Bayramoglu G, Senkal BF, Yilmaz M, Arica MY. Immobilization and stabilization of papain on poly(hydroxyethyl methacrylate-ethylenglycol dimethacrylate) beads grafted with epoxy functional polymer chains via surface-initiated-atom transfer radical polymerization (SI-ATRP).
BIORESOURCE TECHNOLOGY 2011;
102:9833-9837. [PMID:
21908189 DOI:
10.1016/j.biortech.2011.08.042]
[Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 08/09/2011] [Accepted: 08/10/2011] [Indexed: 05/31/2023]
Abstract
Poly(hydroxyethyl methacrylate-ethylen glycol dimethacrylate), p(HEMA-EGDMA), beads were prepared by suspension polymerization, and were decorated with fibrous poly(glycidyl methacrylate), p(GMA), via surface initiated-atom transfer radical polymerization (SI-ATRP). The functional epoxy groups of the beads were used for covalent immobilization of papain. The average amount of immobilized enzyme was 18.7 mg/g beads. The immobilized enzyme was characterized by temperature, pH, operational and storage stability experiments. The maximum velocity of the free and immobilized enzymes (V(max)) and Michaelis-Menten constant (K(m)) values were determined as 10.7 and 8.3 U/mg proteins and 274 and 465 μM, respectively. The immobilized papain was operated in a batch reactor, and it was very effective for hydrolysis of different proteins (i.e., casein and cytochrom c).
Collapse