM IPTG. Soluble FAD12 has been purified using Ni2+-Sepharose affinity chromatography with a total protein yield of 0.728 mg/mL. Gas chromatography-mass spectrometry (GC-MS) analysis revealed that desaturase activity of FAD12 could produce linoleic acid from oleic acid at a retention time of 17.6 with a conversion rate of 47%. Characterization of purified FAD12 revealed the optimal temperature of FAD12 was 50 °C with 2 mM preferred substrate concentration of oleic acid. Analysis of circular dichroism (CD) showed FAD12 was made up of 47.3% and 0.9% of alpha-helix and β-sheet secondary structures. The predicted Tm value was 50.2 °C.
Collapse
Affiliation(s)
- Nur Farah Anis Abd Halim
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Mohd Shukuri Mohamad Ali
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Adam Thean Chor Leow
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Raja Noor Zaliha Raja Abd Rahman
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| |
Collapse
|
4
|
Estupiñán M, Hernández I, Saitua E, Bilbao ME, Mendibil I, Ferrer J, Alonso-Sáez L. Novel Vibrio spp. Strains Producing Omega-3 Fatty Acids Isolated from Coastal Seawater. Mar Drugs 2020; 18:E99. [PMID: 32024040 PMCID: PMC7074563 DOI: 10.3390/md18020099] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/27/2020] [Accepted: 01/30/2020] [Indexed: 12/26/2022] Open
Abstract
Omega-3 long-chain polyunsaturated fatty acids (LC-PUFAs), such as eicosapentaenoic acid (EPA) (20:5n-3) and docosahexaenoic acid (DHA) (22:6n-3), are considered essential for human health. Microorganisms are the primary producers of omega-3 fatty acids in marine ecosystems, representing a sustainable source of these lipids, as an alternative to the fish industry. Some marine bacteria can produce LC-PUFAs de novo via the Polyunsaturated Fatty Acid (Pfa) synthase/ Polyketide Synthase (PKS) pathway, which does not require desaturation and elongation of saturated fatty acids. Cultivation-independent surveys have revealed that the diversity of microorganisms harboring a molecular marker of the pfa gene cluster (i.e., pfaA-KS domain) is high and their potential distribution in marine systems is widespread, from surface seawater to sediments. However, the isolation of PUFA producers from marine waters has been typically restricted to deep or cold environments. Here, we report a phenotypic and genotypic screening for the identification of omega-3 fatty acid producers in free-living bacterial strains isolated from 5, 500, and 1000 m deep coastal seawater from the Bay of Biscay (Spain). We further measured EPA production in pelagic Vibrio sp. strains collected at the three different depths. Vibrio sp. EPA-producers and non-producers were simultaneously isolated from the same water samples and shared a high percentage of identity in their 16S rRNA genes, supporting the view that the pfa gene cluster can be horizontally transferred. Within a cluster of EPA-producers, we found intraspecific variation in the levels of EPA synthesis for isolates harboring different genetic variants of the pfaA-KS domain. The maximum production of EPA was found in a Vibrio sp. strain isolated from a 1000 m depth (average 4.29% ± 1.07 of total fatty acids at 10 °C, without any optimization of culturing conditions).
Collapse
Affiliation(s)
- Mónica Estupiñán
- AZTI, Marine Research Division, Txatxarramendi Irla s/n, 48395 Sukarrieta, Spain; (M.E.); (M.E.B.); (I.M.)
| | - Igor Hernández
- AZTI, Food Research Division, Astondo Bidea, Building 609, 48160 Derio, Spain; (I.H.); (E.S.); (J.F.)
| | - Eduardo Saitua
- AZTI, Food Research Division, Astondo Bidea, Building 609, 48160 Derio, Spain; (I.H.); (E.S.); (J.F.)
| | - M. Elisabete Bilbao
- AZTI, Marine Research Division, Txatxarramendi Irla s/n, 48395 Sukarrieta, Spain; (M.E.); (M.E.B.); (I.M.)
| | - Iñaki Mendibil
- AZTI, Marine Research Division, Txatxarramendi Irla s/n, 48395 Sukarrieta, Spain; (M.E.); (M.E.B.); (I.M.)
| | - Jorge Ferrer
- AZTI, Food Research Division, Astondo Bidea, Building 609, 48160 Derio, Spain; (I.H.); (E.S.); (J.F.)
| | - Laura Alonso-Sáez
- AZTI, Marine Research Division, Txatxarramendi Irla s/n, 48395 Sukarrieta, Spain; (M.E.); (M.E.B.); (I.M.)
| |
Collapse
|
5
|
Heredia RM, Lucchesi GI. Pseudomonas putida Δ9-fatty acid desaturase: Gene cloning, expression, and function in the cationic surfactants stress. J Basic Microbiol 2019; 59:525-534. [PMID: 30779369 DOI: 10.1002/jobm.201800595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/07/2019] [Accepted: 01/13/2019] [Indexed: 11/06/2022]
Abstract
Pseudomonas putida counteract the fluidizing effect of cationic surfactants decreasing the content of membrane unsaturated fatty acid (UFA). A Δ9-fatty acid desaturase gene (desA) from P. putida was isolated, cloned, and successfully expressed in Escherichia coli, a Δ9 desaturase deficient organism. desA consists of 1185 bp and codes for 394 amino acids. The deduced amino acid sequence reveals three histidine clusters and a hydropathy profile, typical of membrane-bound desaturases. Validating desA expression in E. coli cells, the amount of palmitoleic acid increased from 2.05 to 7.36%, with the concomitant increase in membrane fluidity (fluorescence polarization value decrease from 0.13 ± 0.03 to 0.09 ± 0.02). Also, when DesA activity was assayed in vivo, the percentage of UFA obtained from exogenous palmitic acid [1-14 C] increased 10-fold. In contrast, when cells expressing desA were exposed 15 min at sublethal concentration of cationic surfactants, the amount of UFA was 82% lower than that detected in cells non-exposed. Thus, the decrease in UFA content to counteract the fluidizing effect of cationic surfactants can be correlated with reduction of DesA activity.
Collapse
Affiliation(s)
- Romina M Heredia
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
| | - Gloria I Lucchesi
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
| |
Collapse
|
6
|
Garba L, Mohamad Yussoff MA, Abd Halim KB, Ishak SNH, Mohamad Ali MS, Oslan SN, Raja Abd Rahman RNZ. Homology modeling and docking studies of a Δ9-fatty acid desaturase from a Cold-tolerant Pseudomonas sp. AMS8. PeerJ 2018; 6:e4347. [PMID: 29576935 PMCID: PMC5863719 DOI: 10.7717/peerj.4347] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 01/19/2018] [Indexed: 01/02/2023] Open
Abstract
Membrane-bound fatty acid desaturases perform oxygenated desaturation reactions to insert double bonds within fatty acyl chains in regioselective and stereoselective manners. The Δ9-fatty acid desaturase strictly creates the first double bond between C9 and 10 positions of most saturated substrates. As the three-dimensional structures of the bacterial membrane fatty acid desaturases are not available, relevant information about the enzymes are derived from their amino acid sequences, site-directed mutagenesis and domain swapping in similar membrane-bound desaturases. The cold-tolerant Pseudomonas sp. AMS8 was found to produce high amount of monounsaturated fatty acids at low temperature. Subsequently, an active Δ9-fatty acid desaturase was isolated and functionally expressed in Escherichia coli. In this paper we report homology modeling and docking studies of a Δ9-fatty acid desaturase from a Cold-tolerant Pseudomonas sp. AMS8 for the first time to the best of our knowledge. Three dimensional structure of the enzyme was built using MODELLER version 9.18 using a suitable template. The protein model contained the three conserved-histidine residues typical for all membrane-bound desaturase catalytic activity. The structure was subjected to energy minimization and checked for correctness using Ramachandran plots and ERRAT, which showed a good quality model of 91.6 and 65.0%, respectively. The protein model was used to preform MD simulation and docking of palmitic acid using CHARMM36 force field in GROMACS Version 5 and Autodock tool Version 4.2, respectively. The docking simulation with the lowest binding energy, -6.8 kcal/mol had a number of residues in close contact with the docked palmitic acid namely, Ile26, Tyr95, Val179, Gly180, Pro64, Glu203, His34, His206, His71, Arg182, Thr85, Lys98 and His177. Interestingly, among the binding residues are His34, His71 and His206 from the first, second, and third conserved histidine motif, respectively, which constitute the active site of the enzyme. The results obtained are in compliance with the in vivo activity of the Δ9-fatty acid desaturase on the membrane phospholipids.
Collapse
Affiliation(s)
- Lawal Garba
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.,Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.,Department of Microbiology, Faculty of Science, Gombe State University, Gombe, Gombe State, Nigeria
| | - Mohamad Ariff Mohamad Yussoff
- Department of Biotechnology, Kulliyyah of Science, International Islamic University Malaysia, Kuantan, Pahang Darul Makmur, Malaysia
| | - Khairul Bariyyah Abd Halim
- Department of Biotechnology, Kulliyyah of Science, International Islamic University Malaysia, Kuantan, Pahang Darul Makmur, Malaysia
| | - Siti Nor Hasmah Ishak
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Mohd Shukuri Mohamad Ali
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.,Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Siti Nurbaya Oslan
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.,Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Raja Noor Zaliha Raja Abd Rahman
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.,Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
7
|
Singh A, Krishnan KP, Prabaharan D, Sinha RK. Lipid membrane modulation and pigmentation: A cryoprotection mechanism in Arctic pigmented bacteria. J Basic Microbiol 2017; 57:770-780. [DOI: 10.1002/jobm.201700182] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 05/31/2017] [Accepted: 06/06/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Archana Singh
- National Centre for Antarctic and Ocean Research; Headland Sada; Vasco-da-Gama Goa India
| | - Kottekattu P. Krishnan
- National Centre for Antarctic and Ocean Research; Headland Sada; Vasco-da-Gama Goa India
| | - Dharmar Prabaharan
- National Facility for Marine Cyanobacteria; Bharathidasan University; Tiruchirappalli Tamil Nadu India
| | - Rupesh K. Sinha
- National Centre for Antarctic and Ocean Research; Headland Sada; Vasco-da-Gama Goa India
| |
Collapse
|
8
|
Garba L, Shukuri Mo M, Nurbaya Os S, Noor Zalih R. Review on Fatty Acid Desaturases and their Roles in Temperature Acclimatisation. ACTA ACUST UNITED AC 2017. [DOI: 10.3923/jas.2017.282.295] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
9
|
Garba L, Ali MSM, Oslan SN, Rahman RNZRA. Heterologous Expression of PA8FAD9 and Functional Characterization of a Δ9-Fatty Acid Desaturase from a Cold-Tolerant Pseudomonas sp. A8. Mol Biotechnol 2017; 58:718-728. [PMID: 27629791 DOI: 10.1007/s12033-016-9971-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Fatty acid desaturase enzymes are capable of inserting double bonds between carbon atoms of saturated fatty acyl-chains to produce unsaturated fatty acids. A gene coding for a putative Δ9-fatty acid desaturase-like protein was isolated from a cold-tolerant Pseudomonas sp. A8, cloned and heterologously expressed in Escherichia coli. The gene named as PA8FAD9 has an open reading frame of 1185 bp and codes for 394 amino acids with a predicted molecular weight of 45 kDa. The enzyme showed high Δ9-fatty acid desaturase-like protein activity and increased overall levels of cellular unsaturated fatty acids in the recombinant E. coli cells upon expression at different temperatures. The results showed that the ratio of palmitoleic to palmitic acid in the recombinant E. coli cells increased by more than twice the amount observed in the control cells at 20 °C using 0.4 mM IPTG. GCMS analysis confirmed the ability of this enzyme to convert exogenous stearic acid to oleic acid incorporated into the recombinant E. coli membrane phospholipids. It may be concluded that the PA8FAD9 gene from Pseudomonas sp. A8 codes for a putative Δ9-fatty acid desaturase protein actively expressed in E. coli under the influence of temperature and an inducer.
Collapse
Affiliation(s)
- Lawal Garba
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, 43400, UPM Serdang, Selangor Darul Ehsan, Malaysia.,Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, 43400, UPM Serdang, Selangor Darul Ehsan, Malaysia.,Department of Microbiology, Faculty of Science, Gombe State University, Tudun Wada Gombe, P.M.B 127, Gombe State, Nigeria
| | - Mohd Shukuri Mohamad Ali
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, 43400, UPM Serdang, Selangor Darul Ehsan, Malaysia.,Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, 43400, UPM Serdang, Selangor Darul Ehsan, Malaysia
| | - Siti Nurbaya Oslan
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, 43400, UPM Serdang, Selangor Darul Ehsan, Malaysia.,Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, 43400, UPM Serdang, Selangor Darul Ehsan, Malaysia
| | - Raja Noor Zaliha Raja Abdul Rahman
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, 43400, UPM Serdang, Selangor Darul Ehsan, Malaysia. .,Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, 43400, UPM Serdang, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
10
|
Woelke MR, Paulucci NS, Selva A, Garban H, de Lema MG. Δ9 desaturase from Trypanosoma cruzi : Key enzyme in the parasite metabolism. Cloning and overexpression. Microbiol Res 2017; 194:29-37. [DOI: 10.1016/j.micres.2016.07.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 07/03/2016] [Accepted: 07/31/2016] [Indexed: 10/20/2022]
|
11
|
Garba L, Mohamad Ali MS, Oslan SN, Rahman RNZRA. Molecular Cloning and Functional Expression of a Δ9- Fatty Acid Desaturase from an Antarctic Pseudomonas sp. A3. PLoS One 2016; 11:e0160681. [PMID: 27494717 PMCID: PMC4975390 DOI: 10.1371/journal.pone.0160681] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 07/24/2016] [Indexed: 11/25/2022] Open
Abstract
Fatty acid desaturase enzymes play an essential role in the synthesis of unsaturated fatty acids. Pseudomonas sp. A3 was found to produce a large amount of palmitoleic and oleic acids after incubation at low temperatures. Using polymerase Chain Reaction (PCR), a novel Δ9- fatty acid desaturase gene was isolated, cloned, and successfully expressed in Escherichia coli. The gene was designated as PA3FAD9 and has an open reading frame of 1,185 bp which codes for 394 amino acids with a predicted molecular weight of 45 kDa. The activity of the gene product was confirmed via GCMS, which showed a functional putative Δ9-fatty acid desaturase capable of increasing the total amount of cellular unsaturated fatty acids of the E. coli cells expressing the gene. The results demonstrate that the cellular palmitoleic acids have increased two-fold upon expression at 15°C using only 0.1 mM IPTG. Therefore, PA3FAD9 from Pseudomonas sp.A3 codes for a Δ9-fatty acid desaturase-like protein which was actively expressed in E. coli.
Collapse
Affiliation(s)
- Lawal Garba
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
- Department of Microbiology, Faculty of Science, Gombe State University, Tudun Wada Gombe, P.M.B 127, Gombe State, Nigeria
| | - Mohd Shukuri Mohamad Ali
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
| | - Siti Nurbaya Oslan
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
| | - Raja Noor Zaliha Raja Abd Rahman
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
12
|
Paulucci NS, Dardanelli MS, García de Lema M. Biochemical and molecular evidence of a Δ9 fatty acid desaturase from Ensifer meliloti 1021. Microbiol Res 2014; 169:463-8. [DOI: 10.1016/j.micres.2013.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 07/23/2013] [Accepted: 08/10/2013] [Indexed: 11/16/2022]
|
13
|
Wan X, Liang Z, Gong Y, Zhang Y, Jiang M. Characterization of three Δ9-fatty acid desaturases with distinct substrate specificity from an oleaginous fungus Cunninghamella echinulata. Mol Biol Rep 2013; 40:4483-9. [PMID: 23645031 DOI: 10.1007/s11033-013-2540-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 04/29/2013] [Indexed: 01/12/2023]
Abstract
In oleaginous fungus Cunninghamella echinulata, Δ9-fatty acid desaturase introduces the first double bond into a saturated fatty acid. Three distinct genes, designated as d9dma, d9dmb and d9dmc, all encoding putative Δ9-fatty acid desaturases were isolated from this strain. The predicted proteins showed 79-87 % identity to other fungal Δ9-fatty acid desaturases. They all contain three conserved histidine boxes, C-terminal cytochrome b 5 fusion and four transmembrane domains characteristic of Δ9-desaturase. Each putative Δ9-desaturase gene from C. echinulata was able to complement the ole1 mutation in Saccharomyces cerevisiae L8-14C through heterologous expression. Analysis of the fatty acid composition of the transgenic yeast revealed that the conversion rates of 16:0 and 18:0 by D9DMA were obviously higher than those of D9DMB and D9DMC. In addition, D9DMA, D9DMB and D9DMC all had a substrate preference for 18:0 compared with 16:0. Of interest, D9DMA could saturate 12:0, 14:0, 16:0, 17:0, 18:0 and 20:0, while D9DMB saturated 14:0, 16:0, 17:0, 18:0 and 20:0. We also noticed that the transcriptional level of d9dma in C. echinulata was stimulated by cell growth but not by decline in temperature. In contrast, expression of d9dmb and d9dmc was regulated by neither cell growth nor decline in temperature in this strain.
Collapse
Affiliation(s)
- Xia Wan
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, 430062, People's Republic of China.
| | | | | | | | | |
Collapse
|
14
|
Paulucci N, Medeot D, Woelke M, Dardanelli M, de Lema M. Monounsaturated fatty acid aerobic synthesis in Bradyrhizobium
TAL1000 peanut-nodulating is affected by temperature. J Appl Microbiol 2013; 114:1457-67. [DOI: 10.1111/jam.12155] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 12/21/2012] [Accepted: 01/04/2013] [Indexed: 11/29/2022]
Affiliation(s)
- N.S. Paulucci
- Departamento de Biología Molecular; Facultad de Ciencias Exactas; Físico-Químicas y Naturales; Universidad Nacional de Río Cuarto; Río Cuarto Córdoba Argentina
| | - D.B. Medeot
- Departamento de Biología Molecular; Facultad de Ciencias Exactas; Físico-Químicas y Naturales; Universidad Nacional de Río Cuarto; Río Cuarto Córdoba Argentina
| | - M. Woelke
- Departamento de Biología Molecular; Facultad de Ciencias Exactas; Físico-Químicas y Naturales; Universidad Nacional de Río Cuarto; Río Cuarto Córdoba Argentina
| | - M.S. Dardanelli
- Departamento de Biología Molecular; Facultad de Ciencias Exactas; Físico-Químicas y Naturales; Universidad Nacional de Río Cuarto; Río Cuarto Córdoba Argentina
| | - M.G. de Lema
- Departamento de Biología Molecular; Facultad de Ciencias Exactas; Físico-Químicas y Naturales; Universidad Nacional de Río Cuarto; Río Cuarto Córdoba Argentina
| |
Collapse
|
15
|
|
16
|
Cao Y, Xian M, Yang J, Xu X, Liu W, Li L. Heterologous expression of stearoyl-acyl carrier protein desaturase (S-ACP-DES) from Arabidopsis thaliana in Escherichia coli. Protein Expr Purif 2009; 69:209-14. [PMID: 19716420 DOI: 10.1016/j.pep.2009.08.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 08/16/2009] [Accepted: 08/24/2009] [Indexed: 11/30/2022]
Abstract
Fatty acid desaturases are enzymes that introduce double bonds into fatty acyl chains, among which stearoyl-acyl carrier protein desaturase (S-ACP-DES) was widely distributed in the plant kingdom. We cloned the cDNA coding for fab2/ssi2, an S-ACP-DES from Arabidopsis thaliana, into the vector pET30a and heterologously expressed this fatty acid desaturase in Escherichia coli BL21 (DE3). After being induced with IPTG, the fusion protein was efficiently expressed in a soluble form. The SSI2 desaturase was purified by nickel ion affinity chromatography and the product obtained showed a single band by SDS-PAGE analysis. The expression of ssi2 modified the fatty acid composition of the recombinant strain. The ratio of palmitic acid (16:0) decreased from 45.2% (the control strain) to 35.2% while palmitoleate (16:1Delta9) and cis-vaccenate (18:1Delta11) levels were enhanced to some extent. The desaturase enzymatic activity was measured in vivo when the enzyme substrate stearic acid was provided in the culture medium. A new fatty acid, oleic acid (18:1Delta9) was found in the recombinant strain which did not exist in wild-type E. coli. These results demonstrated that the cofactors of the host system can complement the requirement of the SSI2 desaturase.
Collapse
Affiliation(s)
- Yujin Cao
- Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, 266101 Qingdao, China
| | | | | | | | | | | |
Collapse
|