1
|
Wu Z, Chen T, Sun W, Chen Y, Ying H. Optimizing Escherichia coli strains and fermentation processes for enhanced L-lysine production: a review. Front Microbiol 2024; 15:1485624. [PMID: 39430105 PMCID: PMC11486702 DOI: 10.3389/fmicb.2024.1485624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 09/23/2024] [Indexed: 10/22/2024] Open
Abstract
lysine is an essential amino acid with significant importance, widely used in the food, feed, and pharmaceutical industries. To meet the increasing demand, microbial fermentation has emerged as an effective and sustainable method for L-lysine production. Escherichia coli has become one of the primary microorganisms for industrial L-lysine production due to its rapid growth, ease of genetic manipulation, and high production efficiency. This paper reviews the recent advances in E. coli strain engineering and fermentation process optimization for L-lysine production. Additionally, it discusses potential technological breakthroughs and challenges in E. coli-based L-lysine production, offering directions for future research to support industrial-scale production.
Collapse
Affiliation(s)
- Zijuan Wu
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Tianpeng Chen
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Wenjun Sun
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Yong Chen
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Hanjie Ying
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- Soochow University, Suzhou, China
| |
Collapse
|
2
|
Zhou HY, Ding WQ, Zhang X, Zhang HY, Hu ZC, Liu ZQ, Zheng YG. Fine and combinatorial regulation of key metabolic pathway for enhanced β-alanine biosynthesis with non-inducible Escherichia coli. Biotechnol Bioeng 2024; 121:3297-3310. [PMID: 38978393 DOI: 10.1002/bit.28799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 06/22/2024] [Accepted: 06/27/2024] [Indexed: 07/10/2024]
Abstract
β-Alanine is the only β-amino acid in nature and one of the most important three-carbon chemicals. This work was aimed to construct a non-inducible β-alanine producer with enhanced metabolic flux towards β-alanine biosynthesis in Escherichia coli. First of all, the assembled E. coli endogenous promoters and 5'-untranslated regions (PUTR) were screened to finely regulate the combinatorial expression of genes panDBS and aspBCG for an optimal flux match between two key pathways. Subsequently, additional copies of key genes (panDBS K104S and ppc) were chromosomally introduced into the host A1. On these bases, dynamical regulation of the gene thrA was performed to reduce the carbon flux directed in the competitive pathway. Finally, the β-alanine titer reached 10.25 g/L by strain A14-R15, 361.7% higher than that of the original strain. Under fed-batch fermentation in a 5-L fermentor, a titer of 57.13 g/L β-alanine was achieved at 80 h. This is the highest titer of β-alanine production ever reported using non-inducible engineered E. coli. This metabolic modification strategy for optimal carbon flux distribution developed in this work could also be used for the production of various metabolic products.
Collapse
Affiliation(s)
- Hai-Yan Zhou
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Wen-Qing Ding
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Xi Zhang
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Hong-Yu Zhang
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Zhong-Ce Hu
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Zhi-Qiang Liu
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Yu-Guo Zheng
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
3
|
Sun Y, Wu J, Xu J, Yang L. Metabolic Engineering of Escherichia coli for the Production of l-Homoserine. CHEM & BIO ENGINEERING 2024; 1:223-230. [PMID: 39974203 PMCID: PMC11835149 DOI: 10.1021/cbe.3c00077] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/14/2023] [Accepted: 01/11/2024] [Indexed: 02/21/2025]
Abstract
l-Homoserine embodies significant functional properties as an amino acid of utmost importance, showcasing remarkable utility within the industrial realm. As synthetic biology and biotechnology continue to advance, the synthesis of l-homoserine through microbial fermentation emerges as a compelling and eco-conscious approach. This Review summarized the recent progress in systematic metabolic engineering strategies for improving l-homoserine production in Escherichia coli, including blocking the competing and degrading pathways, strengthening the key enzymes and precursors, and genetic modification of transport systems. We discussed and compared these systematic metabolism strategies, which have laid a solid foundation for the microbial industrial production of l-homoserine.
Collapse
Affiliation(s)
- Yijie Sun
- Institute
of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China 310058
- ZJU-Hangzhou
Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China 311200
| | - Jianping Wu
- Institute
of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China 310058
- ZJU-Hangzhou
Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China 311200
| | - Jiaqi Xu
- Institute
of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China 310058
- ZJU-Hangzhou
Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China 311200
| | - Lirong Yang
- Institute
of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China 310058
- ZJU-Hangzhou
Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China 311200
| |
Collapse
|
4
|
Ghiffary MR, Prabowo CPS, Adidjaja JJ, Lee SY, Kim HU. Systems metabolic engineering of Corynebacterium glutamicum for the efficient production of β-alanine. Metab Eng 2022; 74:121-129. [DOI: 10.1016/j.ymben.2022.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/19/2022] [Accepted: 10/23/2022] [Indexed: 11/06/2022]
|
5
|
Niu J, Mao Z, Mao Y, Wu K, Shi Z, Yuan Q, Cai J, Ma H. Construction and Analysis of an Enzyme-Constrained Metabolic Model of Corynebacterium glutamicum. Biomolecules 2022; 12:1499. [PMID: 36291707 PMCID: PMC9599660 DOI: 10.3390/biom12101499] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/08/2022] [Accepted: 10/14/2022] [Indexed: 05/25/2024] Open
Abstract
The genome-scale metabolic model (GEM) is a powerful tool for interpreting and predicting cellular phenotypes under various environmental and genetic perturbations. However, GEM only considers stoichiometric constraints, and the simulated growth and product yield values will show a monotonic linear increase with increasing substrate uptake rate, which deviates from the experimentally measured values. Recently, the integration of enzymatic constraints into stoichiometry-based GEMs was proven to be effective in making novel discoveries and predicting new engineering targets. Here, we present the first genome-scale enzyme-constrained model (ecCGL1) for Corynebacterium glutamicum reconstructed by integrating enzyme kinetic data from various sources using a ECMpy workflow based on the high-quality GEM of C. glutamicum (obtained by modifying the iCW773 model). The enzyme-constrained model improved the prediction of phenotypes and simulated overflow metabolism, while also recapitulating the trade-off between biomass yield and enzyme usage efficiency. Finally, we used the ecCGL1 to identify several gene modification targets for l-lysine production, most of which agree with previously reported genes. This study shows that incorporating enzyme kinetic information into the GEM enhances the cellular phenotypes prediction of C. glutamicum, which can help identify key enzymes and thus provide reliable guidance for metabolic engineering.
Collapse
Affiliation(s)
- Jinhui Niu
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- Biodesign Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Zhitao Mao
- Biodesign Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Yufeng Mao
- Biodesign Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Ke Wu
- Biodesign Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Zhenkun Shi
- Biodesign Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Qianqian Yuan
- Biodesign Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Jingyi Cai
- Biodesign Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Hongwu Ma
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- Biodesign Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| |
Collapse
|
6
|
Mu Q, Zhang S, Mao X, Tao Y, Yu B. Highly efficient production of L-homoserine in Escherichia coli by engineering a redox balance route. Metab Eng 2021; 67:321-329. [PMID: 34329706 DOI: 10.1016/j.ymben.2021.07.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/30/2021] [Accepted: 07/26/2021] [Indexed: 12/29/2022]
Abstract
L-Homoserine is a nonessential chiral amino acid and the precursor of L-threonine and L-methionine. It has great potential to be used in the pharmaceutical, agricultural, cosmetic, and fragrance industries. However, the current low efficiency in the fermentation process of L-homoserine drives up the cost and therefore limits applications. Here, we systematically analyzed the L-homoserine production network in Escherichia coli to design a redox balance route for L-homoserine fermentation from glucose. Production of L-homoserine from L-aspartate via reduction of the tricarboxylic acid cycle intermediate oxaloacetate lacks reducing power. This deficiency could be corrected by activating the glyoxylate shunt and driving the flux from fumarate to L-aspartate with excess reducing power. This redox balance route decreases cell growth pressure and the theoretical yield of L-homoserine is 1.5 mol/mol of glucose without carbon loss. We fine-tuned the flux from fumarate to L-aspartate, deleted competitive and degradative pathways, enhanced L-homoserine efflux, and generated 84.1 g/L L-homoserine with 1.96 g/L/h productivity and 0.50 g/g glucose yield in a fed-batch fermentation. This study proposes a novel balanced redox metabolic network strategy for highly efficient production of L-homoserine and its derivative amino acids.
Collapse
Affiliation(s)
- Qingxuan Mu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shasha Zhang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xianjun Mao
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Yong Tao
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bo Yu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
7
|
Xu JZ, Wu ZH, Gao SJ, Zhang W. Rational modification of tricarboxylic acid cycle for improving L-lysine production in Corynebacterium glutamicum. Microb Cell Fact 2018; 17:105. [PMID: 29981572 PMCID: PMC6035423 DOI: 10.1186/s12934-018-0958-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 07/02/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Oxaloacetate (OAA) and L-glutamate are essential precursors for the biosynthesis of L-lysine. Reasonable control of all potentially rate-limiting steps, including the precursors supply rate, is of vital importance to maximize the efficiency of L-lysine fermentation process. RESULTS In this paper, we have rationally engineered the tricarboxylic acid (TCA) cycle that increased the carbon yield (from 36.18 to 59.65%), final titer (from 14.47 ± 0.41 to 23.86 ± 2.16 g L-1) and productivity (from 0.30 to 0.50 g L-1 h-1) of L-lysine by Corynebacterium glutamicum in shake-flask fermentation because of improving the OAA and L-glutamate availability. To do this, the phosphoenolpyruvate-pyruvate-oxaloacetate (PEP-pyruvate-OAA) node's genes ppc and pyc were inserted in the genes pck and odx loci, the P1 promoter of the TCA cycle's gene gltA was deleted, and the nature promoter of glutamate dehydrogenase-coding gene gdh was replaced by Ptac-M promoter that resulted in the final engineered strain C. glutamicum JL-69Ptac-M gdh. Furthermore, the suitable addition of biotin accelerates the L-lysine production in strain JL-69Ptac-M gdh because it elastically adjusts the carbon flux for cell growth and precursor supply. The final strain JL-69Ptac-M gdh could produce 181.5 ± 11.74 g L-1 of L-lysine with a productivity of 3.78 g L-1 h-1 and maximal specific production rate (qLys, max.) of 0.73 ± 0.16 g g-1 h-1 in fed-batch culture during adding 2.4 mg L-1 biotin with four times. CONCLUSIONS Our results reveal that sufficient biomass, OAA and L-glutamate are equally important in the development of L-lysine high-yielding strain, and it is the first time to verify that fed-batch biotin plays a positive role in improving L-lysine production.
Collapse
Affiliation(s)
- Jian-Zhong Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, Wuxi, 214122 People’s Republic of China
| | - Ze-Hua Wu
- Research and Development Department, Shandong Shouguang Juneng Golden Corn Co., Ltd., 1199# Xinxing Street, Shouguang, 262700 People’s Republic of China
| | - Shi-Jun Gao
- Research and Development Department, Shandong Shouguang Juneng Golden Corn Co., Ltd., 1199# Xinxing Street, Shouguang, 262700 People’s Republic of China
| | - Weiguo Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, Wuxi, 214122 People’s Republic of China
| |
Collapse
|
8
|
Xu JZ, Yang HK, Liu LM, Wang YY, Zhang WG. Rational modification of Corynebacterium glutamicum dihydrodipicolinate reductase to switch the nucleotide-cofactor specificity for increasing l-lysine production. Biotechnol Bioeng 2018; 115:1764-1777. [PMID: 29574741 DOI: 10.1002/bit.26591] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/13/2018] [Accepted: 03/16/2018] [Indexed: 01/07/2023]
Abstract
l-lysine is an important amino acid in animals and humans and NADPH is a vital cofactor for maximizing the efficiency of l-lysine fermentation. Dihydrodipicolinate reductase (DHDPR), an NAD(P)H-dependent enzyme, shows a variance in nucleotide-cofactor affinity in bacteria. In this study, we rationally engineered Corynebacterium glutamicum DHDPR (CgDHDPR) to switch its nucleotide-cofactor specificity resulting in an increase in final titer (from 82.6 to 117.3 g L-1 ), carbon yield (from 0.35 to 0.44 g [g glucose]-1 ) and productivity (from 2.07 to 2.93 g L-1 hr-1 ) of l-lysine in JL-6 ΔdapB::Ec-dapBC115G,G116C in fed-batch fermentation. To do this, we comparatively analyzed the characteristics of CgDHDPR and Escherichia coli DHDPR (EcDHDPR), indicating that hetero-expression of NADH-dependent EcDHDPR increased l-lysine production. Subsequently, we rationally modified the conserved structure of cofactor-binding motif, and results indicated that introducing the mutation K11A or R13A in CgDHDPR and introducing the mutation R16A or R39A in EcDHDPR modifies the nucleotide-cofactor affinity of DHDPR. Lastly, the effects of these mutated DHDPRs on l-lysine production were investigated. The highest increase (26.2%) in l-lysine production was observed for JL-6 ΔdapB::Ec-dapBC115G,G116C , followed by JL-6 Cg-dapBC37G,G38C (21.4%) and JL-6 ΔdapB::Ec-dapBC46G,G47C (15.2%). This is the first report of a rational modification of DHDPR that enhances the l-lysine production and yield through the modulation of nucleotide-cofactor specificity.
Collapse
Affiliation(s)
- Jian-Zhong Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, WuXi, People's Republic of China
| | - Han-Kun Yang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, WuXi, People's Republic of China
| | - Li-Ming Liu
- State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, WuXi, People's Republic of China
| | - Ying-Yu Wang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, WuXi, People's Republic of China
| | - Wei-Guo Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, WuXi, People's Republic of China
| |
Collapse
|
9
|
Xu JZ, Yang HK, Zhang WG. NADPH metabolism: a survey of its theoretical characteristics and manipulation strategies in amino acid biosynthesis. Crit Rev Biotechnol 2018; 38:1061-1076. [PMID: 29480038 DOI: 10.1080/07388551.2018.1437387] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Reduced nicotinamide adenine nucleotide phosphate (NADPH), which is one of the key cofactors in the metabolic network, plays an important role in the biochemical reactions, and physiological function of amino acid-producing strains. The manipulation of NADPH availability and form is an efficient and easy method of redirecting the carbon flux to the amino acid biosynthesis in industrial strains. In this review, we survey the metabolic mode of NADPH. Furthermore, we summarize the research developments in the understanding of the relationship between NADPH metabolism and amino acid biosynthesis. Detailed strategies to manipulate NADPH availability are addressed based on this knowledge. Finally, the uses of NADPH manipulation strategies to enhance the metabolic function of amino acid-producing strains are discussed.
Collapse
Affiliation(s)
- Jian-Zhong Xu
- a The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , WuXi , PR China.,b The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , WuXi , PR China
| | - Han-Kun Yang
- a The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , WuXi , PR China
| | - Wei-Guo Zhang
- a The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , WuXi , PR China
| |
Collapse
|
10
|
Guo J, Man Z, Rao Z, Xu M, Yang T, Zhang X, Xu Z. Improvement of the ammonia assimilation for enhancing L-arginine production of Corynebacterium crenatum. J Ind Microbiol Biotechnol 2017; 44:443-451. [PMID: 28120129 DOI: 10.1007/s10295-017-1900-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 01/04/2017] [Indexed: 12/21/2022]
Abstract
There are four nitrogen atoms in L-arginine molecule and the nitrogen content is 32.1%. By now, metabolic engineering for L-arginine production strain improvement was focused on carbon flux optimization. In previous work, we obtained an L-arginine-producing Corynebacterium crenatum SDNN403 (ARG) through screening and mutation breeding. In this paper, a strain engineering strategy focusing on nitrogen supply and ammonium assimilation for L-arginine production was performed. Firstly, the effects of nitrogen atom donor (L-glutamate, L-glutamine and L-aspartate) addition on L-arginine production of ARG were studied, and the addition of L-glutamine and L-aspartate was beneficial for L-arginine production. Then, the glutamine synthetase gene glnA and aspartase gene aspA from E. coli were overexpressed in ARG for increasing the L-glutamine and L-aspartate synthesis, and the L-arginine production was effectively increased. In addition, the L-glutamate supply re-emerged as a limiting factor for L-arginine biosynthesis. Finally, the glutamate dehydrogenase gene gdh was co-overexpressed for further enhancement of L-arginine production. The final strain could produce 53.2 g l-1 of L-arginine, which was increased by 41.5% compared to ARG in fed-batch fermentation.
Collapse
Affiliation(s)
- Jing Guo
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Zaiwei Man
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Zhiming Rao
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China. .,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China.
| | - Meijuan Xu
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Taowei Yang
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Xian Zhang
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Zhenghong Xu
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China.
| |
Collapse
|
11
|
Xu JZ, Zhang WG. Strategies used for genetically modifying bacterial genome: site-directed mutagenesis, gene inactivation, and gene over-expression. J Zhejiang Univ Sci B 2016; 17:83-99. [PMID: 26834010 DOI: 10.1631/jzus.b1500187] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
With the availability of the whole genome sequence of Escherichia coli or Corynebacterium glutamicum, strategies for directed DNA manipulation have developed rapidly. DNA manipulation plays an important role in understanding the function of genes and in constructing novel engineering bacteria according to requirement. DNA manipulation involves modifying the autologous genes and expressing the heterogenous genes. Two alternative approaches, using electroporation linear DNA or recombinant suicide plasmid, allow a wide variety of DNA manipulation. However, the over-expression of the desired gene is generally executed via plasmid-mediation. The current review summarizes the common strategies used for genetically modifying E. coli and C. glutamicum genomes, and discusses the technical problem of multi-layered DNA manipulation. Strategies for gene over-expression via integrating into genome are proposed. This review is intended to be an accessible introduction to DNA manipulation within the bacterial genome for novices and a source of the latest experimental information for experienced investigators.
Collapse
Affiliation(s)
- Jian-zhong Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Wei-guo Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
12
|
A method for simultaneous gene overexpression and inactivation in the Corynebacterium glutamicum genome. J Ind Microbiol Biotechnol 2016; 43:1417-27. [PMID: 27377799 DOI: 10.1007/s10295-016-1806-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 06/25/2016] [Indexed: 10/21/2022]
Abstract
The gene integration method is an important tool to stably express desirable genes in bacteria. To avoid heavy workload and cost, we constructed a rapid and efficient method for genome modification. This method depended on a mobilizable plasmid, which contains a P tac promoter, an introduced multiple cloning site (iMCS), and rrnBT1T2 terminator. Briefly, the mobilizable plasmid pK18-MBPMT with the P tac-iMCS-rrnBT1T2 cartridge derived from pK18mobsacB was prepared to directly integrate hetero-/homologous DNA into the Corynebacterium glutamicum genome. Like our previous method, this method was based on insertional inactivation and double-crossover homologous recombination, which simultaneously achieved gene overexpression and inactivation in the genome without the use of genetic markers. Compared to the previous method, this protocol omitted the construction of a recombinant expression plasmid and clone of the target gene(s) cassette, which significantly decreased the workload, cost, and operational time. Using this method, the heterologous gene amy and the homologous gene lysC (T311I) were successfully integrated into the C. glutamicum genome at alaT and avtA loci, respectively. Moreover, the operation time of this method was shorter than that of the previous method, especially for repeated integration. This method, which is based on the mobilizable plasmid pK18-MBPMT, thus represents a potentially attractive protocol for the integration of genes in the course of genetic modification of C. glutamicum.
Collapse
|
13
|
Xu J, Han M, Zhang J, Guo Y, Zhang W. Metabolic engineering Corynebacterium glutamicum for the L-lysine production by increasing the flux into L-lysine biosynthetic pathway. Amino Acids 2014; 46:2165-75. [PMID: 24879631 DOI: 10.1007/s00726-014-1768-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 05/20/2014] [Indexed: 10/25/2022]
Abstract
The experiments presented here were based on the conclusions of our previous results. In order to avoid introduction of expression plasmid and to balance the NADH/NAD ratio, the NADH biosynthetic enzyme, i.e., NAD-dependent glyceraldehyde-3-phosphate dehydrogenase (GADPH), was replaced by NADP-dependent GADPH, which was used to biosynthesize NADPH rather than NADH. The results indicated that the NADH/NAD ratio significantly decreased, and glucose consumption and L-lysine production drastically improved. Moreover, increasing the flux through L-lysine biosynthetic pathway and disruption of ilvN and hom, which involve in the branched amino acid and L-methionine biosynthesis, further improved L-lysine production by Corynebacterium glutamicum. Compared to the original strain C. glutamicum Lys5, the L-lysine production and glucose conversion efficiency (α) were enhanced to 81.0 ± 6.59 mM and 36.45% by the resulting strain C. glutamicum Lys5-8 in shake flask. In addition, the by-products (i.e., L-threonine, L-methionine and L-valine) were significantly decreased as results of genetic modification in homoserine dehydrogenase (HSD) and acetohydroxyacid synthase (AHAS). In fed-batch fermentation, C. glutamicum Lys5-8 began to produce L-lysine at post-exponential growth phase and continuously increased over 36 h to a final titer of 896 ± 33.41 mM. The L-lysine productivity was 2.73 g l(-1) h(-1) and the α was 47.06% after 48 h. However, the attenuation of MurE was not beneficial to increase the L-lysine production because of decreasing the cell growth. Based on the above-mentioned results, we get the following conclusions: cofactor NADPH, precursor, the flux through L-lysine biosynthetic pathway and DCW are beneficial to improve L-lysine production in C. glutamicum.
Collapse
Affiliation(s)
- Jianzhong Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, WuXi, 214122, People's Republic of China
| | | | | | | | | |
Collapse
|