1
|
Wang L, Dekker M, Heising J, Zhao L, Fogliano V. Food matrix design can influence the antimicrobial activity in the food systems: A narrative review. Crit Rev Food Sci Nutr 2023; 64:8963-8989. [PMID: 37154045 DOI: 10.1080/10408398.2023.2205937] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Antimicrobial agents are safe preservatives having the ability to protect foods from microbial spoilage and extend their shelf life. Many factors, including antimicrobials' chemical features, storage environments, delivery methods, and diffusion in foods, can affect their antimicrobial activities. The physical-chemical characteristics of the food itself play an important role in determining the efficacy of antimicrobial agents in foods; however the mechanisms behind it have not been fully explored. This review provides new insights and comprehensive knowledge regarding the impacts of the food matrix, including the food components and food (micro)structures, on the activities of antimicrobial agents. Studies of the last 10 years regarding the influences of the food structure on the effects of antimicrobial agents against the microorganisms' growth were summarized. The mechanisms underpinning the loss of the antimicrobial agents' activity in foods are proposed. Finally, some strategies/technologies to improve the protection of antimicrobial agents in specific food categories are discussed.
Collapse
Affiliation(s)
- Li Wang
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, PR China
- Food Quality and Design, Wageningen University & Research, Wageningen, The Netherlands
| | - Matthijs Dekker
- Food Quality and Design, Wageningen University & Research, Wageningen, The Netherlands
| | - Jenneke Heising
- Food Quality and Design, Wageningen University & Research, Wageningen, The Netherlands
| | - Liming Zhao
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, PR China
| | - Vincenzo Fogliano
- Food Quality and Design, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
2
|
Fakhry H, El-Sonbati M, Omar B, El-Henawy R, Zhang Y, El-Kady M. Novel fabricated low-cost hybrid polyacrylonitrile/polyvinylpyrrolidone coated polyurethane foam (PAN/PVP@PUF) membrane for the decolorization of cationic and anionic dyes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 315:115128. [PMID: 35483254 DOI: 10.1016/j.jenvman.2022.115128] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 04/13/2022] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
Dyes are recalcitrait organic pollutants threatening the aquatic environment and human health. In the present study, a novel low-cost hybrid membrane was fabricated by coating polyurethane foam (PUF) with polyacrylonitrile/polyvinylpyrrolidone (PAN/PVP) via phase inversion technique from casting solutions consisting of PAN and PVP with Dimethyl formamide (DMF) and applied for removal of cationic (Methylene Blue (MB)) and anionic (Methyl Orange (MO)) dyes from aqueous solutions. The as-prepared membrane was first characterized by Scan Electron Microscope (SEM), Fourier Transform Infrared (FTIR), Energy Dispersive Spectrometry (EDS), etc. Then, batch experiments were conducted to optimize the adsorption conditions, including contact time, adsorbent dose, dyes concentration, and pH. The dye removal results fitted with pseudo first and second-order kinetics; Langmuir, Freundlich, and Temkin isotherms' models. The maximum dye decolorization was approximately 97% and 95% within 60 and 120 min using 0.5 and 1 g of the fabricated composite for MB and MO, respectively. The kinetic studies showed rapid sorption dynamics following a second-order kinetic model. In addition, dye adsorption equilibrium data fitted well to the Freundlich isotherm with monolayer maximum adsorption capacity of 6.356 and 3.321 mg/g for MO and MB dye, respectively. Thus, the novel hybrid membrane is promising as a cheap and efficient adsorbent for the removal of both cationic and anionic dyes from wastewater. The current study demonstrated a new avenue to achieve efficient management of dyes in aquatic environments.
Collapse
Affiliation(s)
- Hala Fakhry
- Polymer Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria, 21934, Egypt
| | - Mervat El-Sonbati
- Department of Environmental Sciences, Faculty of Science, Damietta University, 34517, Damietta, Egypt
| | - Basma Omar
- Department of Environmental Sciences, Faculty of Science, Damietta University, 34517, Damietta, Egypt
| | - Reham El-Henawy
- Department of Environmental Sciences, Faculty of Science, Damietta University, 34517, Damietta, Egypt
| | - Yifeng Zhang
- Department of Environmental Engineering, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark.
| | - Marwa El-Kady
- Fabrication Technology Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications, (SRTA-City), New Borg El-Arab City, Alexandria, 21934, Egypt; Chemical and Petrochemicals Engineering Department, Engineering Faculty, Egypt-Japan University of Science and Technology, New BorgEl-Arab City, Alexandria, 21934, Egypt
| |
Collapse
|
3
|
Inanan T. Cryogel disks for lactase immobilization and lactose-free milk production. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
4
|
Chiriac AP, Rusu AG, Nita LE, Chiriac VM, Neamtu I, Sandu A. Polymeric Carriers Designed for Encapsulation of Essential Oils with Biological Activity. Pharmaceutics 2021; 13:pharmaceutics13050631. [PMID: 33925127 PMCID: PMC8146382 DOI: 10.3390/pharmaceutics13050631] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/21/2021] [Accepted: 04/24/2021] [Indexed: 12/27/2022] Open
Abstract
The article reviews the possibilities of encapsulating essential oils EOs, due to their multiple benefits, controlled release, and in order to protect them from environmental conditions. Thus, we present the natural polymers and the synthetic macromolecular chains that are commonly used as networks for embedding EOs, owing to their biodegradability and biocompatibility, interdependent encapsulation methods, and potential applicability of bioactive blend structures. The possibilities of using artificial intelligence to evaluate the bioactivity of EOs—in direct correlation with their chemical constitutions and structures, in order to avoid complex laboratory analyses, to save money and time, and to enhance the final consistency of the products—are also presented.
Collapse
Affiliation(s)
- Aurica P. Chiriac
- Department of Natural Polymers, Bioactive and Biocompatible Materials, Petru Poni Institute of Macromolecular Chemistry, 700487 Iasi, Romania; (A.G.R.); (L.E.N.); (I.N.); (A.S.)
- Correspondence:
| | - Alina G. Rusu
- Department of Natural Polymers, Bioactive and Biocompatible Materials, Petru Poni Institute of Macromolecular Chemistry, 700487 Iasi, Romania; (A.G.R.); (L.E.N.); (I.N.); (A.S.)
| | - Loredana E. Nita
- Department of Natural Polymers, Bioactive and Biocompatible Materials, Petru Poni Institute of Macromolecular Chemistry, 700487 Iasi, Romania; (A.G.R.); (L.E.N.); (I.N.); (A.S.)
| | - Vlad M. Chiriac
- Faculty of Electronics Telecommunications and Information Technology, Gh. Asachi Technical University, 700050 Iași, Romania;
| | - Iordana Neamtu
- Department of Natural Polymers, Bioactive and Biocompatible Materials, Petru Poni Institute of Macromolecular Chemistry, 700487 Iasi, Romania; (A.G.R.); (L.E.N.); (I.N.); (A.S.)
| | - Alina Sandu
- Department of Natural Polymers, Bioactive and Biocompatible Materials, Petru Poni Institute of Macromolecular Chemistry, 700487 Iasi, Romania; (A.G.R.); (L.E.N.); (I.N.); (A.S.)
| |
Collapse
|
5
|
Chaudhary K, Kumar K, Venkatesu P, Masram DT. Protein immobilization on graphene oxide or reduced graphene oxide surface and their applications: Influence over activity, structural and thermal stability of protein. Adv Colloid Interface Sci 2021; 289:102367. [PMID: 33545443 DOI: 10.1016/j.cis.2021.102367] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/06/2021] [Accepted: 01/20/2021] [Indexed: 12/20/2022]
Abstract
Due to the essential role of biological macromolecules in our daily life; it is important to control the stability and activity of such macromolecules. Therefore, the most promising route for enhancement in stability and activity is immobilizing proteins on different support materials. Furthermore, large surface area and surface functional groups are the important features that are required for a better support system. These features of graphene oxide (GO) and reduced graphene oxide (RGO) makes them ideal support materials for protein immobilization. Studies show the successful formation of GO/RGO-protein complexes with enhancement in structural/thermal stability due to various interactions at the nano-bio interface and their utilization in various functional applications. The present review focuses on protein immobilization using GO/RGO as solid support materials. Moreover, we also emphasized on basic underlying mechanism and interactions (hydrophilic, hydrophobic, electrostatic, local protein-protein, hydrogen bonding and van der Walls) between protein and GO/RGO which influences structural stability and activity of enzymes/proteins. Furthermore, GO/RGO-protein complexes are utilized in various applications such as biosensors, bioimaging and theranostic agent, targeted drug delivery agents, and nanovectors for drug and protein delivery.
Collapse
|
6
|
Essential Oils-Loaded Electrospun Biopolymers: A Future Perspective for Active Food Packaging. ADVANCES IN POLYMER TECHNOLOGY 2020. [DOI: 10.1155/2020/9040535] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The growth of global food demand combined with the increased appeal to access different foods from every corner of the globe is forcing the food industry to look for alternative technologies to increase the shelf life. Essential oils (EOs) as naturally occurring functional ingredients have shown great prospects in active food packaging. EOs can inhibit the growth of superficial food pathogens, modify nutritious values without affecting the sensory qualities of food, and prolong the shelf life when used in food packaging as an active ingredient. Since 2016, various reports have demonstrated that combinations of electrospun fibers and encapsulated EOs could offer promising results when used as food packaging. Such electrospun platforms have encapsulated either pure EOs or their complexation with other antibacterial agents to prolong the shelf life of food products through sustained release of active ingredients. This paper presents a comprehensive review of the essential oil-loaded electrospun fibers that have been applied as active food packaging material.
Collapse
|
7
|
López-Gallego F, Guisan JM, Betancor L. Immobilization of Enzymes on Supports Activated with Glutaraldehyde: A Very Simple Immobilization Protocol. Methods Mol Biol 2020; 2100:119-127. [PMID: 31939119 DOI: 10.1007/978-1-0716-0215-7_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this chapter, we describe different approaches for the utilization of glutaraldehyde in protein immobilization. First, we focus on the covalent attachment of proteins to glutaraldehyde-activated matrixes. We describe conditions for the synthesis of such supports and provide an example of the immobilization and stabilization of a fructosyltransferase. We also describe how glutaraldehyde may be used for the cross-linking of protein-protein aggregates and protein adsorbed onto amino-activated matrixes. In these cases, glutaraldehyde bridges either two lysine groups from different protein molecules or a lysine from the protein structure and an amine group from the support. Examples of cross-linking are given for the immobilization of a D-amino acid oxidase on different amino-activated supports.
Collapse
Affiliation(s)
- Fernando López-Gallego
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry (ICP) CSIC, Campus UAM, Madrid, Spain
- Departamento de Química Orgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) CSIC-Universidad de Zaragoza, Zaragoza, Spain
| | - Jose M Guisan
- Institute of Catalysis, CSIC, Campus UAM-Cantoblanco, Madrid, Spain.
| | - Lorena Betancor
- Institute of Catalysis, CSIC, Campus UAM-Cantoblanco, Madrid, Spain
| |
Collapse
|
8
|
El-Aassar MR, Alsohaimi IH, Ali ASM, Elzain AA. Removal of phenol and Bisphenol A by immobilized Laccase on poly (Acrylonitrile-co-Styrene/Pyrrole) nanofibers. SEP SCI TECHNOL 2019. [DOI: 10.1080/01496395.2019.1648511] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Affiliation(s)
- M. R. El-Aassar
- Chemistry Department, College of Science, Jouf University, Sakaka, Saudi Arabia
- Polymer Materials Research Department Advanced Technology and New Material Institute, City of Scientific Research and Technological Applications (SRTA City), New Borg El-Arab, Egypt
| | | | - Ahmed S. M. Ali
- Polymer Materials Research Department Advanced Technology and New Material Institute, City of Scientific Research and Technological Applications (SRTA City), New Borg El-Arab, Egypt
- Pesticides Department, Water Lab, Central Labs, Ministry of Health, Alexandria, Egypt
| | - Ahmed A. Elzain
- Polymer Materials Research Department Advanced Technology and New Material Institute, City of Scientific Research and Technological Applications (SRTA City), New Borg El-Arab, Egypt
- Quality Management Sector, Central lab, Marsa Matrouh company for water and wastewater Co, Marsa Matrouh, Egypt
| |
Collapse
|
9
|
Khan M, Husain Q. Safeguarding the catalytic activity and stability of polyaniline chitosan silver nanocomposite bound beta-galactosidase against product inhibitors and structurally related compound. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:1075-1084. [DOI: 10.1080/21691401.2019.1593189] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Maryam Khan
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, U.P., India
| | - Qayyum Husain
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, U.P., India
| |
Collapse
|
10
|
Aydogdu A, Sumnu G, Sahin S. Fabrication of gallic acid loaded Hydroxypropyl methylcellulose nanofibers by electrospinning technique as active packaging material. Carbohydr Polym 2019; 208:241-250. [DOI: 10.1016/j.carbpol.2018.12.065] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 11/14/2018] [Accepted: 12/21/2018] [Indexed: 12/28/2022]
|
11
|
Affecting parameters on fabrication of β-D-galactosidase immobilized chitosan/poly (vinyl alcohol) electrospun nanofibers. Carbohydr Polym 2018; 200:137-143. [DOI: 10.1016/j.carbpol.2018.07.096] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 07/27/2018] [Accepted: 07/31/2018] [Indexed: 01/16/2023]
|
12
|
Vanangamudi A, Saeki D, Dumée LF, Duke M, Vasiljevic T, Matsuyama H, Yang X. Surface-Engineered Biocatalytic Composite Membranes for Reduced Protein Fouling and Self-Cleaning. ACS APPLIED MATERIALS & INTERFACES 2018; 10:27477-27487. [PMID: 30048587 DOI: 10.1021/acsami.8b07945] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A new biocatalytic nanofibrous composite ultrafiltration membrane was developed to reduce protein fouling interactions and self-clean the membrane surface. The dual-layer poly(vinylidenefluoride)/nylon-6,6/chitosan composite membrane contains a hydrophobic poly(vinylidenefluoride) cast support layer and a hydrophilic functional nylon-6,6/chitosan nanofibrous surface layer where enzymes were chemically attached. The intrinsic surface chemistry and high surface area of the nanofibers allowed optimal and stable immobilization of trypsin (TR) and α-chymotrypsin enzymes via direct covalent binding. The enzyme immobilization was confirmed by X-ray photoelectron spectroscopy and visualized by confocal microscopy analysis. The prepared biocatalytic composite membranes were nanoporous with superior permeability offering stable protein antiadhesion and self-cleaning properties owing to the repulsive mechanism and digestion of proteins into peptides and amino acids, which was quantified by the gel electrophoresis technique. The TR-immobilized composite membranes exhibited 2.7-fold higher permeance and lower surface protein contamination with 3-fold greater permeance recovery, when compared to the pristine membrane after two ultrafiltration cycles with the model feed solution containing bovine serum albumin/NaCl/CaCl2. The biocatalytic membranes retained about 50% of the enzyme activity after six reuse cycles but were regenerated to 100% activity after enzyme reloading, leading to a simple and cost-effective water remediation operation. Such surface- and pore-engineered membranes with self-cleaning properties offer a viable solution for severe surface protein contamination in food and water applications.
Collapse
Affiliation(s)
- Anbharasi Vanangamudi
- Institute for Frontier Materials , Deakin University , Waurn Ponds , Victoria 3216 , Australia
| | - Daisuke Saeki
- Department of Chemical Science and Engineering , Kobe University , 1-1 Rokkodai-cho , Nada, Kobe , Hyogo 657-8501 , Japan
| | - Ludovic F Dumée
- Institute for Frontier Materials , Deakin University , Waurn Ponds , Victoria 3216 , Australia
| | | | | | - Hideto Matsuyama
- Department of Chemical Science and Engineering , Kobe University , 1-1 Rokkodai-cho , Nada, Kobe , Hyogo 657-8501 , Japan
| | | |
Collapse
|
13
|
Abstract
This study explores the potential application of rice bran (agro waste) to nano-encapsulate phytase, which is a thermally unstable biologically active enzyme. Rice bran was converted to nanofibers (20–50 nm in diameter) using electrospinning. After optimizing the pH, viscosity, voltage and the distance between electrodes for electrospinning, phytase enzyme was encapsulated and the fibers were cross-linked using sodium tripolyphosphate. Thermal stability of phytase enzyme was improved by 90 °C when they are encapsulated and cross-linked with sodium tripolyphosphate. The activity of the phytase enzyme was monitored at different temperatures. The activity of the pure enzyme was lost at 80 °C while the enzyme encapsulated into nanofibers demonstrated the activity up to 170 °C. This study opens up many opportunities for nanotechnology value addition to many waste materials and also to improve the properties of a range of biomaterials through a sustainable approach.
Collapse
|
14
|
El-Aassar MR, Soliman EA, Hashem AI, sun G, Amaly N. Preparation and characterization of poly (styrene-co-Methacrylic acid) copolymer nanoparticles via precipitation polymerization. JOURNAL OF POLYMER RESEARCH 2017. [DOI: 10.1007/s10965-017-1376-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Biosensors based on β-galactosidase enzyme: Recent advances and perspectives. Anal Biochem 2017; 535:1-11. [DOI: 10.1016/j.ab.2017.07.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/08/2017] [Accepted: 07/18/2017] [Indexed: 11/19/2022]
|
16
|
Han H, Zhou Y, Li S, Wang Y, Kong XZ. Immobilization of Lipase from Pseudomonas fluorescens on Porous Polyurea and Its Application in Kinetic Resolution of Racemic 1-Phenylethanol. ACS APPLIED MATERIALS & INTERFACES 2016; 8:25714-25724. [PMID: 27618157 DOI: 10.1021/acsami.6b07979] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A porous polyurea (PPU) was prepared through a simple protocol by reacting toluene diisocyanate with water in binary solvent of water-acetone. Its amine group was determined through spectrophotometric absorbance based on its iminization with p-nitrobenzaldehyde amines. PPU was then used as a novel polymer support for enzyme immobilization, through activation by glutaraldehyde followed by immobilization of an enzyme, lipase from Pseudomonas fluorescens (PFL), via covalent bonding with the amine groups of lipase molecules. Influences of glutaraldehyde and enzyme concentration and pH in the process were studied. The results revealed that the activity of the immobilized PFL reached a maximum at GA concentration of 0.17 mol/L and at pH 8. Immobilization rate of 60% or higher for PFL was obtained under optimized condition with an enzyme activity of 283 U/mg. The porous structure of PPU, prior to and after GA activation and PFL immobilization, was characterized. The activity of the immobilized PFL at different temperature and pH and its stability at 40 °C as well as its reusability were tested. The immobilized enzyme was finally used as enantioselective catalyst in kinetic resolution of racemic 1-phenylethanol (1-PEOH), and its performance compared with the free PFL. The results demonstrate that the enzyme activity and stability were greatly improved for the immobilized PFL, and highly pure enantiomers from racemic 1-PEOH were effectively achieved using the immobilized PFL. Noticeable deactivation of PFL in the resolution was observed by acetaldehyde in situ formed. In addition, the immobilized PFL was readily recovered from the reaction system for reuse. A total of 73% of the initial activity was retained after 5 repeated reuse cycles. This work provides a novel route to preparation of a polyurea porous material and its enzyme immobilization, leading to a novel type of immobilized enzyme for efficient kinetic resolution of racemic molecules.
Collapse
Affiliation(s)
- Hui Han
- College of Chemistry and Chemical Engineering, University of Jinan , Jinan 250022, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Yamei Zhou
- College of Chemistry and Chemical Engineering, University of Jinan , Jinan 250022, China
| | - Shusheng Li
- College of Chemistry and Chemical Engineering, University of Jinan , Jinan 250022, China
- College of Chemistry and Chemical Engineering, Shandong University , Jinan 250100, China
| | - Yinping Wang
- College of Chemistry and Chemical Engineering, University of Jinan , Jinan 250022, China
| | - Xiang Zheng Kong
- College of Chemistry and Chemical Engineering, University of Jinan , Jinan 250022, China
| |
Collapse
|
17
|
Gupta PK, Gupta A, Dhakate SR, Khan ZH, Solanki PR. Functionalized polyacrylonitrile-nanofiber based immunosensor forVibrio choleraedetection. J Appl Polym Sci 2016. [DOI: 10.1002/app.44170] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Pramod K. Gupta
- Department of Applied Sciences and Humanities; Jamia Millia Islamia; New Delhi India
- Special Centre for Nanosciences; Jawaharlal Nehru University; New Delhi India
| | - A. Gupta
- Physics and Engineering of Carbon, National Physical Laboratory; New Delhi India
| | - S. R. Dhakate
- Physics and Engineering of Carbon, National Physical Laboratory; New Delhi India
| | - Zishan H. Khan
- Department of Applied Sciences and Humanities; Jamia Millia Islamia; New Delhi India
| | - Pratima R. Solanki
- Special Centre for Nanosciences; Jawaharlal Nehru University; New Delhi India
| |
Collapse
|
18
|
Preparation and pharmaceutical evaluation of acetaminophen nano-fiber tablets: Application of a solvent-based electrospinning method for tableting. Biomed Pharmacother 2016; 78:14-22. [DOI: 10.1016/j.biopha.2015.12.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 12/21/2015] [Indexed: 01/23/2023] Open
|
19
|
Misson M, Dai S, Jin B, Chen BH, Zhang H. Manipulation of nanofiber-based β-galactosidase nanoenvironment for enhancement of galacto-oligosaccharide production. J Biotechnol 2016; 222:56-64. [PMID: 26876609 DOI: 10.1016/j.jbiotec.2016.02.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 02/05/2016] [Accepted: 02/08/2016] [Indexed: 12/23/2022]
Abstract
The nanoenvironment of nanobiocatalysts, such as local hydrophobicity, pH and charge density, plays a significant role in optimizing the enzymatic selectivity and specificity. In this study, Kluyveromyces lactis β-galactosidase (Gal) was assembled onto polystyrene nanofibers (PSNFs) to form PSNF-Gal nanobiocatalysts. We proposed that local hydrophobicity on the nanofiber surface could expel water molecules so that the transgalactosylation would be preferable over hydrolysis during the bioconversion of lactose, thus improve the galacto-oligosaccharides (GOS) yield. PSNFs were fabricated by electro-spinning and the operational parameters were optimized to obtain the nanofibers with uniform size and ordered alignment. The resulting nanofibers were functionalized for enzyme immobilization through a chemical oxidation method. The functionalized PSNF improved the enzyme adsorption capacity up to 3100 mg/g nanofiber as well as enhanced the enzyme stability with 80% of its original activity. Importantly, the functionalized PSNF-Gal significantly improved the GOS yield and the production rate was up to 110 g/l/h in comparison with 37 g/l/h by free β-galactosidase. Our research findings demonstrate that the localized nanoenvironment of the PSNF-Gal nanobiocatalysts favour transgalactosylation over hydrolysis in lactose bioconversion.
Collapse
Affiliation(s)
- Mailin Misson
- School of Chemical Engineering, University of Adelaide, Adelaide SA 5000, Australia; Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia
| | - Sheng Dai
- School of Chemical Engineering, University of Adelaide, Adelaide SA 5000, Australia
| | - Bo Jin
- School of Chemical Engineering, University of Adelaide, Adelaide SA 5000, Australia
| | - Bing H Chen
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Hu Zhang
- School of Chemical Engineering, University of Adelaide, Adelaide SA 5000, Australia.
| |
Collapse
|
20
|
Nanotechnological Applications in Food Packaging, Sensors and Bioactive Delivery Systems. SUSTAINABLE AGRICULTURE REVIEWS 2016. [DOI: 10.1007/978-3-319-39306-3_3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
21
|
Wen P, Zhu DH, Wu H, Zong MH, Jing YR, Han SY. Encapsulation of cinnamon essential oil in electrospun nanofibrous film for active food packaging. Food Control 2016. [DOI: 10.1016/j.foodcont.2015.06.005] [Citation(s) in RCA: 191] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
22
|
Li G, Nandgaonkar AG, Lu K, Krause WE, Lucia LA, Wei Q. Laccase immobilized on PAN/O-MMT composite nanofibers support for substrate bioremediation: a de novo adsorption and biocatalytic synergy. RSC Adv 2016. [DOI: 10.1039/c6ra00220j] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The engineering of supports for enzyme immobilization while retaining competent functionality is nontrivial.
Collapse
Affiliation(s)
- Guohui Li
- Key Laboratory of Eco-Textiles
- Ministry of Education
- Jiangnan University
- Wuxi
- China
| | | | - Keyu Lu
- Key Laboratory of Eco-Textiles
- Ministry of Education
- Jiangnan University
- Wuxi
- China
| | - Wendy E. Krause
- Fiber and Polymer Science Program
- North Carolina State University
- Raleigh
- USA
| | - Lucian A. Lucia
- Fiber and Polymer Science Program
- North Carolina State University
- Raleigh
- USA
- Department of Forest Biomaterials
| | - Qufu Wei
- Key Laboratory of Eco-Textiles
- Ministry of Education
- Jiangnan University
- Wuxi
- China
| |
Collapse
|
23
|
El-Aassar M, El-Kady M, Hassan HS, Al-Deyab SS. Synthesis and characterization of surface modified electrospun poly (acrylonitrile-co-styrene) nanofibers for dye decolorization. J Taiwan Inst Chem Eng 2016. [DOI: 10.1016/j.jtice.2015.05.042] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
El-Aassar MR, El Fawal GF, El-Deeb NM, Hassan HS, Mo X. Electrospun Polyvinyl Alcohol/ Pluronic F127 Blended Nanofibers Containing Titanium Dioxide for Antibacterial Wound Dressing. Appl Biochem Biotechnol 2015; 178:1488-502. [PMID: 26686499 DOI: 10.1007/s12010-015-1962-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 12/15/2015] [Indexed: 01/03/2023]
Abstract
In this study, an antibacterial electrospun nanofibers for wound dressing application was successfully prepared from polyvinyl alcohol (PVA), Pluronic F127 (Plur), polyethyleneimine (PEI) blend solution with titanium dioxide nanoparticles (TiO2 NPs). PVA-Plur-PEI nanofibers containing various ratios of TiO2 NPs were obtained. The formation and presence of TiO2 in the PVA-Plu-PEI/ TiO2 composite was confirmed by X-ray diffraction (XRD). Transmission electron microscopy (TEM), Fourier transform infrared (FTIR), thermal gravimetric analysis (TGA), mechanical measurement, and antibacterial activity were undertaken in order to characterize the PVA-Plur-PEI/TiO2 nanofiber morphology and properties. The PVA-Plu-PEI nanofibers had a mean diameter of 220 nm, and PVA-Plur-PEI/TiO2 nanofibers had 255 nm. Moreover, the antimicrobial properties of the composite were studied by zone inhibition against Gram-negative bacteria, and the result indicates high antibacterial activity. Results of this antibacterial testing suggest that PVA-Plur-PEI/TiO2 nanofiber may be effective in topical antibacterial treatment in wound care; thus, they are very promising in the application of wound dressings.
Collapse
Affiliation(s)
- M R El-Aassar
- Colleges of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China. .,Polymer Materials Research Department, Advanced Technology and New Material Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, 21934, Alexandria, Egypt.
| | - G F El Fawal
- Polymer Materials Research Department, Advanced Technology and New Material Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, 21934, Alexandria, Egypt.
| | - Nehal M El-Deeb
- Biopharmaceutical Product Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Researches and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria, 21934, Egypt
| | - H Shokry Hassan
- Electronic Materials Researches Department, Institute of Advanced Technology and New Material Research Institute, City of Scientific Researches and technological applications (SRTA-City), New Borg El-Arab City, Alexandria, 21934, Egypt
| | - Xiumei Mo
- Colleges of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China
| |
Collapse
|
25
|
Comparison of covalent and physical immobilization of lipase in gigaporous polymeric microspheres. Bioprocess Biosyst Eng 2015; 38:2107-15. [DOI: 10.1007/s00449-015-1450-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 07/28/2015] [Indexed: 01/28/2023]
|
26
|
Yang Y, Jiang X, Zhu X, Kong XZ. A facile pathway to polyurea nanofiber fabrication and polymer morphology control in copolymerization of oxydianiline and toluene diisocyanate in acetone. RSC Adv 2015. [DOI: 10.1039/c4ra15309j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Polyurea nanofibers, of high thermal stability and solvent resistance, were obtained through simple precipitation polymerization of TDI and ODA in acetone at 30 °C.
Collapse
Affiliation(s)
- Yanan Yang
- College of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| | - Xubao Jiang
- College of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| | - Xiaoli Zhu
- College of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| | - Xiang Zheng Kong
- College of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| |
Collapse
|
27
|
Wong DE, Dai M, Talbert JN, Nugen SR, Goddard JM. Biocatalytic polymer nanofibers for stabilization and delivery of enzymes. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.molcatb.2014.09.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
28
|
|
29
|
Anu Bhushani J, Anandharamakrishnan C. Electrospinning and electrospraying techniques: Potential food based applications. Trends Food Sci Technol 2014. [DOI: 10.1016/j.tifs.2014.03.004] [Citation(s) in RCA: 394] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
30
|
Rana M, Kumari A, Chauhan GS, Chauhan K. Modified chitosan microspheres in non-aggregated amylase immobilization. Int J Biol Macromol 2014; 66:46-51. [DOI: 10.1016/j.ijbiomac.2014.02.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 02/04/2014] [Accepted: 02/10/2014] [Indexed: 10/25/2022]
|
31
|
Bezbradica DI, Mateo C, Guisan JM. Novel support for enzyme immobilization prepared by chemical activation with cysteine and glutaraldehyde. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.molcatb.2014.02.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
32
|
Cipolatti EP, Silva MJA, Klein M, Feddern V, Feltes MMC, Oliveira JV, Ninow JL, de Oliveira D. Current status and trends in enzymatic nanoimmobilization. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.molcatb.2013.10.019] [Citation(s) in RCA: 209] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
33
|
Shamshi Hassan M, Amna T, Hwang I, Khil MS. One-step facile construction of high aspect ratio Fe3O4 decorated CNFs with distinctive porous morphology: Potential multiuse expectations. Colloids Surf B Biointerfaces 2013; 106:170-5. [DOI: 10.1016/j.colsurfb.2013.01.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 01/17/2013] [Accepted: 01/18/2013] [Indexed: 10/27/2022]
|
34
|
Abstract
In this chapter, we describe different approaches for the utilization of glutaraldehyde in protein immobilization. First, we focus on the covalent attachment of proteins to glutaraldehyde-activated matrixes. We describe conditions for the synthesis of such supports and provide an example of the immobilization and stabilization of fructosyltransferase. We also describe how glutaraldehyde may be used for the cross-linking of protein-protein aggregates and protein adsorbed onto amino-activated matrixes. In these cases, glutaraldehyde bridges either two lysine groups from different proteic molecules or a lysine from the protein structure and an amine group from the support. Examples of cross-linking are given for the immobilization of DAAO on different amino-activated supports.
Collapse
|