1
|
Zheng X, Zhao L, Wu F, Zhou H, Shi F. Screening and Identification of Protease-Producing Microorganisms in the Gut of Gryllotalpa orientalis (Orthoptera: Gryllotalpidae). INSECTS 2024; 15:629. [PMID: 39194833 DOI: 10.3390/insects15080629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/15/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024]
Abstract
The insect gut harbors a diverse array of functional microorganisms that warrant further exploration and utilization. However, there is currently a paucity of research reports on the discovery of protease-producing microorganisms with industrial application value in the gut. Here, we employed microbial culturing to screen and identify the protease-producing microorganisms in the gut extract of Gryllotalpa orientalis. Based on morphological, physiological, and biochemical characterization, 16S rRNA sequencing, as well as ANI and dDDH values of whole genome, the protease-producing strains isolated from the insect gut were identified as Priestia aryahattai DBM-1 and DX-4, P. megaterium DX-3, and Serratia surfactantfaciens DBM-5. According to whole-genome analysis, strain DBM-5, which exhibited the highest enzyme activity, possesses abundant membrane transport genes and carbohydrate metabolism enzymes. In contrast, strains DX-3 and DX-4 not only have the ability to hydrolyze proteins but also demonstrate the capability to hydrolyze plant materials. Furthermore, strains that are closely related tend to have similar metabolic product gene clusters in their genomes. The screening and identification of protease resources are essential for the subsequent development and utilization of gut functional microorganisms and genetic resources in insects.
Collapse
Affiliation(s)
- Xiang Zheng
- Laboratory of Enzyme Preparation, Hebei Research Institute of Microbiology Co., Ltd., Baoding 071051, China
- Institute of Life Science and Green Development, College of Life Science, Hebei University, Baoding 071002, China
| | - Lu Zhao
- Laboratory of Enzyme Preparation, Hebei Research Institute of Microbiology Co., Ltd., Baoding 071051, China
| | - Fangtong Wu
- Laboratory of Enzyme Preparation, Hebei Research Institute of Microbiology Co., Ltd., Baoding 071051, China
| | - He Zhou
- Laboratory of Enzyme Preparation, Hebei Research Institute of Microbiology Co., Ltd., Baoding 071051, China
| | - Fuming Shi
- Institute of Life Science and Green Development, College of Life Science, Hebei University, Baoding 071002, China
| |
Collapse
|
2
|
LIU XF, LIU CJ, ZENG XQ, ZHANG HY, LUO YY, LI XR. Metagenomic and metatranscriptomic analysis of the microbial community structure and metabolic potential of fermented soybean in Yunnan Province. FOOD SCIENCE AND TECHNOLOGY 2020. [DOI: 10.1590/fst.01718] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Xiao-Feng LIU
- Kunming University of Science and Technology, China; Chinese Academy of Agricultural Sciences, China
| | | | - Xue-Qin ZENG
- Kunming University of Science and Technology, China
| | | | - Yi-Yong LUO
- Kunming University of Science and Technology, China
| | - Xiao-Ran LI
- Kunming University of Science and Technology, China
| |
Collapse
|
3
|
García-Silvera EE, Martínez-Morales F, Bertrand B, Morales-Guzmán D, Rosas-Galván NS, León-Rodríguez R, Trejo-Hernández MR. Production and application of a thermostable lipase from Serratia marcescens
in detergent formulation and biodiesel production. Biotechnol Appl Biochem 2017; 65:156-172. [DOI: 10.1002/bab.1565] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 04/13/2017] [Indexed: 11/06/2022]
Affiliation(s)
| | - Fernando Martínez-Morales
- Centro de Investigación en Biotecnología; Universidad Autónoma del Estado de Morelos; Morelos México
| | - Brandt Bertrand
- Centro de Investigación en Biotecnología; Universidad Autónoma del Estado de Morelos; Morelos México
| | - Daniel Morales-Guzmán
- Centro de Investigación en Biotecnología; Universidad Autónoma del Estado de Morelos; Morelos México
| | | | - Renato León-Rodríguez
- Instituto de Investigaciones Biomédicas UNAM, Tercer circuito exterior; s/n, Cd. Universitaria Coyoacán México
| | - María R. Trejo-Hernández
- Centro de Investigación en Biotecnología; Universidad Autónoma del Estado de Morelos; Morelos México
| |
Collapse
|
4
|
Highly diastereoselective acylation of l-menthol by a lipase from Stenotrophomonas maltophilia CGMCC 4254. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2016.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
Fang Y, Wang S, Liu S, Jiao Y. Discovery a novel organic solvent tolerant esterase from Salinispora arenicola CNP193 through genome mining. Int J Biol Macromol 2015; 80:334-40. [PMID: 26118483 DOI: 10.1016/j.ijbiomac.2015.06.045] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 06/22/2015] [Accepted: 06/23/2015] [Indexed: 12/15/2022]
Abstract
An esterase gene, encoding a 325-amino-acid protein (SAestA), was mined form obligate marine actinomycete strain Salinispora arenicola CNP193 genome sequence. Phylogenetic analysis of the deduced amino acid sequence showed that the enzyme belonged to the family IV of lipolytic enzymes. The gene was cloned, expressed in Escherichia coli as a His-tagged protein, purified and characterized. The molecular weight of His-tagged SAestA is ∼38 kDa. SAestA-His6 was active in a temperature (5-40 °C) and pH range (7.0-11.0), and maximal activity was determined at pH 9.0 and 30 °C. The activity was severely inhibited by Hg(2+), Cu(2+), and Zn(2+). In particular, this enzyme showed remarkable stability in presence of organic solvents (25%, v/v) with log P>2.0 even after incubation for 7 days. All these characteristics suggested that SAestA may be a potential candidate for application in industrial processes in aqueous/organic media.
Collapse
Affiliation(s)
- Yaowei Fang
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Huaihai Institute of Technology, Lianyungang, 222005, China; Jiangsu Marine Resources Development Research Institute, Lianyungang, 222000, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Huaihai Institute of Technology, Lianyungang, 222005, China
| | - Shujun Wang
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Huaihai Institute of Technology, Lianyungang, 222005, China; Jiangsu Marine Resources Development Research Institute, Lianyungang, 222000, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Huaihai Institute of Technology, Lianyungang, 222005, China
| | - Shu Liu
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Huaihai Institute of Technology, Lianyungang, 222005, China; Jiangsu Marine Resources Development Research Institute, Lianyungang, 222000, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Huaihai Institute of Technology, Lianyungang, 222005, China
| | - Yuliang Jiao
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Huaihai Institute of Technology, Lianyungang, 222005, China; Jiangsu Marine Resources Development Research Institute, Lianyungang, 222000, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Huaihai Institute of Technology, Lianyungang, 222005, China
| |
Collapse
|