1
|
Lorente-Arevalo A, Orellana G, Ladero M, Bolivar JM. Overcoming Biochemical Limitations of Galactose Oxidase through the Design of a Solid-Supported Self-Sufficient Biocatalyst. Chembiochem 2023; 24:e202300421. [PMID: 37782555 DOI: 10.1002/cbic.202300421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 09/08/2023] [Accepted: 10/02/2023] [Indexed: 10/04/2023]
Abstract
Galactose Oxidase (GalOx) has gained significant interest in biocatalysis due to its ability for selective oxidation beyond the natural oxidation of galactose, enabling the production of valuable derivatives. However, the practical application of GalOx has been hindered by the limited availability of active and stable biocatalysts, as well as the inherent biochemical limitations such as oxygen (O2 ) dependency and the need for activation. In this study, we addressed these challenges by immobilizing GalOx into agarose-based and Purolite supports to enhance its activity and stability. Additionally, we identified and quantified the oxygen supply limitation into solid catalysts by intraparticle oxygen sensing showing a trade-off between the amount of protein loaded onto the solid support and the catalytic effectiveness of the immobilized enzyme. Furthermore, we coimmobilized a heme-containing protein along with the enzyme to function as an activator. To evaluate the practical application of the immobilized GalOx, we conducted the oxidation of galactose in an instrumented aerated reactor. The results showcased the efficient performance of the immobilized enzyme in the 8 h reaction cycle. Notably, the GalOx immobilized into dextran sulfate-activated agarose exhibited improved stability, overcoming the need for a soluble activator supply, and demonstrated exceptional performance in galactose oxidation. These findings offer promising prospects for the utilization of GalOx in technical biocatalytic applications.
Collapse
Affiliation(s)
- Alvaro Lorente-Arevalo
- FQPIMA Group, Chemical and Materials Engineering Department, Faculty of Chemistry, Complutense University of Madrid, Madrid, 28040, Spain
| | - Guillermo Orellana
- Chemical Optosensors & Applied Photochemistry Group (GSOLFA), Department of Organic Chemistry, Faculty of Chemistry, Complutense University of Madrid, Madrid, 28040, Spain
| | - Miguel Ladero
- FQPIMA Group, Chemical and Materials Engineering Department, Faculty of Chemistry, Complutense University of Madrid, Madrid, 28040, Spain
| | - Juan M Bolivar
- FQPIMA Group, Chemical and Materials Engineering Department, Faculty of Chemistry, Complutense University of Madrid, Madrid, 28040, Spain
| |
Collapse
|
2
|
Xu Q, Tang Y, Zhu P, Zhang W, Zhang Y, Solis OS, Hu TS, Wang J. Machine learning guided microwave-assisted quantum dot synthesis and an indication of residual H 2O 2 in human teeth. NANOSCALE 2022; 14:13771-13778. [PMID: 36102636 DOI: 10.1039/d2nr03718a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The current preparation methods of carbon quantum dots (CDs) involve many reaction parameters, which leads to many possibilities in the synthesis processes and high uncertainty of the resultant production performance. Recently, machine learning (ML) methods have shown great potential in correlating the selected features in many applications, which can help understand the relevant structure-function relationships of CDs and discover better synthesis recipes as well. In this work, we employ the ML approach to guide the blue CD synthesis in microwave systems. After optimizing the synthesis parameters and conditions, the quantum yield (QY) increases to about 200% higher than the average value of the prepared samples without ML guidance. The obtained CDs are applied as fluorescent probes to monitor hydrogen peroxide (H2O2) in human teeth. The CD probe exhibits a linear relationship with the concentration of H2O2 ranging from 0 to 1.1 M with a lower detection limit of 0.12 M, which can effectively detect the residual H2O2 after bleaching teeth. This work shows that the adopted ML methods have considerable advantages in guiding the synthesis of high-quality CDs, which could accelerate the development of other novel functional materials in energy, biomedical, and environmental remediation applications.
Collapse
Affiliation(s)
- Quan Xu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing 102249, China.
| | - Yaoyao Tang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing 102249, China.
| | - Peide Zhu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing 102249, China.
| | - Weiye Zhang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing 102249, China.
| | - Yuqi Zhang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing 102249, China.
| | - Oliver Sanchez Solis
- Department of Mechanical Engineering, California State University, Los Angeles, California, 90032, USA
| | - Travis Shihao Hu
- Department of Mechanical Engineering, California State University, Los Angeles, California, 90032, USA
| | - Juncheng Wang
- Institute of Stomatology, First Medical Center, Chinese PLA General Hospital, Beijing 100853, China.
| |
Collapse
|
3
|
Nano-fibrillated cellulose-based scaffolds for enzyme (co)-immobilization: Application to natural product glycosylation by Leloir glycosyltransferases. Int J Biol Macromol 2022; 222:217-227. [PMID: 36165869 DOI: 10.1016/j.ijbiomac.2022.09.160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 11/21/2022]
Abstract
Polysaccharide-based scaffolds are promising carriers for enzyme immobilization. Here, we demonstrate a porous scaffold prepared by direct-ink-writing 3D printing of an ink consisting of nanofibrillated cellulose, carboxymethyl cellulose and citric acid for immobilization application. Negative surface charge introduced by the components made the scaffold amenable for an affinity-like immobilization via the cationic protein module Zbasic2. Zbasic2 fusions of two sugar nucleotide-dependent glycosyltransferases (C-glycosyltransferase, Z-CGT; sucrose synthase, Z-SuSy) were immobilized individually, or co-immobilized, and applied to synthesize the natural C-glycoside nothofagin. The cascade reaction involved β-C-glycosylation of phloretin (10 mM, ~90 % conversion) from UDP-glucose, provided from sucrose and catalytic amounts of UDP (1.0 mM). Enzymes were co-immobilized at ~65 mg protein/g carrier to receive activities of 9.5 U/g (Z-CGT) and 4.5 U/g (Z-SuSy) in 22-33 % yield (protein) and an effectiveness of 23 % (Z-CGT) and 13 % (Z-SuSy). The scaffold-bound enzymes were recyclable for 5 consecutive reactions.
Collapse
|
4
|
Bolivar JM, Woodley JM, Fernandez-Lafuente R. Is enzyme immobilization a mature discipline? Some critical considerations to capitalize on the benefits of immobilization. Chem Soc Rev 2022; 51:6251-6290. [PMID: 35838107 DOI: 10.1039/d2cs00083k] [Citation(s) in RCA: 148] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Enzyme immobilization has been developing since the 1960s and although many industrial biocatalytic processes use the technology to improve enzyme performance, still today we are far from full exploitation of the field. One clear reason is that many evaluate immobilization based on only a few experiments that are not always well-designed. In contrast to many other reviews on the subject, here we highlight the pitfalls of using incorrectly designed immobilization protocols and explain why in many cases sub-optimal results are obtained. We also describe solutions to overcome these challenges and come to the conclusion that recent developments in material science, bioprocess engineering and protein science continue to open new opportunities for the future. In this way, enzyme immobilization, far from being a mature discipline, remains as a subject of high interest and where intense research is still necessary to take full advantage of the possibilities.
Collapse
Affiliation(s)
- Juan M Bolivar
- FQPIMA group, Chemical and Materials Engineering Department, Faculty of Chemical Sciences, Complutense University of Madrid, Madrid, 28040, Spain
| | - John M Woodley
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Kgs Lyngby, Denmark.
| | - Roberto Fernandez-Lafuente
- Departamento de Biocatálisis. ICP-CSIC, C/Marie Curie 2, Campus UAM-CSIC Cantoblanco, Madrid 28049, Spain. .,Center of Excellence in Bionanoscience Research, External Scientific Advisory Academic, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
5
|
Schelch S, Bolivar JM, Nidetzky B. Monitoring and control of the release of soluble O 2 from H 2 O 2 inside porous enzyme carrier for O 2 supply to an immobilized D-amino acid oxidase. Biotechnol Bioeng 2022; 119:2374-2387. [PMID: 35510396 PMCID: PMC9545842 DOI: 10.1002/bit.28130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/27/2022] [Accepted: 05/01/2022] [Indexed: 11/09/2022]
Abstract
While O2 substrate for bio‐transformations in bulk liquid is routinely provided from entrained air or O2 gas, tailored solutions of O2 supply are required when the bio‐catalysis happens spatially confined to the microstructure of a solid support. Release of soluble O2 from H2O2 by catalase is promising, but spatiotemporal control of the process is challenging to achieve. Here, we show monitoring and control by optical sensing within a porous carrier of the soluble O2 formed by an immobilized catalase upon feeding of H2O2. The internally released O2 is used to drive the reaction of d‐amino acid oxidase (oxidation of d‐methionine) that is co‐immobilized with the catalase in the same carrier. The H2O2 is supplied in portions at properly timed intervals, or continuously at controlled flow rate, to balance the O2 production and consumption inside the carrier so as to maintain the internal O2 concentration in the range of 100–500 µM. Thus, enzyme inactivation by excess H2O2 is prevented and gas formation from the released O2 is avoided at the same time. The reaction rate of the co‐immobilized enzyme preparation is shown to depend linearly on the internal O2 concentration up to the air‐saturated level. Conversions at a 200 ml scale using varied H2O2 feed rate (0.04–0.18 mmol/min) give the equivalent production rate from d‐methionine (200 mM) and achieve rate enhancement by ∼1.55‐fold compared to the same oxidase reaction under bubble aeration. Collectively, these results show an integrated strategy of biomolecular engineering for tightly controlled supply of O2 substrate from H2O2 into carrier‐immobilized enzymes. By addressing limitations of O2 supply via gas‐liquid transfer, especially at the microscale, this can be generally useful to develop specialized process strategies for O2‐dependent biocatalytic reactions.
Collapse
Affiliation(s)
- Sabine Schelch
- Austrian Centre of Industrial Biotechnology, Krenngasse 37, A-8010, Graz, Austria.,Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, A-8010, Graz, Austria
| | - Juan M Bolivar
- Austrian Centre of Industrial Biotechnology, Krenngasse 37, A-8010, Graz, Austria.,Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, A-8010, Graz, Austria
| | - Bernd Nidetzky
- Austrian Centre of Industrial Biotechnology, Krenngasse 37, A-8010, Graz, Austria.,Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, A-8010, Graz, Austria
| |
Collapse
|
6
|
Schelch S, Koszagova R, Kuballa J, Nidetzky B. Immobilization of CMP‐sialic acid synthetase and α2,3‐sialyltransferase for cascade synthesis of 3'‐sialyl β‐D‐galactoside with enzyme reuse. ChemCatChem 2022. [DOI: 10.1002/cctc.202101860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Sabine Schelch
- TU Graz: Technische Universitat Graz Institut für Biotechnologie und Bioprozesstechnik AUSTRIA
| | - Romana Koszagova
- Technische Universität Graz: Technische Universitat Graz Institut für Biotechnologie und Bioprozesstechnik AUSTRIA
| | | | - Bernd Nidetzky
- Biotechnology and Biochemical Engineering Graz University of Technology Petersgasse 12 8010 Graz AUSTRIA
| |
Collapse
|
7
|
Small tools for sweet challenges: advances in microfluidic technologies for glycan synthesis. Anal Bioanal Chem 2022; 414:5139-5163. [PMID: 35199190 DOI: 10.1007/s00216-022-03948-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/26/2022] [Accepted: 01/31/2022] [Indexed: 11/01/2022]
Abstract
Glycans, including oligosaccharides and glycoconjugates, play an integral role in modulating the biological functions of macromolecules. Many physiological and pathological processes are mediated by interactions between glycans, which has led to the use of glycans as biosensors for pathogen and biomarker detection. Elucidating the relationship between glycan structure and biological function is critical for advancing our understanding of the impact glycans have on human health and disease and for expanding the repertoire of glycans available for bioanalysis, especially for diagnostics. Such efforts have been limited by the difficulty in obtaining sufficient quantities of homogenous glycan samples needed to resolve the exact relationships between glycan structure and their structural or modulatory functions on a given glycoconjugate. Synthetic strategies offer a viable route for overcoming these technical hurdles. In recent years, microfluidics have emerged as powerful tools for realizing high-throughput and reproducible syntheses of homogenous glycans for the potential use in functional studies. This critical review provides readers with an overview of the microfluidic technologies that have been developed for chemical and enzymatic glycan synthesis. The advantages and limitations associated with using microreactor platforms to improve the scalability, productivity, and selectivity of glycosylation reactions will be discussed, as well as suggested future work that can address certain pitfalls.
Collapse
|
8
|
Liu H, Nidetzky B. Leloir glycosyltransferases enabled to flow synthesis: Continuous production of the natural C-glycoside nothofagin. Biotechnol Bioeng 2021; 118:4402-4413. [PMID: 34355386 PMCID: PMC9291316 DOI: 10.1002/bit.27908] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/30/2021] [Accepted: 08/01/2021] [Indexed: 01/12/2023]
Abstract
C‐glycosyltransferase (CGT) and sucrose synthase (SuSy), each fused to the cationic binding module Zbasic2, were co‐immobilized on anionic carrier (ReliSorb SP400) and assessed for continuous production of the natural C‐glycoside nothofagin. The overall reaction was 3ʹ‐C‐β‐glycosylation of the polyphenol phloretin from uridine 5ʹ‐diphosphate (UDP)‐glucose that was released in situ from sucrose and UDP. Using solid catalyst optimized for total (∼28 mg/g) as well as relative protein loading (CGT/SuSy = ∼1) and assembled into a packed bed (1 ml), we demonstrate flow synthesis of nothofagin (up to 52 mg/ml; 120 mM) from phloretin (≥95% conversion) solubilized by inclusion complexation in hydroxypropyl β‐cyclodextrin. About 1.8 g nothofagin (90 ml; 12–26 mg/ml) were produced continuously over 90 reactor cycles (2.3 h/cycle) with a space‐time yield of approximately 11 mg/(ml h) and a total enzyme turnover number of up to 2.9 × 103 mg/mg (=3.8 × 105 mol/mol). The co‐immobilized enzymes exhibited useful effectiveness (∼40% of the enzymes in solution), with limitations on the conversion rate arising partly from external liquid–solid mass transfer of UDP under packed‐bed flow conditions. The operational half‐life of the catalyst (∼200 h; 30°C) was governed by the binding stability of the glycosyltransferases (≤35% loss of activity) on the solid carrier. Collectively, the current study shows integrated process technology for flow synthesis with co‐immobilized sugar nucleotide‐dependent glycosyltransferases, using efficient glycosylation from sucrose via the internally recycled UDP‐glucose. This provides a basis from engineering science to promote glycosyltransferase applications for natural product glycosides and oligosaccharides.
Collapse
Affiliation(s)
- Hui Liu
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Graz, Austria
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Graz, Austria.,Austrian Centre of Industrial Biotechnology (ACIB), Graz, Austria
| |
Collapse
|
9
|
Lorente-Arevalo A, Ladero M, Bolivar JM. Framework of the kinetic analysis of O 2-dependent oxidative biocatalysts for reaction intensification. REACT CHEM ENG 2021. [DOI: 10.1039/d1re00237f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A framework for kinetic modelling and evaluation of the reaction intensification of O2-dependent enzyme catalyzed reactions is built from measurements of consumption rates of the initially dissolved O2 in homogeneous liquid phase.
Collapse
Affiliation(s)
- Alvaro Lorente-Arevalo
- Chemical and Materials Engineering Department, Faculty of Chemical Sciences, Complutense University of Madrid, Madrid, 28040, Spain
| | - Miguel Ladero
- Chemical and Materials Engineering Department, Faculty of Chemical Sciences, Complutense University of Madrid, Madrid, 28040, Spain
| | - Juan M. Bolivar
- Chemical and Materials Engineering Department, Faculty of Chemical Sciences, Complutense University of Madrid, Madrid, 28040, Spain
| |
Collapse
|
10
|
Biocatalysis in Continuous-Flow Microfluidic Reactors. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2021; 179:211-246. [DOI: 10.1007/10_2020_160] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Co-Immobilization and Co-Localization of Oxidases and Catalases: Catalase from Bordetella Pertussis Fused with the Zbasic Domain. Catalysts 2020. [DOI: 10.3390/catal10070810] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Oxidases catalyze selective oxidations by using molecular oxygen as an oxidizing agent. This process promotes the release of hydrogen peroxide, an undesirable byproduct. The instantaneous elimination of hydrogen peroxide can be achieved by co-immobilization and co-localization of the oxidase and an auxiliary catalase inside the porous structure of solid support. In this paper, we proposed that catalase from Bordetella pertussis fused with a small domain (Zbasic) as an excellent auxiliary enzyme. The enzyme had a specific activity of 23 U/mg, and this was almost six-fold higher than the one of the commercially available catalases from bovine liver. The Zbasic domain was fused to the four amino termini of this tetrameric enzyme. Two domains were close in one hemisphere of the enzyme molecule, and the other two were close in the opposite hemisphere. In this way, each hemisphere contained 24 residues with a positive charge that was very useful for the purification of the enzyme via cationic exchange chromatography. In addition to this, each hemisphere contained 10 Lys residues that were very useful for a rapid and intense multipoint covalent attachment on highly activated glyoxyl supports. In fact, 190 mg of the enzyme was immobilized on one gram of glyoxyl-10% agarose gel. The ratio catalase/oxidase able to instantaneously remove more than 93% of the released hydrogen peroxide was around 5–6 mg of catalase per mg of oxidase. Thirty milligrams of amine oxidase and 160 mg of catalase were co-immobilized and co-localized per gram of glyoxyl-agarose 10BCL (10% beads cross-linked) support. This biocatalyst eliminated biogenic amines (putrescine) 80-fold faster than a biocatalyst of the same oxidase co-localized with the commercial catalase from bovine liver.
Collapse
|
12
|
Semenova D, Fernandes AC, Bolivar JM, Rosinha Grundtvig IP, Vadot B, Galvanin S, Mayr T, Nidetzky B, Zubov A, Gernaey KV. Model-based analysis of biocatalytic processes and performance of microbioreactors with integrated optical sensors. N Biotechnol 2020; 56:27-37. [DOI: 10.1016/j.nbt.2019.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 10/29/2019] [Accepted: 11/01/2019] [Indexed: 01/13/2023]
|
13
|
|
14
|
Bolivar JM, Nidetzky B. The Microenvironment in Immobilized Enzymes: Methods of Characterization and Its Role in Determining Enzyme Performance. Molecules 2019; 24:molecules24193460. [PMID: 31554193 PMCID: PMC6803829 DOI: 10.3390/molecules24193460] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/17/2019] [Accepted: 09/19/2019] [Indexed: 12/11/2022] Open
Abstract
The liquid milieu in which enzymes operate when they are immobilized in solid materials can be quite different from the milieu in bulk solution. Important differences are in the substrate and product concentration but also in pH and ionic strength. The internal milieu for immobilized enzymes is affected by the chemical properties of the solid material and by the interplay of reaction and diffusion. Enzyme performance is influenced by the internal milieu in terms of catalytic rate (“activity”) and stability. Elucidation, through direct measurement of differences in the internal as compared to the bulk milieu is, therefore, fundamentally important in the mechanistic characterization of immobilized enzymes. The deepened understanding thus acquired is critical for the rational development of immobilized enzyme preparations with optimized properties. Herein we review approaches by opto-chemical sensing to determine the internal milieu of enzymes immobilized in porous particles. We describe analytical principles applied to immobilized enzymes and focus on the determination of pH and the O2 concentration. We show measurements of pH and [O2] with spatiotemporal resolution, using in operando analysis for immobilized preparations of industrially important enzymes. The effect of concentration gradients between solid particle and liquid bulk on enzyme performance is made evident and quantified. Besides its use in enzyme characterization, the method can be applied to the development of process control strategies.
Collapse
Affiliation(s)
- Juan M Bolivar
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, A-8010 Graz, Austria.
- Chemical and Materials Engineering Department, Complutense University of Madrid, 28040 Madrid, Spain.
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, A-8010 Graz, Austria.
- Austrian Centre of Industrial Biotechnology (acib), Petersgasse 14, A-8010 Graz, Austria.
| |
Collapse
|
15
|
Sánchez-deAlcázar D, Velasco-Lozano S, Zeballos N, López-Gallego F, Cortajarena AL. Biocatalytic Protein-Based Materials for Integration into Energy Devices. Chembiochem 2019; 20:1977-1985. [PMID: 30939214 DOI: 10.1002/cbic.201900047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/01/2019] [Indexed: 01/23/2023]
Abstract
There is a current need to fabricate new biobased functional materials. Bottom-up approaches to assemble simple molecular units have shown promise for biomaterial fabrication due to their tunability and versatility for the incorporation of functionalities. Herein, the fabrication of catalytic protein thin films by the entrapment of catalase into protein films composed of a scaffolding protein is demonstrated. Extensive structural and functional characterization of the films provide evidence of the structural integrity, order, stability, catalytic activity, and reusability of the biocatalytic materials. Finally, these functional biomaterials are coupled with piezoelectric disks to fabricate a second generation of bio-inorganic generators. These devices are capable of producing electricity from renewable fuels through catalase-driven gas production that mechanically stimulates the piezoelectric material.
Collapse
Affiliation(s)
| | - Susana Velasco-Lozano
- Heterogeneous Biocatalysis Laboratory, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH-CSIC), University of Zaragoza, C/ Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - Nicoll Zeballos
- Heterogeneous Biocatalysis Laboratory, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH-CSIC), University of Zaragoza, C/ Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - Fernando López-Gallego
- Heterogeneous Biocatalysis Laboratory, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH-CSIC), University of Zaragoza, C/ Pedro Cerbuna 12, 50009, Zaragoza, Spain.,ARAID, Aragon I+D Foundation, Av. de Ranillas 1-D, planta 2ª, oficina B, 50018, Zaragoza, Spain
| | - Aitziber L Cortajarena
- CIC biomaGUNE, Paseo de Miramón 182, 20014, Donostia-San Sebastián, Spain.,Ikerbasque, Basque Foundation for Science, Mª Díaz de Haro 3, 48013, Bilbao, Spain
| |
Collapse
|
16
|
Dennig A, Blaschke F, Gandomkar S, Tassano E, Nidetzky B. Preparative Asymmetric Synthesis of Canonical and Non‐canonical α‐amino Acids Through Formal Enantioselective Biocatalytic Amination of Carboxylic Acids. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201801377] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Alexander Dennig
- Institute of Biotechnology and Biochemical Engineering, Graz University of TechnologyNAWI Graz Petersgasse 12 8010 Graz Austria
- Austrian Centre of Industrial Biotechnology (acib) Petersgasse 14 8010 Graz Austria
| | - Fabio Blaschke
- Institute of Biotechnology and Biochemical Engineering, Graz University of TechnologyNAWI Graz Petersgasse 12 8010 Graz Austria
| | - Somayyeh Gandomkar
- Institute of Biotechnology and Biochemical Engineering, Graz University of TechnologyNAWI Graz Petersgasse 12 8010 Graz Austria
| | - Erika Tassano
- Department of ChemistryUniversity of Graz Heinrichstrasse 28 8010 Graz Austria
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of TechnologyNAWI Graz Petersgasse 12 8010 Graz Austria
- Austrian Centre of Industrial Biotechnology (acib) Petersgasse 14 8010 Graz Austria
| |
Collapse
|
17
|
Bolivar JM, Mannsberger A, Thomsen MS, Tekautz G, Nidetzky B. Process intensification for O 2 -dependent enzymatic transformations in continuous single-phase pressurized flow. Biotechnol Bioeng 2019; 116:503-514. [PMID: 30512199 PMCID: PMC6590253 DOI: 10.1002/bit.26886] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/16/2018] [Accepted: 11/29/2018] [Indexed: 12/24/2022]
Abstract
Oxidative O2 -dependent biotransformations are promising for chemical synthesis, but their development to an efficiency required in fine chemical manufacturing has proven difficult. General problem for process engineering of these systems is that thermodynamic and kinetic limitations on supplying O2 to the enzymatic reaction combine to create a complex bottleneck on conversion efficiency. We show here that continuous-flow microreactor technology offers a comprehensive solution. It does so by expanding the process window to the medium pressure range (here, ≤34 bar) and thus enables biotransformations to be conducted in a single liquid phase at boosted concentrations of the dissolved O2 (here, up to 43 mM). We take reactions of glucose oxidase and d-amino acid oxidase as exemplary cases to demonstrate that the pressurized microreactor presents a powerful engineering tool uniquely apt to overcome restrictions inherent to the individual O2 -dependent transformation considered. Using soluble enzymes in liquid flow, we show reaction rate enhancement (up to six-fold) due to the effect of elevated O2 concentrations on the oxidase kinetics. When additional catalase was used to recycle dissolved O2 from the H2 O2 released in the oxidase reaction, product formation was doubled compared to the O2 supplied, in the absence of transfer from a gas phase. A packed-bed reactor containing oxidase and catalase coimmobilized on porous beads was implemented to demonstrate catalyst recyclability and operational stability during continuous high-pressure conversion. Product concentrations of up to 80 mM were obtained at low residence times (1-4 min). Up to 360 reactor cycles were performed at constant product release and near-theoretical utilization of the O2 supplied. Therefore, we show that the pressurized microreactor is practical embodiment of a general reaction-engineering concept for process intensification in enzymatic conversions requiring O2 as the cosubstrate.
Collapse
Affiliation(s)
- Juan M Bolivar
- Austrian Centre of Industrial Biotechnology (ACIB), Graz, Austria.,Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Graz, Austria
| | - Alexander Mannsberger
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Graz, Austria
| | | | - Günter Tekautz
- Microinnova Engineering GmbH, Allerheiligen bei Wildon, Austria
| | - Bernd Nidetzky
- Austrian Centre of Industrial Biotechnology (ACIB), Graz, Austria.,Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Graz, Austria
| |
Collapse
|
18
|
Shukla SN, Gaur P, Vaidya P, Chaurasia B, Jhariya S. Biomimetic complexes of Mn(II), Fe(III), Co(II), and Ni(II) with 1,10-phenanthroline and a salen type ligand: tailored synthesis, characterization, DFT, enzyme kinetics, and antibacterial screening. J COORD CHEM 2018. [DOI: 10.1080/00958972.2018.1536267] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Satyendra N. Shukla
- Coordination Chemistry Research Lab, Department of Chemistry, Government Science College, Jabalpur, Madhya Pradesh, India
| | - Pratiksha Gaur
- Coordination Chemistry Research Lab, Department of Chemistry, Government Science College, Jabalpur, Madhya Pradesh, India
| | - Preeti Vaidya
- Coordination Chemistry Research Lab, Department of Chemistry, Government Science College, Jabalpur, Madhya Pradesh, India
| | - Bhaskar Chaurasia
- Coordination Chemistry Research Lab, Department of Chemistry, Government Science College, Jabalpur, Madhya Pradesh, India
| | - Sangeeta Jhariya
- Coordination Chemistry Research Lab, Department of Chemistry, Government Science College, Jabalpur, Madhya Pradesh, India
| |
Collapse
|
19
|
Benítez-Mateos AI, Nidetzky B, Bolivar JM, López-Gallego F. Single-Particle Studies to Advance the Characterization of Heterogeneous Biocatalysts. ChemCatChem 2018. [DOI: 10.1002/cctc.201701590] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Ana I. Benítez-Mateos
- Heterogeneous Biocatalysis Group; CIC BiomaGUNE; Paseo Miramon 182 San Sebastian-Donostia 20014 Spain
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering; Graz University of Technology, NAWI Graz; Petersgasse 12 8010 Graz Austria
- Austrian Centre of Industrial Biotechnology; Petersgasse 14 8010 Graz Austria
| | - Juan M. Bolivar
- Institute of Biotechnology and Biochemical Engineering; Graz University of Technology, NAWI Graz; Petersgasse 12 8010 Graz Austria
| | - Fernando López-Gallego
- Heterogeneous Biocatalysis Group; CIC BiomaGUNE; Paseo Miramon 182 San Sebastian-Donostia 20014 Spain
- IKERBASQUE; Basque Foundation for Science; Bilbao Spain
| |
Collapse
|
20
|
Bolivar JM, Gascon V, Marquez-Alvarez C, Blanco RM, Nidetzky B. Oriented Coimmobilization of Oxidase and Catalase on Tailor-Made Ordered Mesoporous Silica. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:5065-5076. [PMID: 28464607 DOI: 10.1021/acs.langmuir.7b00441] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Mesoporous silica materials are promising carriers for enzyme immobilization in heterogeneous biocatalysis applications. By tailoring their pore structural framework, these materials are designable for appropriate enzyme binding capacity and internal diffusivity. To supply O2 efficiently to solid-supported immobilized enzymes represents a core problem of heterogeneously catalyzed oxidative biotransformations. In this study, therefore, we synthesized and compared three internally well-ordered and two amorphous silica materials as enzyme carriers, each of those with pore sizes of ≥10 nm, to enable the coimmobilization of d-amino-acid oxidase (79 kDa) and catalase (217 kDa). Both enzymes were fused to the silica-binding module Zbasic2 to facilitate their selective and oriented immobilization directly from crude protein mixtures on native silica materials. Analyzing the effects of varied pore architecture and internal surface area on the performance of the immobilized bienzymatic system, we showed that a uniform pore structural framework was beneficial for enzyme loading (≥70 mg protein/g carrier), immobilization yield (≥90%), surface and pore volume filling without hindered adsorption, and catalytic effectiveness (≥60%) of the coimmobilizate. Using the best carrier LP-SBA-15, we obtained a solid oxidase-catalase preparation with an activity of 2000 μmol/(min g_material) that was recyclable and stable during oxidation of d-methionine. These results affirm a strategy of optimizing immobilized O2-dependent enzymes via tunable internal structuring of the silica material used as carrier. They thus make a significant advance toward the molecular design of heterogeneous oxidation biocatalysts on mesoporous silica supports.
Collapse
Affiliation(s)
- Juan M Bolivar
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, A-8010 Graz, Austria
| | - Victoria Gascon
- Molecular Sieves Group, Institute of Catalysis and Petroleum Chemistry (ICP-CSIC) , Marie Curie, 2, Cantoblanco 28049, Madrid, Spain
| | - Carlos Marquez-Alvarez
- Molecular Sieves Group, Institute of Catalysis and Petroleum Chemistry (ICP-CSIC) , Marie Curie, 2, Cantoblanco 28049, Madrid, Spain
| | - Rosa M Blanco
- Molecular Sieves Group, Institute of Catalysis and Petroleum Chemistry (ICP-CSIC) , Marie Curie, 2, Cantoblanco 28049, Madrid, Spain
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, A-8010 Graz, Austria
- Austrian Centre of Industrial Biotechnology , Petersgasse 14, A-8010 Graz, Austria
| |
Collapse
|