1
|
Zdarta J, Meyer AS, Jesionowski T, Pinelo M. Multi-faceted strategy based on enzyme immobilization with reactant adsorption and membrane technology for biocatalytic removal of pollutants: A critical review. Biotechnol Adv 2019; 37:107401. [DOI: 10.1016/j.biotechadv.2019.05.007] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 04/29/2019] [Accepted: 05/20/2019] [Indexed: 01/22/2023]
|
2
|
Mita L, Grumiro L, Rossi S, Bianco C, Defez R, Gallo P, Mita DG, Diano N. Bisphenol A removal by a Pseudomonas aeruginosa immobilized on granular activated carbon and operating in a fluidized bed reactor. JOURNAL OF HAZARDOUS MATERIALS 2015; 291:129-135. [PMID: 25781217 DOI: 10.1016/j.jhazmat.2015.02.072] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Revised: 02/25/2015] [Accepted: 02/26/2015] [Indexed: 06/04/2023]
Abstract
Serratia rubidiae, Pseudomonas aeruginosa and Escherichia coli K12 have been studied for their ability of Bisphenol A removal from aqueous systems and biofilm formation on activated granule carbon. Mathematical equations for biodegradation process have been elaborated and discussed. P. aeruginosa was found the best strain to be employed in the process of Bisphenol A removal. The yield in BPA removal of a P. aeruginosa biofilm grown on GAC and operating in a fluidized bed reactor has been evaluated. The results confirm the usefulness in using biological activated carbon (BAC process) to remove phenol compounds from aqueous systems.
Collapse
Affiliation(s)
- Luigi Mita
- National Laboratory on Endocrine Disruptors, National Institute of Biostructures and Biosystems (INBB), Via P. Castellino, 111, 80131 Naples, Italy; Institute of Genetic and Biophysics "ABT", Via P. Castellino, 111, 80131 Naples Italy
| | - Laura Grumiro
- National Laboratory on Endocrine Disruptors, National Institute of Biostructures and Biosystems (INBB), Via P. Castellino, 111, 80131 Naples, Italy
| | - Sergio Rossi
- Institute of Genetic and Biophysics "ABT", Via P. Castellino, 111, 80131 Naples Italy
| | - Carmen Bianco
- Institute of Biosciences and BioResources, Via P. Castellino, 111, 80131 Naples, Italy
| | - Roberto Defez
- Institute of Biosciences and BioResources, Via P. Castellino, 111, 80131 Naples, Italy
| | - Pasquale Gallo
- Dipartimento di Chimica, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via della Salute 2, 80055 Portici, Naples, Italy
| | - Damiano Gustavo Mita
- National Laboratory on Endocrine Disruptors, National Institute of Biostructures and Biosystems (INBB), Via P. Castellino, 111, 80131 Naples, Italy; Institute of Genetic and Biophysics "ABT", Via P. Castellino, 111, 80131 Naples Italy.
| | - Nadia Diano
- National Laboratory on Endocrine Disruptors, National Institute of Biostructures and Biosystems (INBB), Via P. Castellino, 111, 80131 Naples, Italy; Department of Experimental Medicine, Second University of Naples, Via S.M. di Costantinopoli, 16, 80138 Naples Italy
| |
Collapse
|
3
|
Demarche P, Junghanns C, Nair RR, Agathos SN. Harnessing the power of enzymes for environmental stewardship. Biotechnol Adv 2012; 30:933-53. [DOI: 10.1016/j.biotechadv.2011.05.013] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 05/13/2011] [Indexed: 11/17/2022]
|
4
|
Mita L, Baldi A, Diano N, Viggiano E, Portaccio M, Nicolucci C, Grumiro L, Menale C, Mita DG, Spugnini EP, Viceconte R, Citro G, Pierantoni R, Sica V, Marino M, Signorile PG, Bianco M. Differential accumulation of BPA in some tissues of offspring of Balb-C mice exposed to different BPA doses. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2012; 33:9-15. [PMID: 22047638 DOI: 10.1016/j.etap.2011.09.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 09/15/2011] [Accepted: 09/23/2011] [Indexed: 05/31/2023]
Abstract
Pregnant adult Balb-C mice were exposed daily to two different doses of Bisphenol A (BPA) by subcutaneous injection beginning on gestational day 1 through the seventh day after delivery. The mothers were sacrificed on postpartum day 21, and the offspring were sacrificed at 3 months of age. Control mice were subjected to the same experimental protocol but received saline injections. The liver, muscles, hindbrain and forebrain of the offspring were dissected and processed using HPLC to assess the level of BPA in the tissues and to determine its dependence on the exposure dose and gender. For comparison, the same tissues were dissected from the mothers and analysed. We report the following results: (1) the level of BPA that accumulated in a given tissue was dependent on the exposure dose; (2) the rank order of BPA accumulation in the various tissues was dependent on the gender of the offspring; (3) the average BPA concentrations in the liver and muscle of the female offspring were higher than in the males; and (4) the average BPA concentration in the central nervous system (i.e., the hindbrain and forebrain) of the male offspring was higher than in the females.
Collapse
Affiliation(s)
- L Mita
- National Institute of Biostructures and Biosystems (INBB), Viale Medaglie d'Oro 305, 00136 Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|