1
|
Almeida FLC, Silveira MP, Alvim ID, da Costa TB, da Silva TL, Vieira MGA, Prata AS, Forte MBS. Jet cutter technique as a tool to achieve high lipase hydrolytic activity. FOOD AND BIOPRODUCTS PROCESSING 2022. [DOI: 10.1016/j.fbp.2022.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
2
|
Amino functionalization of magnetic multiwalled carbon nanotubes with flexible hydrophobic spacer for immobilization of Candida rugosa lipase and application in biocatalytic production of fruit flavour esters ethyl butyrate and butyl butyrate. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02657-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
3
|
Basri RS, Rahman RNZRA, Kamarudin NHA, Latip W, Ali MSM. Characterization of Carboxylic Acid Reductase from Mycobacterium phlei Immobilized onto Seplite LX120. Polymers (Basel) 2022; 14:polym14204375. [PMID: 36297953 PMCID: PMC9609965 DOI: 10.3390/polym14204375] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/02/2022] [Accepted: 10/03/2022] [Indexed: 11/16/2022] Open
Abstract
A multi-domain oxidoreductase, carboxylic acid reductase (CAR), can catalyze the one-step reduction of carboxylic acid to aldehyde. This study aimed to immobilize bacterial CAR from a moderate thermophile Mycobacterium phlei (MpCAR). It was the first work reported on immobilizing bacterial CAR onto a polymeric support, Seplite LX120, via simple adsorption. Immobilization time and protein load were optimized for MpCAR immobilization. The immobilized MpCAR showed optimal activity at 60 °C and pH 9. It was stable over a wide range of temperatures (10 to 100 °C) and pHs (4–11), retaining more than 50% of its activity. The immobilized MpCAR also showed stability in polar solvents. The adsorption of MpCAR onto the support was confirmed by Scanning Electron Microscopy (SEM), Fourier-Transform Infrared (FTIR) spectroscopy, and Brunauer–Emmett–Teller (BET) analysis. The immobilized MpCAR could be stored for up to 6 weeks at 4 °C and 3 weeks at 25 °C. Immobilized MpCAR showed great operational stability, as 59.68% of its activity was preserved after 10 assay cycles. The immobilized MpCAR could also convert approximately 2.6 mM of benzoic acid to benzaldehyde at 60 °C. The successfully immobilized MpCAR on Seplite LX120 exhibited improved properties that benefit green industrial processes.
Collapse
Affiliation(s)
- Rose Syuhada Basri
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Raja Noor Zaliha Raja Abd. Rahman
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Nor Hafizah Ahmad Kamarudin
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Centre of Foundation Studies for Agricultural Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Wahhida Latip
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Mohd Shukuri Mohamad Ali
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Correspondence:
| |
Collapse
|
4
|
Immobilized Lipase in Resolution of Ketoprofen Enantiomers: Examination of Biocatalysts Properties and Process Characterization. Pharmaceutics 2022; 14:pharmaceutics14071443. [PMID: 35890337 PMCID: PMC9317814 DOI: 10.3390/pharmaceutics14071443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 02/01/2023] Open
Abstract
In this study, lipase from Aspergillus niger immobilized by physical immobilization by the adsorption interactions and partially interfacial activation and mixed physical immobilization via interfacial activation and ion exchange was used in the kinetic resolution of the ketoprofen racemic mixture. The FTIR spectra of samples after immobilization of enzyme-characteristic signals can be seen, and an increase in particle size diameters upon immobilization is observed, indicating efficient immobilization. The immobilization yield was on the level of 93% and 86% for immobilization unmodified and modified support, respectively, whereas activity recovery reached around 90% for both systems. The highest activity of immobilized biocatalysts was observed at pH 7 and temperature 40 °C and pH 8 and 20 °C for lipase immobilized by physical immobilization by the adsorption interactions and partially interfacial activation and mixed physical immobilization via interfacial activation and ion exchange, respectively. It was also shown that over a wide range of pH (from 7 to 10) and temperature (from 20 to 60 °C) both immobilized lipases retained over 80% of their relative activity, indicating improvement of enzyme stability. The best solvent during kinetic resolution of enantiomers was found to be phosphate buffer at pH 7, which obtained the highest efficiency of racemic ketoprofen methyl ester resolution at the level of over 51%, followed by enantiomeric excess 99.85% in the presence of biocatalyst obtained by physical immobilization by the adsorption interactions and partially interfacial activation.
Collapse
|
5
|
Romero S, Minari RJ, Collins SE. Lipase-Catalyzed Interesterification of Fully and Partially Hydrogenated Soybean Oil Blends for Bioparaffin Production. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c04794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sandra Romero
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC−CONICET), Güemes 3450, Santa Fe 3000, Argentina
| | - Roque J. Minari
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC−CONICET), Güemes 3450, Santa Fe 3000, Argentina
- Facultad de Ingeniería Química, Universidad Nacional del Litoral (FIQ-UNL), Santiago del Estero 2829, Santa Fe 3000, Argentina
| | - Sebastián E. Collins
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC−CONICET), Güemes 3450, Santa Fe 3000, Argentina
- Facultad de Ingeniería Química, Universidad Nacional del Litoral (FIQ-UNL), Santiago del Estero 2829, Santa Fe 3000, Argentina
| |
Collapse
|
6
|
Mangiagalli M, Ami D, de Divitiis M, Brocca S, Catelani T, Natalello A, Lotti M. Short-chain alcohols inactivate an immobilized industrial lipase through two different mechanisms. Biotechnol J 2022; 17:e2100712. [PMID: 35188703 DOI: 10.1002/biot.202100712] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/26/2022] [Accepted: 02/18/2022] [Indexed: 11/07/2022]
Abstract
Broadly used in biocatalysis as acyl acceptors or (co)-solvents, short-chain alcohols often cause irreversible loss of enzyme activity. Understanding the mechanisms of inactivation is a necessary step toward the optimization of biocatalytic reactions and the design of enzyme-based sustainable processes. In this work, we explored the functional and structural response of an immobilized enzyme, Novozym 435, exposed to methanol, ethanol, and tert-butanol. N-435 consists of Candida antarctica lipase B (CALB) adsorbed on polymethacrylate beads and finds application in a variety of processes involving the presence of short-chain alcohols. The nature of the N-435 material required the development of an ad hoc method of structural analysis, based on Fourier transform infrared microspectroscopy, which was complemented by catalytic activity assays and by morphological observation by transmission electron microscopy. We found that the inactivation of N-435 is highly dependent on alcohol concentration and occurs through two different mechanisms. Short-chain alcohols induce conformational changes leading to CALB aggregation, which is only partially prevented by immobilization. Moreover, alcohol modifies the texture of the solid support promoting the enzyme release. Overall, knowledge of the molecular mechanisms underlying Novozym 435 inactivation induced by short-chain alcohols promises to overcome the limitations that usually occur during industrial processes. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Marco Mangiagalli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Diletta Ami
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Marcella de Divitiis
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Stefania Brocca
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Tiziano Catelani
- Microscopy Facility, University of Milano-Bicocca, Milan, 20126, Italy
| | - Antonino Natalello
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Marina Lotti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
7
|
|
8
|
Zhong L, Feng Y, Hu H, Xu J, Wang Z, Du Y, Cui J, Jia S. Enhanced enzymatic performance of immobilized lipase on metal organic frameworks with superhydrophobic coating for biodiesel production. J Colloid Interface Sci 2021; 602:426-436. [PMID: 34144301 DOI: 10.1016/j.jcis.2021.06.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 01/19/2023]
Abstract
Inspired by the interfacial catalysis of lipase, Herein, the hydrophobic ZIF-L coated with polydimethylsiloxane (PDMS) were prepared by chemical vapor deposition (CVD) and used to immobilize lipase from Aspergillus oryzae (AOL) for biodiesel production. The results showed that the PDMS coating enhanced the stability of ZIF-8 and ZIF-L in PBS. Immobilization efficiency of AOL on PDMS-modified ZIF-L was 96% under optimized conditions. The resultant immobilized lipase (AOL@PDMS-ZIF-L) exhibited higher activity recovery (430%) than AOL@ZIF-L. Meanwhile, compared with free lipase, the AOL@PDMS-ZIF-L exhibited better storage stability and thermal stability. After 150 days of storage, the free lipase retained only 20% of its original activity of hydrolyzing p-NPP, while the AOL@PDMS-ZIF-L still retained 90% of its original activity. The biodiesel yield catalyzed from soybean oil by free lipase was only 69%, However, the biodiesel yield by AOL@PDMS-ZIF-L reached 94%, and could still be maintained at 85% even after 5 consecutive cycles. It is believed that this convenient and versatile strategy has great promise in the important fields of immobilized lipase on MOF for biodiesel production.
Collapse
Affiliation(s)
- Le Zhong
- State Key Laboratory of Food Nutrition and Safety, Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, No 29, 13th, Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457, PR China
| | - Yuxiao Feng
- State Key Laboratory of Food Nutrition and Safety, Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, No 29, 13th, Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457, PR China
| | - Hongtong Hu
- State Key Laboratory of Food Nutrition and Safety, Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, No 29, 13th, Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457, PR China
| | - Jiabao Xu
- State Key Laboratory of Food Nutrition and Safety, Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, No 29, 13th, Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457, PR China
| | - Ziyuan Wang
- State Key Laboratory of Food Nutrition and Safety, Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, No 29, 13th, Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457, PR China.
| | - Yingjie Du
- State Key Laboratory of Food Nutrition and Safety, Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, No 29, 13th, Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457, PR China
| | - Jiandong Cui
- State Key Laboratory of Food Nutrition and Safety, Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, No 29, 13th, Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457, PR China.
| | - Shiru Jia
- State Key Laboratory of Food Nutrition and Safety, Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, No 29, 13th, Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457, PR China
| |
Collapse
|
9
|
Exploring the structural and catalytic features of lipase enzymes immobilized on g-C3N4: A novel platform for biocatalytic and photocatalytic reactions. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116612] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
10
|
Toledo MV, José C, Suster CRL, Collins SE, Portela R, Bañares MA, Briand LE. Catalytic and molecular insights of the esterification of ibuprofen and ketoprofen with glycerol. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111811] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Different strategies for the lipase immobilization on the chitosan based supports and their applications. Int J Biol Macromol 2021; 179:170-195. [PMID: 33667561 DOI: 10.1016/j.ijbiomac.2021.02.198] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 01/15/2023]
Abstract
Immobilized enzymes have received incredible interests in industry, pharmaceuticals, chemistry and biochemistry sectors due to their various advantages such as ease of separation, multiple reusability, non-toxicity, biocompatibility, high activity and resistant to environmental changes. This review in between various immobilized enzymes focuses on lipase as one of the most practical enzyme and chitosan as a preferred biosupport for lipase immobilization and provides a broad range of studies of recent decade. We highlight several aspects of lipase immobilization on the surface of chitosan support containing various types of lipase and immobilization techniques from physical adsorption to covalent bonding and cross-linking with their benefits and drawbacks. The recent advances and future perspectives that can improve the present problems with lipase and chitosan such as high-price of lipase and low mechanical resistance of chitosan are also discussed. According to the literature, optimization of immobilization methods, combination of these methods with other techniques, physical and chemical modifications of chitosan, co-immobilization and protein engineering can be useful as a solution to overcome the mentioned limitations.
Collapse
|
12
|
Enhanced Performance of Immobilized Rhizopus oryzae Lipase on Coated Porous Polypropylene Support with Additives. Catalysts 2021. [DOI: 10.3390/catal11030303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The immobilization of Rhizopus oryzae lipase (RoL) by hydrophobic adsorption on polypropylene supports with additives was investigated. Additives such as hen egg albumin, sodium caseinate and CAVAMAX® W6 were used to coat the support during immobilization where the immobilized RoL on coated support was compared to those of noncoated support. Following the immobilization, the catalytic activity of immobilized RoL was characterized based on different temperatures and pH. The immobilized RoL without additives showed optimal lipase activity at an optimum temperature of 50 °C and pH 6. However, RoL lipase that was immobilized on support treated with CAVAMAX® W6 had better performance in terms of hydrolytic activity and stability as compared to other additives. In addition, by having a support treated with hen egg albumin, the immobilized RoL was capable of yielding higher ester during esterification reactions.
Collapse
|
13
|
Mohapatra BR. Characterization of β-mannanase extracted from a novel Streptomyces species Alg-S25 immobilized on chitosan nanoparticles. BIOTECHNOL BIOTEC EQ 2020. [DOI: 10.1080/13102818.2020.1858158] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Bidyut Ranjan Mohapatra
- Department of Biological and Chemical Sciences, The University of the West Indies, Bridgetown, Barbados
| |
Collapse
|
14
|
|
15
|
Mohapatra BR. Biocatalytic characteristics of chitosan nanoparticle-immobilized alginate lyase extracted from a novel Arthrobacter species AD-10. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2019.101458] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
16
|
Copolymeric Hydrogel-Based Immobilization of Yeast Cells for Continuous Biotransformation of Fumaric Acid in a Microreactor. MICROMACHINES 2019; 10:mi10120867. [PMID: 31835518 PMCID: PMC6952971 DOI: 10.3390/mi10120867] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/02/2019] [Accepted: 12/08/2019] [Indexed: 12/19/2022]
Abstract
Although enzymatic microbioreactors have recently gained lots of attention, reports on the use of whole cells as biocatalysts in microreactors have been rather modest. In this work, an efficient microreactor with permeabilized Saccharomyces cerevisiae cells was developed and used for continuous biotransformation of fumaric into industrially relevant L-malic acid. The immobilization of yeast cells was achieved by entrapment in a porous structure of various hydrogels. Copolymers based on different ratios of sodium alginate (SA) and polyvinyl alcohol (PVA) were used for hydrogel formation, while calcium chloride and boric or phenylboronic acid were tested as crosslinking agents for SA and PVA, respectively. The influence of hydrogel composition on physico-chemical properties of hydrogels prepared in the form of thin films was evaluated. Immobilization of permeabilized S. cerevisiae cells in the selected copolymeric hydrogel resulted in up to 72% retained fumarase activity. The continuous biotransformation process using two layers of hydrogels integrated into a two-plate microreactor revealed high space time yield of 2.86 g/(L·h) while no activity loss was recorded during 7 days of continuous operation.
Collapse
|
17
|
Bresolin D, Estrella AS, da Silva JRP, Valério A, Sayer C, de Araújo PHH, de Oliveira D. Synthesis of a green polyurethane foam from a biopolyol obtained by enzymatic glycerolysis and its use for immobilization of lipase NS-40116. Bioprocess Biosyst Eng 2018; 42:213-222. [PMID: 30367249 DOI: 10.1007/s00449-018-2026-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 10/17/2018] [Indexed: 12/18/2022]
Abstract
The use of green sources for materials synthesis has gained popularity in recent years. This work investigated the immobilization of lipase NS-40116 (Thermomyces lanuginosus lipase) in polyurethane foam (PUF) using a biopolyol obtained through the enzymatic glycerolysis between castor oil and glycerol, catalyzed by the commercial lipase Novozym 435 for the PUF formation. The reaction was performed to obtain biopolyol resulting in the conversion of 64% in mono- and diacylglycerol, promoting the efficient use of the reaction product as biopolyol to obtain polyurethane foam. The enzymatic derivative with immobilized lipase NS-40116 presented apparent density of 0.19 ± 0.03 g/cm3 and an immobilization yield was 94 ± 4%. Free and immobilized lipase NS-40116 were characterized in different solvents (methanol, ethanol, and propanol), temperatures (20, 40, 60 and 80 °C), pH (3, 5, 7, 9 and 11) and presence of ions Na+, Mg++, and Ca++. The support provided higher stability to the enzyme, mainly when subjected to acid pH (free lipase lost 80% of relative activity after 360 h of contact, when the enzymatic derivative lost around 22%) and high-temperature free lipase lost 50% of relative activity, while the immobilized remained 95%. The enzymatic derivative was also used for esterification reactions and conversions around 66% in fatty acid methyl esters, using abdominal chicken fat as feedstock, were obtained in the first use, maintaining this high conversion until the fourth reuse, proving that the support obtained using environmentally friendly techniques is applicable.
Collapse
Affiliation(s)
- Daniela Bresolin
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, P.O. Box 476, Florianopolis, SC, 88040-900, Brazil
| | - Arthur S Estrella
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, P.O. Box 476, Florianopolis, SC, 88040-900, Brazil
| | - Jacqueline R P da Silva
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, P.O. Box 476, Florianopolis, SC, 88040-900, Brazil
| | - Alexsandra Valério
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, P.O. Box 476, Florianopolis, SC, 88040-900, Brazil
| | - Cláudia Sayer
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, P.O. Box 476, Florianopolis, SC, 88040-900, Brazil
| | - Pedro H H de Araújo
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, P.O. Box 476, Florianopolis, SC, 88040-900, Brazil
| | - Débora de Oliveira
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, P.O. Box 476, Florianopolis, SC, 88040-900, Brazil.
| |
Collapse
|
18
|
Rahman INA, Attan N, Mahat NA, Jamalis J, Abdul Keyon AS, Kurniawan C, Wahab RA. Statistical optimization and operational stability of Rhizomucor miehei lipase supported on magnetic chitosan/chitin nanoparticles for synthesis of pentyl valerate. Int J Biol Macromol 2018; 115:680-695. [DOI: 10.1016/j.ijbiomac.2018.04.111] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 04/21/2018] [Accepted: 04/21/2018] [Indexed: 10/17/2022]
|
19
|
Abd Manan FM, Attan N, Zakaria Z, Mahat NA, Abdul Wahab R. Insight into the Rhizomucor miehei lipase supported on chitosan-chitin nanowhiskers assisted esterification of eugenol to eugenyl benzoate. J Biotechnol 2018; 280:19-30. [DOI: 10.1016/j.jbiotec.2018.05.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 05/11/2018] [Accepted: 05/27/2018] [Indexed: 11/25/2022]
|
20
|
Elemental identification of blue paintings traces present in historic cemeteries in the São Martinho region, southern Brazil. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2017.11.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
21
|
José C, Toledo MV, Nicolás P, Lasalle V, Ferreira ML, Briand LE. Influence of the nature of the support on the catalytic performance of CALB: experimental and theoretical evidence. Catal Sci Technol 2018. [DOI: 10.1039/c7cy02466e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
CALB immobilized on hydrophobic supports exhibits higher conversion of ibuprofen and enantiomeric excess towards the S-enantiomer.
Collapse
Affiliation(s)
- Carla José
- Centro de Investigación y Desarrollo en Ciencias Aplicadas-Dr. Jorge J. Ronco
- Universidad Nacional de La Plata
- CONICET
- B1900AJK La Plata
- Argentina
| | - María Victoria Toledo
- Centro de Investigación y Desarrollo en Ciencias Aplicadas-Dr. Jorge J. Ronco
- Universidad Nacional de La Plata
- CONICET
- B1900AJK La Plata
- Argentina
| | - Paula Nicolás
- Planta Piloto de Ingeniería Química – PLAPIQUI
- CONICET
- Universidad Nacional del Sur
- 8000 Bahía Blanca
- Argentina
| | - Verónica Lasalle
- Instituto de Química del Sur – INQUISUR
- CONICET
- Universidad Nacional del Sur
- Bahía Blanca
- Argentina
| | - María Luján Ferreira
- Planta Piloto de Ingeniería Química – PLAPIQUI
- CONICET
- Universidad Nacional del Sur
- 8000 Bahía Blanca
- Argentina
| | - Laura E. Briand
- Centro de Investigación y Desarrollo en Ciencias Aplicadas-Dr. Jorge J. Ronco
- Universidad Nacional de La Plata
- CONICET
- B1900AJK La Plata
- Argentina
| |
Collapse
|
22
|
Effect of the Presence of Surfactants and Immobilization Conditions on Catalysts’ Properties of Rhizomucor miehei Lipase onto Chitosan. Appl Biochem Biotechnol 2017; 184:1263-1285. [DOI: 10.1007/s12010-017-2622-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/02/2017] [Indexed: 11/26/2022]
|
23
|
Manan FMA, Rahman INA, Marzuki NHC, Mahat NA, Huyop F, Wahab RA. Statistical modelling of eugenol benzoate synthesis using Rhizomucor miehei lipase reinforced nanobioconjugates. Process Biochem 2016. [DOI: 10.1016/j.procbio.2015.12.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Bolivar JM, Eisl I, Nidetzky B. Advanced characterization of immobilized enzymes as heterogeneous biocatalysts. Catal Today 2016. [DOI: 10.1016/j.cattod.2015.05.004] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
25
|
Activity of immobilized lipase from Candida antarctica (Lipozyme 435) and its performance on the esterification of oleic acid in supercritical carbon dioxide. J Supercrit Fluids 2016. [DOI: 10.1016/j.supflu.2015.08.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
26
|
Califano V, Ausanio G, Bloisi F, Aronne A, Vicari LR, Nasti L. m-DOPA addition in MAPLE immobilization of lipase for biosensor applications. SENSING AND BIO-SENSING RESEARCH 2015. [DOI: 10.1016/j.sbsr.2015.07.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
27
|
Enzymatic activity and conformational and morphological studies of four commercial lipases treated with supercritical carbon dioxide. J Supercrit Fluids 2015. [DOI: 10.1016/j.supflu.2014.11.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
28
|
Jenab E, Temelli F, Curtis JM, Zhao YY. Performance of two immobilized lipases for interesterification between canola oil and fully-hydrogenated canola oil under supercritical carbon dioxide. Lebensm Wiss Technol 2014. [DOI: 10.1016/j.lwt.2014.02.051] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
29
|
Immobilization of (S)-mandelate dehydrogenase and its catalytic performance on stereoselective transformation of mandelic acid. J Taiwan Inst Chem Eng 2014. [DOI: 10.1016/j.jtice.2013.09.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Pawar SV, Yadav GD. PVA/chitosan–glutaraldehyde cross-linked nitrile hydratase as reusable biocatalyst for conversion of nitriles to amides. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.molcatb.2014.01.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
31
|
Sánchez DA, Tonetto GM, Ferreira ML. Enzymatic synthesis of 1,3-dicaproyglycerol by esterification of glycerol with capric acid in an organic solvent system. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.molcatb.2013.11.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
32
|
Urrutia P, Bernal C, Escobar S, Santa C, Mesa M, Wilson L, Illanes A. Influence of chitosan derivatization on its physicochemical characteristics and its use as enzyme support. J Appl Polym Sci 2013. [DOI: 10.1002/app.40171] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Paulina Urrutia
- Escuela de Ingeniería Bioquímica; Pontificia Universidad Católica de Valparaíso; Avenida Brasil 2147 Valparaíso Chile
| | - Claudia Bernal
- Escuela de Ingeniería Bioquímica; Pontificia Universidad Católica de Valparaíso; Avenida Brasil 2147 Valparaíso Chile
- Grupo Ciencia de los Materiales; Instituto de Química; Universidad de Antioquia. Medellin; Colombia
| | - Sindy Escobar
- Grupo Ciencia de los Materiales; Instituto de Química; Universidad de Antioquia. Medellin; Colombia
| | - Cristiam Santa
- Grupo Ciencia de los Materiales; Instituto de Química; Universidad de Antioquia. Medellin; Colombia
| | - Monica Mesa
- Grupo Ciencia de los Materiales; Instituto de Química; Universidad de Antioquia. Medellin; Colombia
| | - Lorena Wilson
- Escuela de Ingeniería Bioquímica; Pontificia Universidad Católica de Valparaíso; Avenida Brasil 2147 Valparaíso Chile
| | - Andres Illanes
- Escuela de Ingeniería Bioquímica; Pontificia Universidad Católica de Valparaíso; Avenida Brasil 2147 Valparaíso Chile
| |
Collapse
|
33
|
Klein MP, Nunes MR, Rodrigues RC, Benvenutti EV, Costa TMH, Hertz PF, Ninow JL. Effect of the Support Size on the Properties of β-Galactosidase Immobilized on Chitosan: Advantages and Disadvantages of Macro and Nanoparticles. Biomacromolecules 2012; 13:2456-64. [DOI: 10.1021/bm3006984] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Manuela P. Klein
- Departamento de Engenharia Química e Alimentos, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
- Laboratório de Enzimologia, Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul, Porto Alegre,
RS, 91501-970, Brazil
| | - Michael R. Nunes
- Laboratório de Sólidos e Superfícies, Instituto de Química, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 91501-970, Brazil
| | - Rafael C. Rodrigues
- Laboratório de Enzimologia, Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul, Porto Alegre,
RS, 91501-970, Brazil
| | - Edilson V. Benvenutti
- Laboratório de Sólidos e Superfícies, Instituto de Química, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 91501-970, Brazil
| | - Tania M. H. Costa
- Laboratório de Sólidos e Superfícies, Instituto de Química, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 91501-970, Brazil
| | - Plinho F. Hertz
- Laboratório de Enzimologia, Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul, Porto Alegre,
RS, 91501-970, Brazil
| | - Jorge L. Ninow
- Departamento de Engenharia Química e Alimentos, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| |
Collapse
|
34
|
Biggs BW, Hunt HK, Armani AM. Selective patterning of Si-based biosensor surfaces using isotropic silicon etchants. J Colloid Interface Sci 2012; 369:477-81. [PMID: 22196345 PMCID: PMC3265681 DOI: 10.1016/j.jcis.2011.11.082] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 11/29/2011] [Accepted: 11/30/2011] [Indexed: 10/14/2022]
Abstract
Ultra-sensitive, label-free biosensors have the potential to have a tremendous impact on fields like medical diagnostics. For the majority of these Si-based integrated devices, it is necessary to functionalize the surface with a targeting ligand in order to perform specific biodetection. To do this, silane coupling agents are commonly used to immobilize the targeting ligand. However, this method typically results in the bioconjugation of the entire device surface, which is undesirable. To compensate for this effect, researchers have developed complex blocking strategies that result in selective patterning of the sensor surface. Recently, silane coupling agents were used to attach biomolecules to the surface of silica toroidal biosensors integrated on a silicon wafer. Interestingly, only the silica biosensor surface was conjugated. Here, we hypothesize why this selective patterning occurred. Specifically, the silicon etchant (xenon difluoride), which is used in the fabrication of the biosensor, appears to reduce the efficiency of the silane coupling attachment to the underlying silicon wafer. These results will enable future researchers to more easily control the bioconjugation of their sensor surfaces, thus improving biosensor device performance.
Collapse
Affiliation(s)
- Bradley W. Biggs
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, USA
| | - Heather K. Hunt
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, USA
- Department of Biological Engineering, University of Missouri, Columbia, Missouri, 65211, USA
| | - Andrea M. Armani
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, USA
- Ming Hsieh Department of Electrical Engineering-Electrophysics, University of Southern California, Los Angeles, California, 90089, USA
| |
Collapse
|