1
|
Asif A, Ishtiaq S, Kamran SH, Youssef FS, Lashkar MO, Ahmed SA, Ashour ML. UHPLC-QTOF-MS Metabolic Profiling of Marchantia polymorpha and Evaluation of Its Hepatoprotective Activity Using Paracetamol-Induced Liver Injury in Mice. ACS OMEGA 2023; 8:19037-19046. [PMID: 37273612 PMCID: PMC10233839 DOI: 10.1021/acsomega.3c01867] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/04/2023] [Indexed: 06/06/2023]
Abstract
Marchantia species were traditionally used to treat liver failure. Marchantia polymorpha chloroform extract showed a marked hepatoprotective activity in a dose-dependent manner in paracetamol-induced extensive liver damage in mice. At a dose of 500 mg/kg (MP-500), it resulted in a reduction in aspartate transaminase by 49.44%, alanine transaminase by 44.11%, and alkaline phosphatase by 24.4% with significant elevation in total proteins by 58.69% with respect to the diseased group. It showed significant reductions in total bilirubin, total cholesterol, triglycerides, low density lipoprotein (LDL), very LDL, total lipids, and to high density lipoprotein ratio (CH/HDL) by 53.42, 30.14, 35.02, 45.79, 34.74, 41.45, and 49.52%, respectively, together with a 37.69% increase in HDL with respect to the diseased group. It also showed an elevation of superoxide dismutase by 28.09% and in glutathione peroxidase by 81.83% in addition to the reduction of lipid peroxidation by 17.95% as compared to the paracetamol only treated group. This was further supported by histopathological examination that showed normal liver architecture and a normal sinusoidal gap. Metabolic profiling by ultrahigh performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometer (UHPLC-QTOF/MS) led to the tentative identification of 28 compounds belonging to phenols, quinolones, phenylpropanoid, acylaminosugars, terpenoids, lipids, and fatty acids to which the activity was attributed. Four compounds were detected in the negative ionization mode which are neoacrimarine J, marchantin A, chitobiose, and phellodensin F, while the rest were detected in the positive mode. Thus, it can be concluded that this plant could serve as a valuable choice for the treatment of hepatotoxicity that further consolidated its traditional use.
Collapse
Affiliation(s)
- Ayesha Asif
- Punjab
University College of Pharmacy, University
of the Punjab, Lahore 54000, Pakistan
| | - Saiqa Ishtiaq
- Punjab
University College of Pharmacy, University
of the Punjab, Lahore 54000, Pakistan
| | - Sairah Hafeez Kamran
- Institute
of Pharmacy, Faculty of Pharmaceutical and Allied Health Sciences, Lahore College for Women University, Lahore 54000, Pakistan
| | - Fadia S. Youssef
- Department
of Pharmacognosy, Faculty of Pharmacy, Ain-Shams
University, Abbasia, Cairo 11566, Egypt
| | - Manar O. Lashkar
- Department
of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Safwat A. Ahmed
- Department
of Pharmacognosy, Faculty of Pharmacy, Suez
Canal University, Ismailia 41522, Egypt
| | - Mohamed L. Ashour
- Department
of Pharmacognosy, Faculty of Pharmacy, Ain-Shams
University, Abbasia, Cairo 11566, Egypt
- Pharmacy
Program, Department of Pharmaceutical Sciences, Batterjee Medical College, Jeddah 21442, Saudi Arabia
| |
Collapse
|
2
|
Raimi A, Adeleke R. Bioprospecting of endophytic microorganisms for bioactive compounds of therapeutic importance. Arch Microbiol 2021; 203:1917-1942. [PMID: 33677637 DOI: 10.1007/s00203-021-02256-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/27/2021] [Accepted: 02/18/2021] [Indexed: 01/09/2023]
Abstract
Presently, several drug discovery investigations on therapeutic management of human health are aimed at bioprospecting for microorganisms, especially endophytic microbes of biotechnological importance. This review investigates the benefits of endophytes, especially in producing bioactive compounds useful in modern medicine by systematically reviewing published data from 12 databases. Only experimental studies investigating either or both bacterial and fungal endophytes and within the scope of this review were selected. The published data from the last 2 decades (2000-2019) revealed diverse endophytes associated with different plants produce a broad spectrum of bioactive compounds with therapeutic benefits. Notably, antibacterial, followed by anticancer and antifungal activities, were mostly reported. Only three studies investigated the anti-plasmodial activity. The variation observed in the synthesis of bioactive compounds amongst endophytes varied with host type, endophyte species, and cultivation medium. Fungal endophytes were more investigated than bacterial endophytes, with both endophytes having species diversity amongst literature. The endophytes were predominantly from medicinal plants and belonged to either Ascomycota (fungi) or Proteobacteria and Firmicutes (bacteria). This review presents excellent prospects of harnessing endophytes and their unique bioactive compounds in developing novel and effective compounds of medicinal importance.
Collapse
Affiliation(s)
- Adekunle Raimi
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, 2520, South Africa
| | - Rasheed Adeleke
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, 2520, South Africa.
| |
Collapse
|
3
|
Ribeiro BA, da Mata TB, Canuto GAB, Silva EO. Chemical Diversity of Secondary Metabolites Produced by Brazilian Endophytic Fungi. Curr Microbiol 2020; 78:33-54. [PMID: 33108493 DOI: 10.1007/s00284-020-02264-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/19/2020] [Indexed: 12/26/2022]
Abstract
Endophytes are microorganisms that live inside vegetal tissues without causing any loss to the host plant. They display wide biosynthetic capacity when producing several bioactive secondary metabolites, whose induction could be related to activation of genes, which might be silent or expressed depending on the geographic characteristics from where the endophytic was isolated. The extraordinary richness of the Brazilian biodiversity has encouraged several research groups in the endophytic bioprospecting. This review covers natural products reported by studies on from the Brazilian endophytic fungi cultures and classified them into three chemical classes (terpenes, phenolic, and nitrogen-containing compounds). For discussion purposes, Principal Component Analysis (PCA) was used as an unsupervised explorative method to evaluate the chemical variation in the Brazilian endophyte dataset. In addition, the dendrogram from the Hierarchical Clustering Analysis (HCA) confirmed the PCA results, and HCA could identify some main endophytic clusters. Our analysis clarified how the secondary metabolites were distributed in the different Brazilian endophyte strains, and this information will be a reliable guide that will support researchers to design microbial culture strategies.
Collapse
Affiliation(s)
- Bruno A Ribeiro
- Department of Organic Chemistry, Chemistry Institute, Federal University of Bahia, Barão de Jeremoabo 147, Salvador, BA, 40170-115, Brazil
| | - Thiara B da Mata
- Department of Analytical Chemistry, Chemistry Institute, Federal University of Bahia, Barão de Jeremoabo 147, Salvador, BA, 40170-115, Brazil
| | - Gisele A B Canuto
- Department of Analytical Chemistry, Chemistry Institute, Federal University of Bahia, Barão de Jeremoabo 147, Salvador, BA, 40170-115, Brazil
| | - Eliane O Silva
- Department of Organic Chemistry, Chemistry Institute, Federal University of Bahia, Barão de Jeremoabo 147, Salvador, BA, 40170-115, Brazil.
| |
Collapse
|
4
|
Mtibaà R, Olicón-Hernández DR, Pozo C, Nasri M, Mechichi T, González J, Aranda E. Degradation of bisphenol A and acute toxicity reduction by different thermo-tolerant ascomycete strains isolated from arid soils. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 156:87-96. [PMID: 29533211 DOI: 10.1016/j.ecoenv.2018.02.077] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/28/2018] [Accepted: 02/28/2018] [Indexed: 05/20/2023]
Abstract
Four different laccase-producing strains were isolated from arid soils and used for bisphenol A (BPA) degradation. These strains were identified as Chaetomium strumarium G5I, Thielavia arenaria CH9, Thielavia arenaria HJ22 and Thielavia arenaria SM1(III) by internal transcribed spacer 5.8 S rDNA analysis. Residual BPA was evaluated by HPLC analysis during 48 h of incubation. A complete removal of BPA was observed by the whole cell fungal cultures within different times, depending on each strain. C. strumarium G5I was the most efficient degrader, showing 100% of removal within 8 h of incubation. The degradation of BPA was accompanied by the production of laccase and dye decolorizing peroxidase (DyP) under degradation conditions. The presence of aminobenzotriazole (ABT) as an inhibitor of cytochrome P450s monooxygenases (CYP) demonstrated a slight decrease in BPA removal rate, suggesting the effective contribution of CYP in the conversion. The great involvement of laccase in BPA transformation together with cell-associated enzymes, such as CYP, was supported by the identification of hydroxylated metabolites by ultra-high performance liquid chromatography-mass spectroscopy (UHPLC-MS). The metabolic pathway of BPA transformation was proposed based on the detected metabolites. The acute toxicity of BPA and its products was investigated and showed a significant reduction, except for T. arenaria SM1(III) that did not caused reduction of toxicity (IC50 < 8%), possibly due to the presence of toxic metabolites. The results of the present study point out the potential application of the isolated ascomycetes in pollutant removal processes, especially C. strumarium G5I as an efficient degrader of BPA.
Collapse
Affiliation(s)
- Rim Mtibaà
- Laboratory of Enzyme Engineering and Microbiology, Ecole Nationale d'Ingenieurs de Sfax, University of Sfax, Route de Soukra Km 4.5, BP 1173, 3038 Sfax, Tunisia.
| | | | - Clementina Pozo
- Department of Microbiology, University of Granada, Campus Cartuja E-18071, Granada, Spain; Institute of Water Research, University of Granada, Ramón y Cajal 4, E-18071 Granada, Spain
| | - Moncef Nasri
- Laboratory of Enzyme Engineering and Microbiology, Ecole Nationale d'Ingenieurs de Sfax, University of Sfax, Route de Soukra Km 4.5, BP 1173, 3038 Sfax, Tunisia
| | - Tahar Mechichi
- Laboratory of Enzyme Engineering and Microbiology, Ecole Nationale d'Ingenieurs de Sfax, University of Sfax, Route de Soukra Km 4.5, BP 1173, 3038 Sfax, Tunisia
| | - Jesus González
- Department of Microbiology, University of Granada, Campus Cartuja E-18071, Granada, Spain; Institute of Water Research, University of Granada, Ramón y Cajal 4, E-18071 Granada, Spain
| | - Elisabet Aranda
- Department of Microbiology, University of Granada, Campus Cartuja E-18071, Granada, Spain; Institute of Water Research, University of Granada, Ramón y Cajal 4, E-18071 Granada, Spain
| |
Collapse
|
5
|
|
6
|
Ióca LP, Allard PM, Berlinck RGS. Thinking big about small beings – the (yet) underdeveloped microbial natural products chemistry in Brazil. Nat Prod Rep 2014; 31:646-75. [DOI: 10.1039/c3np70112c] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Mycoleptione, a new chromone derivative isolated from the endophytic fungus Mycoleptodiscus sp. MU41. J Antibiot (Tokyo) 2012; 65:627-9. [DOI: 10.1038/ja.2012.80] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
8
|
Andrioli WJ, Damásio ARL, Silva TM, da Silva VB, Maller A, Nanayakkara NPD, Silva CHTP, Polizeli MLTM, Bastos JK. Endo-xylanase GH11 activation by the fungal metabolite eugenitin. Biotechnol Lett 2012; 34:1487-92. [PMID: 22481300 DOI: 10.1007/s10529-012-0918-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 03/21/2012] [Indexed: 10/28/2022]
Abstract
Eugenitin, a chromone derivative and a metabolite of the endophyte Mycoleptodiscus indicus, at 5 mM activated a recombinant GH11 endo-xylanase by 40 %. The in silico prediction of ligand-binding sites on the three-dimensional structure of the endo-xylanase revealed that eugenitin interacts mainly by a hydrogen bond with a serine residue and a stacking interaction of the heterocyclic aromatic ring system with a tryptophan residue. Eugenitin improved the GH11 endo-xylanase activity on different substrates, modified the optimal pH and temperature activities and slightly affected the kinetic parameters of the enzyme.
Collapse
Affiliation(s)
- Willian J Andrioli
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, 14040-903, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|