1
|
Ottone C, Pugliese D, Laurenti M, Hernández S, Cauda V, Grez P, Wilson L. ZnO Materials as Effective Anodes for the Photoelectrochemical Regeneration of Enzymatically Active NAD . ACS APPLIED MATERIALS & INTERFACES 2021; 13:10719-10727. [PMID: 33645209 DOI: 10.1021/acsami.0c20630] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This work reports the study of ZnO-based anodes for the photoelectrochemical regeneration of the oxidized form of nicotinamide adenine dinucleotide (NAD+). The latter is the most important coenzyme for dehydrogenases. However, the high costs of NAD+ limit the use of such enzymes at the industrial level. The influence of the ZnO morphologies (flower-like, porous film, and nanowires), showing different surface area and crystallinity, was studied. The detection of diluted solutions (0.1 mM) of the reduced form of the coenzyme (NADH) was accomplished by the flower-like and the porous films, whereas concentrations greater than 20 mM were needed for the detection of NADH with nanowire-shaped ZnO-based electrodes. The photocatalytic activity of ZnO was reduced at increasing concentrations of NAD+ because part of the ultraviolet irradiation was absorbed by the coenzyme, reducing the photons available for the ZnO material. The higher electrochemical surface area of the flower-like film makes it suitable for the regeneration reaction. The illumination of the electrodes led to a significant increase on the NAD+ regeneration with respect to both the electrochemical oxidation in dark and the only photochemical reaction. The tests with formate dehydrogenase demonstrated that 94% of the regenerated NAD+ was enzymatically active.
Collapse
Affiliation(s)
- Carminna Ottone
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2085, 2340000 Valparaiso, Chile
| | - Diego Pugliese
- Department of Applied Science and Technology, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Marco Laurenti
- Department of Applied Science and Technology, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Simelys Hernández
- Department of Applied Science and Technology, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Valentina Cauda
- Department of Applied Science and Technology, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Paula Grez
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Av. Universidad 330, Curauma, 2340000 Valparaiso, Chile
| | - Lorena Wilson
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2085, 2340000 Valparaiso, Chile
| |
Collapse
|
2
|
Hollmann F, Opperman DJ, Paul CE. Biocatalytic Reduction Reactions from a Chemist's Perspective. Angew Chem Int Ed Engl 2021; 60:5644-5665. [PMID: 32330347 PMCID: PMC7983917 DOI: 10.1002/anie.202001876] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Indexed: 11/09/2022]
Abstract
Reductions play a key role in organic synthesis, producing chiral products with new functionalities. Enzymes can catalyse such reactions with exquisite stereo-, regio- and chemoselectivity, leading the way to alternative shorter classical synthetic routes towards not only high-added-value compounds but also bulk chemicals. In this review we describe the synthetic state-of-the-art and potential of enzymes that catalyse reductions, ranging from carbonyl, enone and aromatic reductions to reductive aminations.
Collapse
Affiliation(s)
- Frank Hollmann
- Department of BiotechnologyDelft University of TechnologyVan der Maasweg 92629 HZDelftThe Netherlands
- Department of BiotechnologyUniversity of the Free State205 Nelson Mandela DriveBloemfontein9300South Africa
| | - Diederik J. Opperman
- Department of BiotechnologyUniversity of the Free State205 Nelson Mandela DriveBloemfontein9300South Africa
| | - Caroline E. Paul
- Department of BiotechnologyDelft University of TechnologyVan der Maasweg 92629 HZDelftThe Netherlands
| |
Collapse
|
3
|
Hollmann F, Opperman DJ, Paul CE. Biokatalytische Reduktionen aus der Sicht eines Chemikers. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001876] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Frank Hollmann
- Department of Biotechnology Delft University of Technology Van der Maasweg 9 2629 HZ Delft Niederlande
- Department of Biotechnology University of the Free State 205 Nelson Mandela Drive Bloemfontein 9300 Südafrika
| | - Diederik J. Opperman
- Department of Biotechnology University of the Free State 205 Nelson Mandela Drive Bloemfontein 9300 Südafrika
| | - Caroline E. Paul
- Department of Biotechnology Delft University of Technology Van der Maasweg 9 2629 HZ Delft Niederlande
| |
Collapse
|
4
|
Abstract
Enzymatic methods for the oxidation of alcohols are critically reviewed. Dehydrogenases and oxidases are the most prominent biocatalysts, enabling the selective oxidation of primary alcohols into aldehydes or acids. In the case of secondary alcohols, region and/or enantioselective oxidation is possible. In this contribution, we outline the current state-of-the-art and discuss current limitations and promising solutions.
Collapse
|
5
|
Troiano D, Orsat V, Dumont MJ. Status of Biocatalysis in the Production of 2,5-Furandicarboxylic Acid. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02378] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Derek Troiano
- Bioresource Engineering Department, McGill University, Ste-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| | - Valérie Orsat
- Bioresource Engineering Department, McGill University, Ste-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| | - Marie-Josée Dumont
- Bioresource Engineering Department, McGill University, Ste-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| |
Collapse
|
6
|
Mordhorst S, Andexer JN. Round, round we go - strategies for enzymatic cofactor regeneration. Nat Prod Rep 2020; 37:1316-1333. [PMID: 32582886 DOI: 10.1039/d0np00004c] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Covering: up to the beginning of 2020Enzymes depending on cofactors are essential in many biosynthetic pathways of natural products. They are often involved in key steps: catalytic conversions that are difficult to achieve purely with synthetic organic chemistry. Hence, cofactor-dependent enzymes have great potential for biocatalysis, on the condition that a corresponding cofactor regeneration system is available. For some cofactors, these regeneration systems require multiple steps; such complex enzyme cascades/multi-enzyme systems are (still) challenging for in vitro biocatalysis. Further, artificial cofactor analogues have been synthesised that are more stable, show an altered reaction range, or act as inhibitors. The development of bio-orthogonal systems that can be used for the production of modified natural products in vivo is an ongoing challenge. In light of the recent progress in this field, this review aims to provide an overview of general strategies involving enzyme cofactors, cofactor analogues, and regeneration systems; highlighting the current possibilities for application of enzymes using some of the most common cofactors.
Collapse
Affiliation(s)
- Silja Mordhorst
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093 Zürich, Switzerland
| | | |
Collapse
|
7
|
Jia HY, Zong MH, Zheng GW, Li N. Myoglobin-Catalyzed Efficient In Situ Regeneration of NAD(P)+ and Their Synthetic Biomimetic for Dehydrogenase-Mediated Oxidations. ACS Catal 2019. [DOI: 10.1021/acscatal.8b04890] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hao-Yu Jia
- School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Min-Hua Zong
- School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Gao-Wei Zheng
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Ning Li
- School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| |
Collapse
|
8
|
Liu J, Wu S, Li Z. Recent advances in enzymatic oxidation of alcohols. Curr Opin Chem Biol 2017; 43:77-86. [PMID: 29258054 DOI: 10.1016/j.cbpa.2017.12.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 11/03/2017] [Accepted: 12/04/2017] [Indexed: 01/07/2023]
Abstract
Enzymatic alcohol oxidation plays an important role in chemical synthesis. In the past two years, new alcohol oxidation enzymes were developed through genome-mining and protein engineering, such as new copper radical oxidases with broad substrate scope, alcohol dehydrogenases with altered cofactor preference and a flavin-dependent alcohol oxidase with enhanced oxygen coupling. New cofactor recycling methods were reported for alcohol dehydrogenase-catalyzed oxidation with photocatalyst and coupled glutaredoxin-glutathione reductase as promising examples. Different alcohol oxidation systems were used for the oxidation of primary and secondary alcohols, especially in the cascade conversion of alcohols to lactones, lactams, chiral amines, chiral alcohols and hydroxyketones. Among them, biocatalyst with low enantioselectivity demonstrated an interesting feature for complete conversion of racemic secondary alcohols through non-enantioselective oxidation.
Collapse
Affiliation(s)
- Ji Liu
- Department of Chemical and Biomolecular Engineering, 4 Engineering Drive 4, National University of Singapore, Singapore 117585, Singapore
| | - Shuke Wu
- Department of Chemical and Biomolecular Engineering, 4 Engineering Drive 4, National University of Singapore, Singapore 117585, Singapore
| | - Zhi Li
- Department of Chemical and Biomolecular Engineering, 4 Engineering Drive 4, National University of Singapore, Singapore 117585, Singapore.
| |
Collapse
|
9
|
Martínez AT, Ruiz-Dueñas FJ, Camarero S, Serrano A, Linde D, Lund H, Vind J, Tovborg M, Herold-Majumdar OM, Hofrichter M, Liers C, Ullrich R, Scheibner K, Sannia G, Piscitelli A, Pezzella C, Sener ME, Kılıç S, van Berkel WJ, Guallar V, Lucas MF, Zuhse R, Ludwig R, Hollmann F, Fernández-Fueyo E, Record E, Faulds CB, Tortajada M, Winckelmann I, Rasmussen JA, Gelo-Pujic M, Gutiérrez A, del Río JC, Rencoret J, Alcalde M. Oxidoreductases on their way to industrial biotransformations. Biotechnol Adv 2017. [DOI: 10.1016/j.biotechadv.2017.06.003] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
10
|
Jia HY, Zong MH, Yu HL, Li N. Dehydrogenase-Catalyzed Oxidation of Furanics: Exploitation of Hemoglobin Catalytic Promiscuity. CHEMSUSCHEM 2017; 10:3524-3528. [PMID: 28786206 DOI: 10.1002/cssc.201701288] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 08/06/2017] [Indexed: 06/07/2023]
Abstract
The catalytic promiscuity of hemoglobin (Hb) was explored for regenerating oxidized nicotinamide cofactors [NAD(P)+ ]. With H2 O2 as oxidant, Hb efficiently oxidized NAD(P)H into NAD(P)+ within 30 min. The new NAD(P)+ regeneration system was coupled with horse liver alcohol dehydrogenase (HLADH) for the oxidation of bio-based furanics such as furfural and 5-hydroxymethylfurfural (HMF). The target acids (e.g., 2,5-furandicarboxylic acid, FDCA) were prepared with moderate-to-good yields. The enzymatic regeneration method was applied in l-glutamic dehydrogenase (DH)-mediated oxidative deamination of lglutamate and for l-lactic-DH-mediated oxidation of l-lactate, which furnished α-ketoglutarate and pyruvate in yields of 97 % and 81 %, respectively. A total turnover number (TTON) of up to approximately 5000 for cofactor and an E factor of less than 110 were obtained in the bi-enzymatic cascade synthesis of α-ketoglutarate. Overall, a proof-of-concept based on catalytic promiscuity of Hb was provided for in situ regeneration of NAD(P)+ in DH-catalyzed oxidation reactions.
Collapse
Affiliation(s)
- Hao-Yu Jia
- State Key Laboratory of Pulp and Paper Engineering, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510640, P.R. China
| | - Min-Hua Zong
- State Key Laboratory of Pulp and Paper Engineering, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510640, P.R. China
| | - Hui-Lei Yu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China
| | - Ning Li
- State Key Laboratory of Pulp and Paper Engineering, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510640, P.R. China
| |
Collapse
|
11
|
Ni Y, Hollmann F. Artificial Photosynthesis: Hybrid Systems. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2017; 158:137-158. [PMID: 26987806 DOI: 10.1007/10_2015_5010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Oxidoreductases are promising catalysts for organic synthesis. To sustain their catalytic cycles they require efficient supply with redox equivalents. Today classical biomimetic approaches utilizing natural electron supply chains prevail but artificial regeneration approaches bear the promise of simpler and more robust reaction schemes. Utilizing visible light can accelerate such artificial electron transport chains and even enable thermodynamically unfeasible reactions such as the use of water as reductant.This contribution critically summarizes the current state of the art in photoredoxbiocatalysis (i.e. light-driven biocatalytic oxidation and reduction reactions).
Collapse
Affiliation(s)
- Yan Ni
- Delft University of Technology, Delft, The Netherlands
| | | |
Collapse
|
12
|
Angelastro A, Dawson WM, Luk LYP, Allemann RK. A Versatile Disulfide-Driven Recycling System for NADP+ with High Cofactor Turnover Number. ACS Catal 2017. [DOI: 10.1021/acscatal.6b03061] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Antonio Angelastro
- School of Chemistry and Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, United Kingdom
| | - William M. Dawson
- School of Chemistry and Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Louis Y. P. Luk
- School of Chemistry and Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Rudolf K. Allemann
- School of Chemistry and Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, United Kingdom
| |
Collapse
|
13
|
Albarrán-Velo J, López-Iglesias M, Gotor V, Gotor-Fernández V, Lavandera I. Synthesis of nitrogenated lignin-derived compounds and reactivity with laccases. Study of their application in mild chemoenzymatic oxidative processes. RSC Adv 2017. [DOI: 10.1039/c7ra10497a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The chemical synthesis of a series of nitrogenated lignin-derived compounds, their reactivity with laccases and further application in mild oxidative processes are here disclosed.
Collapse
Affiliation(s)
- Jesús Albarrán-Velo
- Organic and Inorganic Chemistry Department
- Biotechnology Institute of Asturias (IUBA)
- University of Oviedo
- 33006 Oviedo
- Spain
| | - María López-Iglesias
- Organic and Inorganic Chemistry Department
- Biotechnology Institute of Asturias (IUBA)
- University of Oviedo
- 33006 Oviedo
- Spain
| | - Vicente Gotor
- Organic and Inorganic Chemistry Department
- Biotechnology Institute of Asturias (IUBA)
- University of Oviedo
- 33006 Oviedo
- Spain
| | - Vicente Gotor-Fernández
- Organic and Inorganic Chemistry Department
- Biotechnology Institute of Asturias (IUBA)
- University of Oviedo
- 33006 Oviedo
- Spain
| | - Iván Lavandera
- Organic and Inorganic Chemistry Department
- Biotechnology Institute of Asturias (IUBA)
- University of Oviedo
- 33006 Oviedo
- Spain
| |
Collapse
|
14
|
Cannatelli MD, Ragauskas AJ. Two Decades of Laccases: Advancing Sustainability in the Chemical Industry. CHEM REC 2016; 17:122-140. [PMID: 27492131 DOI: 10.1002/tcr.201600033] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Indexed: 12/30/2022]
Abstract
Given the current state of environmental affairs and that our future on this planet as we know it is in jeopardy, research and development into greener and more sustainable technologies within the chemical and forest products industries is at its peak. Given the global scale of these industries, the need for environmentally benign practices is propelling new green processes. These challenges are also impacting academic research and our reagents of interest are laccases. These enzymes are employed in a variety of biotechnological applications due to their native function as catalytic oxidants. They are about as green as it gets when it comes to chemical processes, requiring O2 as their only co-substrate and producing H2 O as the sole by-product. The following account will review our twenty year journey on the use of these enzymes within our research group, from their initial use in biobleaching of kraft pulps and for fiber modification within the pulp and paper industry, to their current application as green catalytic oxidants in the field of synthetic organic chemistry.
Collapse
Affiliation(s)
- Mark D Cannatelli
- Renewable Bioproducts Institute, School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA.,Joint Institute for Biological Sciences, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Arthur J Ragauskas
- Renewable Bioproducts Institute, School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA.,Joint Institute for Biological Sciences, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.,Department of Chemical & Biomolecular Engineering, Department of Forestry, Wildlife & Fisheries, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
15
|
Zhu C, Li Q, Pu L, Tan Z, Guo K, Ying H, Ouyang P. Nonenzymatic and Metal-Free Organocatalysis for in Situ Regeneration of Oxidized Cofactors by Activation and Reduction of Molecular Oxygen. ACS Catal 2016. [DOI: 10.1021/acscatal.6b01261] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Chenjie Zhu
- College
of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 South Puzhu Road, 211816 Nanjing, China
- National Engineering Technique Research Center for Biotechnology, Nanjing, China
| | - Qing Li
- College
of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 South Puzhu Road, 211816 Nanjing, China
| | - Lingling Pu
- College
of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 South Puzhu Road, 211816 Nanjing, China
| | - Zhuotao Tan
- College
of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 South Puzhu Road, 211816 Nanjing, China
| | - Kai Guo
- College
of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 South Puzhu Road, 211816 Nanjing, China
| | - Hanjie Ying
- College
of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 South Puzhu Road, 211816 Nanjing, China
- National Engineering Technique Research Center for Biotechnology, Nanjing, China
| | - Pingkai Ouyang
- College
of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 South Puzhu Road, 211816 Nanjing, China
- National Engineering Technique Research Center for Biotechnology, Nanjing, China
| |
Collapse
|