Han L, Liang B. New approaches to NAD(P)H regeneration in the biosynthesis systems.
World J Microbiol Biotechnol 2018;
34:141. [PMID:
30203299 DOI:
10.1007/s11274-018-2530-8]
[Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 08/31/2018] [Indexed: 12/13/2022]
Abstract
Nicotinamide adenine dinucleotide (NADH) and nicotinamide adenine dinucleotide phosphate (NADPH), as two kinds of well-known cofactor, are widely used in the most of enzymatic redox reactions, playing an important role in industrial catalysis. In general, supply of NAD(P)H is a major challenged factor in redox fermentation systems due to its high cost and low stability, which have stimulated the development of NADH regeneration systems in recent years. Until now, a series of NAD(P)H regeneration systems have been developed. This review focuses primarily on new approaches of NAD(P)H cofactor regeneration in the biosynthesis systems, such as single cell in vivo NADH regeneration system, double cell coupling NADH regeneration system, in vitro enzyme-coupled NADH regeneration system, microbial cell surface display NADH regeneration system. Finally, the prospect and tendency of NADH regeneration are discussed.
Collapse