1
|
Kimoto S, Takeuchi M, Kishino S, Itagaki Y, Hara R, Kitamura N, Okada N, Park SB, Ando A, Ueda M, Ogawa J. Characterization of regioselective glycosyltransferase of Rhizobium pusense JCM 16209 T useful for resveratrol 4'-O-α-d-glucoside production. J Biosci Bioeng 2022; 134:213-219. [PMID: 35864060 DOI: 10.1016/j.jbiosc.2022.06.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/10/2022] [Accepted: 06/21/2022] [Indexed: 10/17/2022]
Abstract
Enzymatic glycosylation is an industrially useful technique for improving the properties of compounds with hydroxy groups, and the biological activities of the resulting glycosides differ depending on the glycosylation position. Therefore, regioselective glycosyltransferases are required for precise synthesis of glycosides. We found that Rhizobium pusense JCM 16209T could catalyze the regioselective glycosylation of resveratrol. To identify the regioselective glycosyltransferase, two α-glucosidases of R. pusense JCM 16209T (RpG I and RpG II) were cloned and expressed in Escherichia coli. The molecular mass of purified recombinant RpG I and II was estimated to be 60 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). RpG I showed strong glycosylation activity toward resveratrol with 4'-selectivity of 98.3%. The enzyme activity was maximized at pH 8.0 and 50 °C, and enhanced in the presence of Cs+ and Li+ ions. The maximum molar yield of resveratrol 4'-O-α-glucoside from resveratrol reached 41.6% at 30 min, and the concentration of the product was 2.08 mmol L-1. Glycosylation activity was observed toward resveratrol as well as toward caffeic acid, ferulic acid, 6-gingerol, flavonoid, and isoflavonoid compounds with high regioselectivity, indicating that RpG I could glycosylate a wide range of substrates. To the best of our knowledge, there are few reports on microbial glycosyltransferases that are useful for regioselective glycosylation. This research could be the first step toward developing technologies for the precise synthesis of glycosides.
Collapse
Affiliation(s)
- Shota Kimoto
- Division of Applied Life Science, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Michiki Takeuchi
- Industrial Microbiology, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Shigenobu Kishino
- Division of Applied Life Science, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Yudai Itagaki
- Department of Materials Chemistry and Bioengineering, National Institute of Technology, Oyama College, 771 Nakakuki, Oyama, Tochigi 323-0806, Japan
| | - Ryotaro Hara
- Industrial Microbiology, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Nahoko Kitamura
- Division of Applied Life Science, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Natsumi Okada
- Division of Applied Life Science, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Si-Bum Park
- Division of Applied Life Science, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Akinori Ando
- Division of Applied Life Science, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Makoto Ueda
- Industrial Microbiology, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan; Department of Materials Chemistry and Bioengineering, National Institute of Technology, Oyama College, 771 Nakakuki, Oyama, Tochigi 323-0806, Japan
| | - Jun Ogawa
- Division of Applied Life Science, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan.
| |
Collapse
|
2
|
Suzuki T, Fukaya M, Takahashi K, Takeuchi M, Hara R, Ogawa J, Ueda M. Cloning and characterization of a recombinant α-glucosidase from Ensifer adhaerens NBRC 100388 and evaluation of its glucosyl transfer activity. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
3
|
Zhen L, Wei Q, Wang Q, Zhang H, Adu-Frimpong M, Kesse Firempong C, Xu X, Yu J. Preparation and in vitro/in vivo evaluation of 6-Gingerol TPGS/PEG-PCL polymeric micelles. Pharm Dev Technol 2019; 25:1-8. [DOI: 10.1080/10837450.2018.1558239] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Lijun Zhen
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People’s Republic of China
| | - Qiuyu Wei
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People’s Republic of China
| | - Qilong Wang
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People’s Republic of China
| | - Huiyun Zhang
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People’s Republic of China
| | - Michael Adu-Frimpong
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People’s Republic of China
| | - Caleb Kesse Firempong
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People’s Republic of China
- Department of Biochemistry and Biotechnology, College of Science, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Ximing Xu
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People’s Republic of China
| | - Jiangnan Yu
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People’s Republic of China
| |
Collapse
|
4
|
Takahashi K, Terauchi I, Ono M, Satoh H, Ueda M. Microbial production of neryl-α-D-glucopyranoside from nerol by Agrobacterium sp. M-12 reflects glucosyl transfer activity. Biosci Biotechnol Biochem 2018; 82:2205-2211. [PMID: 30185110 DOI: 10.1080/09168451.2018.1514250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Terpene alcohol is widely used in perfumes and is known to possess antibacterial activity. Moreover, in its glycosylated form, it can be applied as a nonionic surfactant in food, and in the pharmaceutical, chemical, cosmetic, and detergent industries. Presently, chemical production of terpene glucosides is hampered by high costs and low yields. Here, we investigated the microbial glucosylation of nerol (cis-3,7-dimethylocta-2,6-dien-1-ol), a component of volatile oils, by Agrobacterium sp. M-12 isolated from soil. A microbial reaction using washed cells of Agrobacterium sp. M-12, 1 g/L of nerol, and 100 g/L of maltose under optimal conditions yielded 1.8 g/L of neryl-α-D-glucopyranoside after 72 h. The molar yield of neryl-α-D-glucopyranoside was 87.6%. Additionally, we report the successful transglucosylation of other monoterpene alcohols, such as geraniol, (-)-β-citronellol, and (-)-linalool, by Agrobacterium sp. M-12. Thus, microbial glucosylation has potential widespread applicability for efficient, low-cost production of glycosylated terpene alcohols.
Collapse
Affiliation(s)
| | | | - Marie Ono
- a Oyama National College of Technology , Oyama , Japan
| | | | - Makoto Ueda
- a Oyama National College of Technology , Oyama , Japan
| |
Collapse
|