1
|
Li Z, Iida J, Shiimori M, Okamura K. Exportin-5 binding precedes 5'- and 3'-end processing of tRNA precursors in Drosophila. J Biol Chem 2024; 300:107632. [PMID: 39098529 PMCID: PMC11402290 DOI: 10.1016/j.jbc.2024.107632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/16/2024] [Accepted: 07/26/2024] [Indexed: 08/06/2024] Open
Abstract
Exportin5 (Exp5) is the major miRNA nuclear export factor and recognizes structural features of pre-miRNA hairpins, while it also exports other minihelix-containing RNAs. In Drosophila, Exp5 is suggested to play a major role in tRNA export because the gene encoding the canonical tRNA export factor Exportin-t is missing in its genome. To understand molecular functions of fly Exp5, we studied the Exp5/RNA interactome in the cell line S2R + using the crosslinking and immunoprecipitation (CLIP) technology. The CLIP experiment captured known substrates such as tRNAs and miRNAs and detected candidates of novel Exp5 substrates including various mRNAs and long non-coding RNAs (lncRNAs). Some mRNAs and lncRNAs enriched PAR-CLIP tags compared to their expression levels, suggesting selective binding of Exp5 to them. Intronless mRNAs tended to enrich PAR-CLIP tags; therefore, we proposed that Exp5 might play a role in the export of specific classes of mRNAs/lncRNAs. This result suggested that Drosophila Exp5 might have a wider variety of substrates than initially thought. Surprisingly, Exp5 CLIP reads often contained sequences corresponding to the flanking 5'-leaders and 3'-trailers of tRNAs, which were thought to be removed prior to nuclear export. In fact, we found pre-tRNAs before end-processing were present in the cytoplasm, supporting the idea that tRNA end-processing is a cytoplasmic event. In summary, our results provide a genome-wide list of Exp5 substrate candidates and suggest that flies may lack a mechanism to distinguish pre-tRNAs with or without the flanking sequences.
Collapse
Affiliation(s)
- Ze Li
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | - Junko Iida
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | - Masami Shiimori
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | - Katsutomo Okamura
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, Japan; Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
2
|
Moreira-Gomes T, Nóbrega C. From the disruption of RNA metabolism to the targeting of RNA-binding proteins: The case of polyglutamine spinocerebellar ataxias. J Neurochem 2024; 168:1442-1459. [PMID: 37990934 DOI: 10.1111/jnc.16010] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/04/2023] [Accepted: 11/03/2023] [Indexed: 11/23/2023]
Abstract
Polyglutamine spinocerebellar ataxias (PolyQ SCAs) represent a group of monogenetic diseases in which the expanded polyglutamine repeats give rise to a mutated protein. The abnormally expanded polyglutamine protein produces aggregates and toxic species, causing neuronal dysfunction and neuronal death. The main symptoms of these disorders include progressive ataxia, motor dysfunction, oculomotor impairment, and swallowing problems. Nowadays, the current treatments are restricted to symptomatic alleviation, and no existing therapeutic strategies can reduce or stop the disease progression. Even though the origin of these disorders has been associated with polyglutamine-induced toxicity, RNA toxicity has recently gained relevance in polyQ SCAs molecular pathogenesis. Therefore, the research's focus on RNA metabolism has been increasing, especially on RNA-binding proteins (RBPs). The present review summarizes RNA metabolism, exposing the different processes and the main RBPs involved. We also explore the mechanisms by which RBPs are dysregulated in PolyQ SCAs. Finally, possible therapies targeting the RNA metabolism are presented as strategies to reverse neuropathological anomalies and mitigate physical symptoms.
Collapse
Affiliation(s)
- Tiago Moreira-Gomes
- ABC-RI, Algarve Biomedical Center Research Institute, Faro, Portugal
- Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve, Faro, Portugal
- Doctoral Program in Biomedical Sciences, Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve, Faro, Portugal
| | - Clévio Nóbrega
- ABC-RI, Algarve Biomedical Center Research Institute, Faro, Portugal
- Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve, Faro, Portugal
| |
Collapse
|
3
|
Lu S, Gao C, Wang Y, He Y, Du J, Chen M, Zhao H, Fang H, Wang B, Cao Y. Phylogenetic Analysis of the Plant U2 snRNP Auxiliary Factor Large Subunit A Gene Family in Response to Developmental Cues and Environmental Stimuli. FRONTIERS IN PLANT SCIENCE 2021; 12:739671. [PMID: 34868124 PMCID: PMC8635922 DOI: 10.3389/fpls.2021.739671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
In all organisms, splicing occurs through the formation of spliceosome complexes, and splicing auxiliary factors are essential during splicing. U2AF65 is a crucial splicing cofactor, and the two typical RNA-recognition motifs at its center recognize and bind the polypyrimidine sequence located between the intron branch site and the 3'-splice site. U2AF65A is a member of the U2AF65 gene family, with pivotal roles in diseases in mammals, specifically humans; however, few studies have investigated plant U2AF65A, and its specific functions are poorly understood. Therefore, in the present study, we systematically identified U2AF65A in plant species from algae to angiosperms. Based on 113 putative U2AF65A sequences from 33 plant species, phylogenetic analyses were performed, followed by basic bioinformatics, including the comparisons of gene structure, protein domains, promoter motifs, and gene expression levels. In addition, using rice as the model crop, we demonstrated that the OsU2AF65A protein is localized to the nucleus and cytoplasm, and it is involved in responses to various stresses, such as drought, high salinity, low temperature, and heavy metal exposure (e.g., cadmium). Using Arabidopsis thaliana and rice mutants, we demonstrated that U2AF65A is involved in the accumulation of plant biomass, growth of hypocotyl upon thermal stimulation, and reduction of tolerance of high temperature stress. These findings offer an overview of the U2AF65 gene family and its stress response functions, serving as the reference for further comprehensive functional studies of the essential specific splicing cofactor U2AF65A in the plant kingdom.
Collapse
Affiliation(s)
- Shuai Lu
- School of Life Sciences, Nantong University, Nantong, China
| | - Cong Gao
- School of Life Sciences, Nantong University, Nantong, China
| | - Yongzhou Wang
- School of Life Sciences, Nantong University, Nantong, China
| | - Yingying He
- School of Life Sciences, Nantong University, Nantong, China
| | - Junrong Du
- School of Life Sciences, Nantong University, Nantong, China
| | - Moxian Chen
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Hua Zhao
- School of Life Sciences, Nantong University, Nantong, China
| | - Hui Fang
- School of Life Sciences, Nantong University, Nantong, China
| | - Baohua Wang
- School of Life Sciences, Nantong University, Nantong, China
| | - Yunying Cao
- School of Life Sciences, Nantong University, Nantong, China
| |
Collapse
|
4
|
Scott DD, Aguilar LC, Kramar M, Oeffinger M. It's Not the Destination, It's the Journey: Heterogeneity in mRNA Export Mechanisms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1203:33-81. [PMID: 31811630 DOI: 10.1007/978-3-030-31434-7_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The process of creating a translation-competent mRNA is highly complex and involves numerous steps including transcription, splicing, addition of modifications, and, finally, export to the cytoplasm. Historically, much of the research on regulation of gene expression at the level of the mRNA has been focused on either the regulation of mRNA synthesis (transcription and splicing) or metabolism (translation and degradation). However, in recent years, the advent of new experimental techniques has revealed the export of mRNA to be a major node in the regulation of gene expression, and numerous large-scale and specific mRNA export pathways have been defined. In this chapter, we will begin by outlining the mechanism by which most mRNAs are homeostatically exported ("bulk mRNA export"), involving the recruitment of the NXF1/TAP export receptor by the Aly/REF and THOC5 components of the TREX complex. We will then examine various mechanisms by which this pathway may be controlled, modified, or bypassed in order to promote the export of subset(s) of cellular mRNAs, which include the use of metazoan-specific orthologs of bulk mRNA export factors, specific cis RNA motifs which recruit mRNA export machinery via specific trans-acting-binding factors, posttranscriptional mRNA modifications that act as "inducible" export cis elements, the use of the atypical mRNA export receptor, CRM1, and the manipulation or bypass of the nuclear pore itself. Finally, we will discuss major outstanding questions in the field of mRNA export heterogeneity and outline how cutting-edge experimental techniques are providing new insights into and tools for investigating the intriguing field of mRNA export heterogeneity.
Collapse
Affiliation(s)
- Daniel D Scott
- Institut de recherches cliniques de Montréal, Montréal, QC, Canada.,Faculty of Medicine, Division of Experimental Medicine, McGill University, Montréal, QC, Canada
| | | | - Mathew Kramar
- Institut de recherches cliniques de Montréal, Montréal, QC, Canada.,Faculty of Medicine, Division of Experimental Medicine, McGill University, Montréal, QC, Canada
| | - Marlene Oeffinger
- Institut de recherches cliniques de Montréal, Montréal, QC, Canada. .,Faculty of Medicine, Division of Experimental Medicine, McGill University, Montréal, QC, Canada. .,Faculté de Médecine, Département de Biochimie, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
5
|
Minocha R, Popova V, Kopytova D, Misiak D, Hüttelmaier S, Georgieva S, Sträßer K. Mud2 functions in transcription by recruiting the Prp19 and TREX complexes to transcribed genes. Nucleic Acids Res 2019; 46:9749-9763. [PMID: 30053068 PMCID: PMC6182176 DOI: 10.1093/nar/gky640] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 07/20/2018] [Indexed: 01/31/2023] Open
Abstract
The different steps of gene expression are intimately linked to coordinate and regulate this complex process. During transcription, numerous RNA-binding proteins are already loaded onto the nascent mRNA and package the mRNA into a messenger ribonucleoprotein particle (mRNP). These RNA-binding proteins are often also involved in other steps of gene expression than mRNA packaging. For example, TREX functions in transcription, mRNP packaging and nuclear mRNA export. Previously, we showed that the Prp19 splicing complex (Prp19C) is needed for efficient transcription as well as TREX occupancy at transcribed genes. Here, we show that the splicing factor Mud2 interacts with Prp19C and is needed for Prp19C occupancy at transcribed genes in Saccharomyces cerevisiae. Interestingly, Mud2 is not only recruited to intron-containing but also to intronless genes indicating a role in transcription. Indeed, we show for the first time that Mud2 functions in transcription. Furthermore, these functions of Mud2 are likely evolutionarily conserved as Mud2 is also recruited to an intronless gene and interacts with Prp19C in Drosophila melanogaster. Taken together, we classify Mud2 as a novel transcription factor that is necessary for the recruitment of mRNA-binding proteins to the transcription machinery. Thus, Mud2 is a multifunctional protein important for transcription, splicing and most likely also mRNP packaging.
Collapse
Affiliation(s)
- Rashmi Minocha
- Institute of Biochemistry, Justus Liebig University, Giessen 35392, Germany
| | - Varvara Popova
- Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Daria Kopytova
- Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Danny Misiak
- Institute of Molecular Medicine, Martin-Luther-University Halle Wittenberg, Halle 06120, Germany
| | - Stefan Hüttelmaier
- Institute of Molecular Medicine, Martin-Luther-University Halle Wittenberg, Halle 06120, Germany
| | - Sofia Georgieva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Katja Sträßer
- Institute of Biochemistry, Justus Liebig University, Giessen 35392, Germany
| |
Collapse
|
6
|
Yu Y, Zhen Z, Qi H, Yuan X, Gao X, Zhang M. U2AF65 enhances milk synthesis and growth of bovine mammary epithelial cells by positively regulating the mTOR-SREBP-1c signalling pathway. Cell Biochem Funct 2019; 37:93-101. [PMID: 30773658 DOI: 10.1002/cbf.3378] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 01/21/2019] [Accepted: 01/21/2019] [Indexed: 12/14/2022]
Abstract
U2 snRNP auxiliary factor 65 kDa (U2AF65) is a splicing factor that promotes prespliceosome assembly. The function of U2AF65 in alternative splicing has been identified; however, the essential physiological role of U2AF65 remains poorly understood. In this study, we investigated the regulatory role of U2AF65 in milk synthesis and growth of bovine mammary epithelial cells (BMECs). Our results showed that U2AF65 localizes in the nucleus. Treatment with amino acids (Met and Leu) and hormones (prolactin and β-estradiol) upregulated the expression of U2AF65 in these cells. U2AF65 overexpression increased the synthesis of β-casein, triglycerides, and lactose; increased cell viability; and promoted proliferation of BMECs. Furthermore, our results showed that U2AF65 positively regulated mTOR phosphorylation and expression of mature mRNA of mTOR and SREBP-1c. Collectively, our findings demonstrate that U2AF65 regulates the mRNA expression of signalling molecules (mTOR and SREBP-1c) involved in milk synthesis and growth of BMECs, possibly via controlling the splicing and maturation of these mRNAs. U2 snRNP auxiliary factor 65 kDa (U2AF65) is a splicing factor that promotes prespliceosome assembly. The essential physiological role of U2AF65 remains poorly understood. In the present study, we confirmed that U2AF65 functions as a positive regulator of milk synthesis in and proliferation of bovine mammary epithelial cells via the mTOR-SREBP-1c signalling pathway. Therefore, our study uncovers the regulatory role of U2AF65 in milk synthesis and cell proliferation.
Collapse
Affiliation(s)
- Yanbo Yu
- Key Laboratory of Dairy Science of Education Ministry, Northeast Agricultural University, Harbin, China
| | - Zhen Zhen
- Key Laboratory of Dairy Science of Education Ministry, Northeast Agricultural University, Harbin, China
| | - Hao Qi
- Key Laboratory of Dairy Science of Education Ministry, Northeast Agricultural University, Harbin, China
| | - Xiaohan Yuan
- Key Laboratory of Dairy Science of Education Ministry, Northeast Agricultural University, Harbin, China
| | - Xuejun Gao
- Key Laboratory of Dairy Science of Education Ministry, Northeast Agricultural University, Harbin, China
| | - Minghui Zhang
- Key Laboratory of Dairy Science of Education Ministry, Northeast Agricultural University, Harbin, China
| |
Collapse
|
7
|
Martí E. RNA toxicity induced by expanded CAG repeats in Huntington's disease. Brain Pathol 2018; 26:779-786. [PMID: 27529325 DOI: 10.1111/bpa.12427] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 06/09/2016] [Indexed: 02/03/2023] Open
Abstract
Huntington's disease (HD) belongs to the group of inherited polyglutamine (PolyQ) diseases caused by an expanded CAG repeat in the coding region of the Huntingtin (HTT) gene that results in an elongated polyQ stretch. Abnormal function and aggregation of the mutant protein has been typically delineated as the main molecular cause underlying disease development. However, the most recent advances have revealed novel pathogenic pathways directly dependent on an RNA toxic gain-of-function. Expanded CAG repeats within exon 1 of the HTT mRNA induce toxicity through mechanisms involving, at least in part, gene expression perturbations. This has important implications not only for basic and translational research in HD, but also for other types of diseases carrying the expanded CAG in other genes, which likely share pathogenic aspects. Here I will review the evidence and mechanisms underlying RNA toxicity in CAG repeat expansions, with particular focus on HD. These comprise abnormal subcellular localization of the transcripts containing the expanded CAG repeats; sequestration of several types of proteins by the expanded CAG repeat which results in defects of alternative splicing events and gene expression; and aberrant biogenesis and detrimental activity of small CAG repeated RNAs (sCAG) that produce altered gene silencing. Although these altered pathways have been detected in HD models, their contribution to disease development and progress requires further study.
Collapse
Affiliation(s)
- Eulàlia Martí
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Institut Hospital del Mar d'Investigacions Mediques (IMIM), Barcelona, 08003, Spain.,Centro de Investigacion Biomedica en Red (CIBERESP), Madrid, Spain
| |
Collapse
|
8
|
Abstract
TRanscription and EXport (TREX) is a conserved multisubunit complex essential for embryogenesis, organogenesis and cellular differentiation throughout life. By linking transcription, mRNA processing and export together, it exerts a physiologically vital role in the gene expression pathway. In addition, this complex prevents DNA damage and regulates the cell cycle by ensuring optimal gene expression. As the extent of TREX activity in viral infections, amyotrophic lateral sclerosis and cancer emerges, the need for a greater understanding of TREX function becomes evident. A complete elucidation of the composition, function and interactions of the complex will provide the framework for understanding the molecular basis for a variety of diseases. This review details the known composition of TREX, how it is regulated and its cellular functions with an emphasis on mammalian systems.
Collapse
|
9
|
Stegeman R, Spreacker PJ, Swanson SK, Stephenson R, Florens L, Washburn MP, Weake VM. The Spliceosomal Protein SF3B5 is a Novel Component of Drosophila SAGA that Functions in Gene Expression Independent of Splicing. J Mol Biol 2016; 428:3632-49. [PMID: 27185460 PMCID: PMC5011000 DOI: 10.1016/j.jmb.2016.05.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 04/19/2016] [Accepted: 05/08/2016] [Indexed: 12/16/2022]
Abstract
The interaction between splicing factors and the transcriptional machinery provides an intriguing link between the coupled processes of transcription and splicing. Here, we show that the two components of the SF3B complex, SF3B3 and SF3B5, that form part of the U2 small nuclear ribonucleoprotein particle (snRNP) are also subunits of the Spt-Ada-Gcn5 acetyltransferase (SAGA) transcriptional coactivator complex in Drosophila melanogaster. Whereas SF3B3 had previously been identified as a human SAGA subunit, SF3B5 had not been identified as a component of SAGA in any species. We show that SF3B3 and SF3B5 bind to SAGA independent of RNA and interact with multiple SAGA subunits including Sgf29 and Spt7 in a yeast two-hybrid assay. Through analysis of sf3b5 mutant flies, we show that SF3B5 is necessary for proper development and cell viability but not for histone acetylation. Although SF3B5 does not appear to function in SAGA's histone-modifying activities, SF3B5 is still required for expression of a subset of SAGA-regulated genes independent of splicing. Thus, our data support an independent function of SF3B5 in SAGA's transcription coactivator activity that is separate from its role in splicing.
Collapse
Affiliation(s)
- Rachel Stegeman
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Peyton J Spreacker
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Selene K Swanson
- Stowers Institute for Medical Research, 1000 E. 50th St., Kansas City, MO 64110, USA
| | - Robert Stephenson
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Laurence Florens
- Stowers Institute for Medical Research, 1000 E. 50th St., Kansas City, MO 64110, USA
| | - Michael P Washburn
- Stowers Institute for Medical Research, 1000 E. 50th St., Kansas City, MO 64110, USA; Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Vikki M Weake
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA; Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
10
|
Abstract
The U2AF heterodimer is generally accepted to play a vital role in defining functional 3' splice sites in pre-mRNA splicing. Given prevalent mutations in U2AF, particularly in the U2AF1 gene (which encodes for the U2AF35 subunit) in blood disorders and other human cancers, there are renewed interests in these classic splicing factors to further understand their regulatory functions in RNA metabolism in both physiological and disease settings. We recently reported that U2AF has a maximal capacity to directly bind ˜88% of functional 3' splice sites in the human genome and that numerous U2AF binding events also occur in various exonic and intronic locations, thus providing additional mechanisms for the regulation of alternative splicing besides their traditional role in titrating weak splice sites in the cell. These findings, coupled with the existence of multiple related proteins to both U2AF65 and U2AF35, beg a series of questions on the universal role of U2AF in functional 3' splice site definition, their binding specificities in vivo, potential mechanisms to bypass their requirement for certain intron removal events, contribution of splicing-independent functions of U2AF to important cellular functions, and the mechanism for U2AF mutations to invoke specific diseases in humans.
Collapse
Affiliation(s)
- Tongbin Wu
- a Department of Medicine ; University of California, San Diego ; La Jolla , CA USA
| | | |
Collapse
|
11
|
Misra A, Ou J, Zhu LJ, Green MR. Global Promotion of Alternative Internal Exon Usage by mRNA 3' End Formation Factors. Mol Cell 2015; 58:819-31. [PMID: 25921069 DOI: 10.1016/j.molcel.2015.03.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 02/12/2015] [Accepted: 03/11/2015] [Indexed: 12/21/2022]
Abstract
The mechanisms that regulate alternative precursor mRNA (pre-mRNA) splicing are largely unknown. Here, we perform an RNAi screen to identify factors required for alternative splicing regulation by RBFOX2, an RNA-binding protein that promotes either exon inclusion or exclusion. Unexpectedly, we find that two mRNA 3' end formation factors, cleavage and polyadenylation specificity factor (CPSF) and SYMPK, are RBFOX2 cofactors for both inclusion and exclusion of internal exons. RBFOX2 interacts with CPSF/SYMPK and recruits it to the pre-mRNA. RBFOX2 and CPSF/SYMPK then function together to regulate binding of the early intron recognition factors U2AF and U1 small nuclear ribonucleoprotein particle (snRNP). Genome-wide analysis reveals that CPSF also mediates alternative splicing of many internal exons in the absence of RBFOX2. Accordingly, we show that CPSF/SYMPK is also a cofactor of NOVA2 and heterologous nuclear ribonucleoprotein A1 (HNRNPA1), RNA-binding proteins that also regulate alternative splicing. Collectively, our results reveal an unanticipated role for mRNA 3' end formation factors in global promotion of alternative splicing.
Collapse
Affiliation(s)
- Ashish Misra
- Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA; Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Jianhong Ou
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Lihua J Zhu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA; Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Michael R Green
- Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA; Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
12
|
Chan HYE. RNA-mediated pathogenic mechanisms in polyglutamine diseases and amyotrophic lateral sclerosis. Front Cell Neurosci 2014; 8:431. [PMID: 25565965 PMCID: PMC4271607 DOI: 10.3389/fncel.2014.00431] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 11/29/2014] [Indexed: 12/12/2022] Open
Abstract
Gene transcription produces a wide variety of ribonucleic acid (RNA) species in eukaryotes. Individual types of RNA, such as messenger, structural and regulatory RNA, are known to play distinct roles in the cell. Recently, researchers have identified a large number of RNA-mediated toxicity pathways that play significant pathogenic roles in numerous human disorders. In this article, we describe various common RNA toxicity pathways, namely epigenetic gene silencing, nucleolar stress, nucleocytoplasmic transport, bi-directional gene transcription, repeat-associated non-ATG translation, RNA foci formation and cellular protein sequestration. We emphasize RNA toxicity mechanisms that involve nucleotide repeat expansion, such as those related to polyglutamine (polyQ) disorders and frontotemporal lobar degeneration-amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Ho Yin Edwin Chan
- Laboratory of Drosophila Research, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong Hong Kong, China ; Biochemistry Programme, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong Hong Kong, China
| |
Collapse
|
13
|
Shao C, Yang B, Wu T, Huang J, Tang P, Zhou Y, Zhou J, Qiu J, Jiang L, Li H, Chen G, Sun H, Zhang Y, Denise A, Zhang DE, Fu XD. Mechanisms for U2AF to define 3' splice sites and regulate alternative splicing in the human genome. Nat Struct Mol Biol 2014; 21:997-1005. [PMID: 25326705 PMCID: PMC4429597 DOI: 10.1038/nsmb.2906] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 09/25/2014] [Indexed: 12/24/2022]
Abstract
The U2AF heterodimer has been well studied for its role in defining functional 3' splice sites in pre-mRNA splicing, but many fundamental questions still remain unaddressed regarding the function of U2AF in mammalian genomes. Through genome-wide analysis of U2AF-RNA interactions, we report that U2AF has the capacity to directly define ~88% of functional 3' splice sites in the human genome, but numerous U2AF binding events also occur in intronic locations. Mechanistic dissection reveals that upstream intronic binding events interfere with the immediate downstream 3' splice site associated either with the alternative exon, to cause exon skipping, or with the competing constitutive exon, to induce exon inclusion. We further demonstrate partial functional impairment with leukemia-associated mutations in U2AF35, but not U2AF65, in regulated splicing. These findings reveal the genomic function and regulatory mechanism of U2AF in both normal and disease states.
Collapse
Affiliation(s)
- Changwei Shao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Bo Yang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- Laboratoire de Recherche en Informatique, Institut de Génétique et Microbiologie I, Université Paris-Sud and Centre National de la Recherche Scientifique, Orsay, France
| | - Tongbin Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jie Huang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Peng Tang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yu Zhou
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California, USA
| | - Jie Zhou
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jinsong Qiu
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California, USA
| | - Li Jiang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Hairi Li
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California, USA
| | - Geng Chen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Hui Sun
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yi Zhang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Alain Denise
- Laboratoire de Recherche en Informatique, Institut de Génétique et Microbiologie I, Université Paris-Sud and Centre National de la Recherche Scientifique, Orsay, France
| | - Dong-Er Zhang
- UC San Diego Moores Cancer Center, University of California, San Diego, La Jolla, California, USA
| | - Xiang-Dong Fu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
14
|
BMPs regulate msx gene expression in the dorsal neuroectoderm of Drosophila and vertebrates by distinct mechanisms. PLoS Genet 2014; 10:e1004625. [PMID: 25210771 PMCID: PMC4161316 DOI: 10.1371/journal.pgen.1004625] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 07/23/2014] [Indexed: 01/26/2023] Open
Abstract
In a broad variety of bilaterian species the trunk central nervous system (CNS) derives from three primary rows of neuroblasts. The fates of these neural progenitor cells are determined in part by three conserved transcription factors: vnd/nkx2.2, ind/gsh and msh/msx in Drosophila melanogaster/vertebrates, which are expressed in corresponding non-overlapping patterns along the dorsal-ventral axis. While this conserved suite of “neural identity” gene expression strongly suggests a common ancestral origin for the patterning systems, it is unclear whether the original regulatory mechanisms establishing these patterns have been similarly conserved during evolution. In Drosophila, genetic evidence suggests that Bone Morphogenetic Proteins (BMPs) act in a dosage-dependent fashion to repress expression of neural identity genes. BMPs also play a dose-dependent role in patterning the dorsal and lateral regions of the vertebrate CNS, however, the mechanism by which they achieve such patterning has not yet been clearly established. In this report, we examine the mechanisms by which BMPs act on cis-regulatory modules (CRMs) that control localized expression of the Drosophila msh and zebrafish (Danio rerio) msxB in the dorsal central nervous system (CNS). Our analysis suggests that BMPs act differently in these organisms to regulate similar patterns of gene expression in the neuroectoderm: repressing msh expression in Drosophila, while activating msxB expression in the zebrafish. These findings suggest that the mechanisms by which the BMP gradient patterns the dorsal neuroectoderm have reversed since the divergence of these two ancient lineages. The trunk nervous system of both vertebrates and invertebrates develops from three primary rows of neural stem cells whose fate is determined by neural identity genes expressed in an evolutionarily conserved dorso-ventral pattern. Establishment of this pattern requires a shared signaling pathway in both groups of animals. Previous studies suggested that a shared signaling pathway functions in opposite ways in vertebrates and invertebrates, despite the final patterning outcomes having remained the same. Here, we employ bioinformatics, biochemistry, and transgenic animal technology to elucidate the genetic mechanism by which this pathway can engage the same components to generate opposite instructions and yet arrive at similar outcomes in patterning of the nervous system. Our findings highlight how natural selection can act to conserve a particular output pattern despite changes during evolution in the genetic mechanisms underlying the formation of this pattern.
Collapse
|
15
|
Rio DC. Preparation of ribonucleoprotein-enriched nucleoplasmic extracts from Drosophila cells. Cold Spring Harb Protoc 2014; 2014:295-8. [PMID: 24591693 DOI: 10.1101/pdb.prot080697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Here we describe how to prepare nucleoplasmic extracts from suspension cultures of Drosophila S2 (Schneider Line 2) cells. Harvested cells are washed in phosphate-buffered saline supplemented with MgCl2, resuspended in hypotonic buffer, and homogenized. Nuclei are isolated by centrifugation and then sonicated. The nuclear sonicate is placed on a 30% sucrose cushion and sedimented. The soluble nuclear ribonucleoprotein (RNP) complexes remain in the supernatant and the nuclear membrane fragments and chromatin pellet through the sucrose cushion.
Collapse
|
16
|
Tsoi H, Chan HYE. Roles of the nucleolus in the CAG RNA-mediated toxicity. Biochim Biophys Acta Mol Basis Dis 2013; 1842:779-84. [PMID: 24269666 DOI: 10.1016/j.bbadis.2013.11.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Revised: 11/12/2013] [Accepted: 11/13/2013] [Indexed: 10/26/2022]
Abstract
The nucleolus is a subnuclear compartment within the cell nucleus that serves as the site for ribosomal RNA (rRNA) transcription and the assembly of ribosome subunits. Apart from its classical role in ribosomal biogenesis, a number of cellular regulatory roles have recently been assigned to the nucleolus, including governing the induction of apoptosis. "Nucleolar stress" is a term that is used to describe a signaling pathway through which the nucleolus communicates with other subcellular compartments, including the mitochondria, to induce apoptosis. It is an effective mechanism for eliminating cells that are incapable of performing protein synthesis efficiently due to ribosome biogenesis defects. The down-regulation of rRNA transcription is a common cause of nucleolar function disruption that subsequently triggers nucleolar stress, and has been associated with the pathogenesis of neurological disorders such as spinocerebellar ataxias (SCAs) and Huntington's diseases (HD). This article discusses recent advances in mechanistic studies of how expanded CAG trinucleotide repeat RNA transcripts trigger nucleolar stress in SCAs, HD and other trinucleotide repeat disorders. This article is part of a Special Issue entitled: Role of the Nucleolus in Human Disease.
Collapse
Affiliation(s)
- Ho Tsoi
- Laboratory of Drosophila Research, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China; Biochemistry Program, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Ho Yin Edwin Chan
- Laboratory of Drosophila Research, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China; Biochemistry Program, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China; Cell and Molecular Biology Program, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China; Molecular Biotechnology Program, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| |
Collapse
|
17
|
Chanarat S, Sträßer K. Splicing and beyond: the many faces of the Prp19 complex. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:2126-34. [PMID: 23742842 DOI: 10.1016/j.bbamcr.2013.05.023] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 05/22/2013] [Accepted: 05/24/2013] [Indexed: 12/18/2022]
Abstract
The conserved Prp19 complex (Prp19C) - also known as NineTeen Complex (NTC) - functions in several processes of paramount importance for cellular homeostasis. NTC/Prp19C was discovered as a complex that functions in splicing and more specifically during the catalytic activation of the spliceosome. More recent work revealed that NTC/Prp19C plays a role in transcription elongation in Saccharomyces cerevisiae and in genome maintenance in higher eukaryotes. In addition, mouse PRP19 might ubiquity late proteins targeted for degradation and guide them to the proteasome. Furthermore, NTC/Prp19C has been implicated in lipid droplet biogenesis. In the future, the molecular function of NTC/Prp19C in all of these processes needs to be refined or elucidated. Most of NTC/Prp19C's functions have been shown in only one or few organisms. However, since this complex is highly conserved it is likely that it has the same functions across all species. Moreover, one NTC/Prp19C or different subcomplexes could function in the above-mentioned processes. Intriguingly, NTC/Prp19C might link these different processes to ensure an optimal coordination of cellular processes. Thus, many important questions about the functions of this interesting complex remain to be investigated. In this review we discuss the different functions of NTC/Prp19C focusing on the novel and emerging ones as well as open questions.
Collapse
Affiliation(s)
- Sittinan Chanarat
- Department of Molecular Cell Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | | |
Collapse
|
18
|
Catania F, Lynch M. A simple model to explain evolutionary trends of eukaryotic gene architecture and expression: how competition between splicing and cleavage/polyadenylation factors may affect gene expression and splice-site recognition in eukaryotes. Bioessays 2013; 35:561-70. [PMID: 23568225 DOI: 10.1002/bies.201200127] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Enormous phylogenetic variation exists in the number and sizes of introns in protein-coding genes. Although some consideration has been given to the underlying role of the population-genetic environment in defining such patterns, the influence of the intracellular environment remains virtually unexplored. Drawing from observations on interactions between co-transcriptional processes involved in splicing and mRNA 3'-end formation, a mechanistic model is proposed for splice-site recognition that challenges the commonly accepted intron- and exon-definition models. Under the suggested model, splicing factors that outcompete 3'-end processing factors for access to intronic binding sites concurrently favor the recruitment of 3'-end processing factors at the pre-mRNA tail. This hypothesis sheds new light on observations such as the intron-mediated enhancement of gene expression and the negative correlation between intron length and levels of gene expression.
Collapse
Affiliation(s)
- Francesco Catania
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany.
| | | |
Collapse
|
19
|
Lei H, Zhai B, Yin S, Gygi S, Reed R. Evidence that a consensus element found in naturally intronless mRNAs promotes mRNA export. Nucleic Acids Res 2012; 41:2517-25. [PMID: 23275560 PMCID: PMC3575797 DOI: 10.1093/nar/gks1314] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We previously showed that mRNAs synthesized from three genes that naturally lack introns contain a portion of their coding sequence, known as a cytoplasmic accumulation region (CAR), which is essential for stable accumulation of the intronless mRNAs in the cytoplasm. The CAR in each mRNA is unexpectedly large, ranging in size from ∼160 to 285 nt. Here, we identified one or more copies of a 10-nt consensus sequence in each CAR. To determine whether this element (designated CAR-E) functions in cytoplasmic accumulation of intronless mRNA, we multimerized the most conserved CAR-E and inserted it upstream of β-globin cDNA, which is normally retained/degraded in the nucleus. Significantly, the tandem CAR-E, but not its antisense counterpart, rescued cytoplasmic accumulation of β-globin cDNA transcripts. Moreover, dinucleotide mutations in the CAR-E abolished this rescue. We show that the CAR-E, but not the mutant CAR-E, associates with components of the TREX mRNA export machinery, the Prp19 complex and U2AF2. Moreover, knockdown of these factors results in nuclear retention of the intronless mRNAs. Together, these data suggest that the CAR-E promotes export of intronless mRNA by sequence-dependent recruitment of the mRNA export machinery.
Collapse
Affiliation(s)
- Haixin Lei
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
20
|
The Caenorhabditis elegans gene mfap-1 encodes a nuclear protein that affects alternative splicing. PLoS Genet 2012; 8:e1002827. [PMID: 22829783 PMCID: PMC3400559 DOI: 10.1371/journal.pgen.1002827] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 05/25/2012] [Indexed: 12/02/2022] Open
Abstract
RNA splicing is a major regulatory mechanism for controlling eukaryotic gene expression. By generating various splice isoforms from a single pre–mRNA, alternative splicing plays a key role in promoting the evolving complexity of metazoans. Numerous splicing factors have been identified. However, the in vivo functions of many splicing factors remain to be understood. In vivo studies are essential for understanding the molecular mechanisms of RNA splicing and the biology of numerous RNA splicing-related diseases. We previously isolated a Caenorhabditis elegans mutant defective in an essential gene from a genetic screen for suppressors of the rubberband Unc phenotype of unc-93(e1500) animals. This mutant contains missense mutations in two adjacent codons of the C. elegans microfibrillar-associated protein 1 gene mfap-1. mfap-1(n4564 n5214) suppresses the Unc phenotypes of different rubberband Unc mutants in a pattern similar to that of mutations in the splicing factor genes uaf-1 (the C. elegans U2AF large subunit gene) and sfa-1 (the C. elegans SF1/BBP gene). We used the endogenous gene tos-1 as a reporter for splicing and detected increased intron 1 retention and exon 3 skipping of tos-1 transcripts in mfap-1(n4564 n5214) animals. Using a yeast two-hybrid screen, we isolated splicing factors as potential MFAP-1 interactors. Our studies indicate that C. elegans mfap-1 encodes a splicing factor that can affect alternative splicing. RNA splicing removes intervening intronic sequences from pre–mRNA transcripts and joins adjacent exonic sequences to generate functional messenger RNAs. The in vivo functions of numerous factors that regulate splicing remain to be understood. From a genetic screen for suppressors of the rubberband Unc phenotype caused by the Caenorhabditis elegans unc-93(e1500) mutation, we isolated a mutation that affects a highly conserved essential gene, mfap-1. MFAP-1 is a nuclear protein that is broadly expressed. MFAP-1 can affect the alternative splicing of tos-1, an endogenous reporter gene for splicing, and is required for the altered splicing at a cryptic 3′ splice site of tos-1. mfap-1 enhances the effects of the gene uaf-1 (splicing factor U2AF large subunit) in suppressing the rubberband Unc phenotype of unc-93(e1500) animals. Our studies provide in vivo evidence that MFAP-1 functions as a splicing factor.
Collapse
|
21
|
Ankö ML, Neugebauer KM. RNA-protein interactions in vivo: global gets specific. Trends Biochem Sci 2012; 37:255-62. [PMID: 22425269 DOI: 10.1016/j.tibs.2012.02.005] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 02/05/2012] [Accepted: 02/08/2012] [Indexed: 01/01/2023]
Abstract
RNA-binding proteins (RBPs) impact every process in the cell; they act as splicing and polyadenylation factors, transport and localization factors, stabilizers and destabilizers, modifiers, and chaperones. RNA-binding capacity can be attributed to numerous protein domains that bind a limited repertoire of short RNA sequences. How is specificity achieved in cells? Here we focus on recent advances in determining the RNA-binding properties of proteins in vivo and compare these to in vitro determinations, highlighting insights into how endogenous RNA molecules are recognized and regulated. We also discuss the crucial contribution of structural determinations for understanding RNA-binding specificity and mechanisms.
Collapse
Affiliation(s)
- Minna-Liisa Ankö
- Max Planck Institute of Cell Biology and Genetics, Dresden, Germany.
| | | |
Collapse
|
22
|
Rohn JL, Sims D, Liu T, Fedorova M, Schöck F, Dopie J, Vartiainen MK, Kiger AA, Perrimon N, Baum B. Comparative RNAi screening identifies a conserved core metazoan actinome by phenotype. ACTA ACUST UNITED AC 2012; 194:789-805. [PMID: 21893601 PMCID: PMC3171124 DOI: 10.1083/jcb.201103168] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
RNAi screens in Drosophila and human cells for novel actin
regulators revealed conserved roles for proteins involved in nuclear actin
export, RNA splicing, and ubiquitination. Although a large number of actin-binding proteins and their regulators have been
identified through classical approaches, gaps in our knowledge remain. Here, we
used genome-wide RNA interference as a systematic method to define metazoan
actin regulators based on visual phenotype. Using comparative screens in
cultured Drosophila and human cells, we generated phenotypic
profiles for annotated actin regulators together with proteins bearing predicted
actin-binding domains. These phenotypic clusters for the known metazoan
“actinome” were used to identify putative new core actin
regulators, together with a number of genes with conserved but poorly studied
roles in the regulation of the actin cytoskeleton, several of which we studied
in detail. This work suggests that although our search for new components of the
core actin machinery is nearing saturation, regulation at the level of nuclear
actin export, RNA splicing, ubiquitination, and other upstream processes remains
an important but unexplored frontier of actin biology.
Collapse
Affiliation(s)
- Jennifer L Rohn
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, England, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Tsoi H, Lau CK, Lau KF, Chan HYE. Perturbation of U2AF65/NXF1-mediated RNA nuclear export enhances RNA toxicity in polyQ diseases. Hum Mol Genet 2011; 20:3787-97. [PMID: 21725067 DOI: 10.1093/hmg/ddr297] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Expanded CAG RNA has recently been reported to contribute to neurotoxicity in polyglutamine (polyQ) degeneration. In this study, we showed that RNA carrying an expanded CAG repeat progressively accumulated in the cell nucleus of transgenic Drosophila that displayed degeneration. Our gene knockdown and mutant analyses demonstrated that reduction of U2AF50 function, a gene involved in RNA nuclear export, intensified nuclear accumulation of expanded CAG RNA and resulted in a concomitant exacerbation of expanded CAG RNA-mediated toxicity in vivo. We found that the human U2AF50 ortholog, U2AF65, interacted directly and specifically with expanded CAG RNA via its RRM3 domain. We further identified an RNA/protein complex that consisted of expanded CAG RNA, U2AF65 and the NXF1 nuclear export receptor. The U2AF65 protein served as an adaptor to link expanded CAG RNA to NXF1 for RNA export. Finally, we confirmed the nuclear accumulation of expanded CAG RNA in symptomatic polyQ transgenic mice and also observed a neurodevelopmental downregulation of U2AF65 protein levels in mice. Altogether, our findings demonstrate that the cell nucleus is a site where expanded CAG RNA exerts its toxicity. We also provide a novel mechanistic explanation to how perturbation of RNA nuclear export would contribute to polyQ degeneration.
Collapse
Affiliation(s)
- Ho Tsoi
- Laboratory of Drosophila Research, Biochemistry Program, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, People's Republic of China
| | | | | | | |
Collapse
|
24
|
Morris AR, Mukherjee N, Keene JD. Systematic analysis of posttranscriptional gene expression. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2011; 2:162-180. [PMID: 20836020 DOI: 10.1002/wsbm.54] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent systems studies of gene expression have begun to dissect the layers of regulation that underlie the eukaryotic transcriptome, the combined consequence of transcriptional and posttranscriptional events. Among the regulatory layers of the transcriptome are those of the ribonome, a highly dynamic environment of ribonucleoproteins in which RNA-binding proteins (RBPs), noncoding regulatory RNAs (ncRNAs) and messenger RNAs (mRNAs) interact. While multiple mRNAs are coordinated together in groups within the ribonome of a eukaryotic cell, each individual type of mRNA consists of multiple copies, each of which has an opportunity to be a member of more than one modular group termed a posttranscriptional RNA operon or regulon (PTRO). The mRNAs associated with each PTRO encode functionally related proteins and are coordinated at the levels of RNA stability and translation by the actions of the specific RBPs and noncoding regulatory RNAs. This article examines the methods that led to the elucidation of PTROs and the coordinating mechanisms that appear to regulate the RNA components of PTROs. Moreover, the article considers the characteristics of the dynamic systems that drive PTROs and how mRNA components are bound collectively in physical 'states' to respond to cellular perturbations and diseases. In conclusion, these studies have challenged the extent to which cellular mRNA abundance can inform investigators of the functional status of a biological system. We argue that understanding the ribonome has greater potential for illuminating the underlying coordination principles of growth, differentiation, and disease.
Collapse
Affiliation(s)
- Adam R Morris
- University Program in Genetics and Genomics, Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Neelanjan Mukherjee
- University Program in Genetics and Genomics, Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Jack D Keene
- University Program in Genetics and Genomics, Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
25
|
Genomic mRNA profiling reveals compensatory mechanisms for the requirement of the essential splicing factor U2AF. Mol Cell Biol 2010; 31:652-61. [PMID: 21149581 DOI: 10.1128/mcb.01000-10] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The large subunit of the U2 auxiliary factor (U2AF) recognizes the polypyrimidine tract (Py-tract) located adjacent to the 3' splice site to facilitate U2 snRNP recruitment. While U2AF is considered essential for pre-mRNA splicing, its requirement for splicing on a genome-wide level has not been analyzed. Using Solexa sequencing, we performed mRNA profiling for splicing in the Schizosaccharomyces pombe U2AF(59) (prp2.1) temperature-sensitive mutant. Surprisingly, our analysis revealed that introns show a range of splicing defects in the mutant strain. While U2AF(59) inactivation (nonpermissive) conditions inhibit splicing of some introns, others are spliced apparently normally. Bioinformatics analysis indicated that U2AF(59)-insensitive introns have stronger 5' splice sites and higher A/U content. Most importantly, features that contribute to U2AF(59) insensitivity of an intron unexpectedly reside in its 5'-most 30 nucleotides. These include the 5' splice site, a guanosine at position 7, and the 5' splice site-to-branch point sequence context. A differential requirement (similar to U2AF(59)) for introns may also apply to other general splicing factors (e.g., prp10). Our combined results indicate that U2AF insensitivity is a common phenomenon and that varied intron features support the existence of unrecognized aspects of spliceosome assembly.
Collapse
|
26
|
Brooks AN, Yang L, Duff MO, Hansen KD, Park JW, Dudoit S, Brenner SE, Graveley BR. Conservation of an RNA regulatory map between Drosophila and mammals. Genome Res 2010; 21:193-202. [PMID: 20921232 DOI: 10.1101/gr.108662.110] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Alternative splicing is generally controlled by proteins that bind directly to regulatory sequence elements and either activate or repress splicing of adjacent splice sites in a target pre-mRNA. Here, we have combined RNAi and mRNA-seq to identify exons that are regulated by Pasilla (PS), the Drosophila melanogaster ortholog of mammalian NOVA1 and NOVA2. We identified 405 splicing events in 323 genes that are significantly affected upon depletion of ps, many of which were annotated as being constitutively spliced. The sequence regions upstream and within PS-repressed exons and downstream from PS-activated exons are enriched for YCAY repeats, and these are consistent with the location of these motifs near NOVA-regulated exons in mammals. Thus, the RNA regulatory map of PS and NOVA1/2 is highly conserved between insects and mammals despite the fact that the target gene orthologs regulated by PS and NOVA1/2 are almost entirely nonoverlapping. This observation suggests that the regulatory codes of individual RNA binding proteins may be nearly immutable, yet the regulatory modules controlled by these proteins are highly evolvable.
Collapse
Affiliation(s)
- Angela N Brooks
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Global analysis reveals SRp20- and SRp75-specific mRNPs in cycling and neural cells. Nat Struct Mol Biol 2010; 17:962-70. [PMID: 20639886 DOI: 10.1038/nsmb.1862] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Accepted: 05/26/2010] [Indexed: 01/17/2023]
Abstract
Members of the SR protein family of RNA-binding proteins have numerous roles in mRNA metabolism, from transcription to translation. To understand how SR proteins coordinate gene regulation, comprehensive knowledge of endogenous mRNA targets is needed. Here we establish physiological expression of GFP-tagged SR proteins from stable transgenes. Using the GFP tag for immunopurification of mRNPs, mRNA targets of SRp20 and SRp75 were identified in cycling and neurally induced P19 cells. Genome-wide analysis showed that SRp20 and SRp75 associate with hundreds of distinct, functionally related groups of transcripts that change in response to neural differentiation. Knockdown of either SRp20 or SRp75 led to up- or downregulation of specific transcripts, including identified targets, and rescue by the GFP-tagged SR proteins proved their functionality. Thus, SR proteins contribute to the execution of gene-expression programs through their association with distinct endogenous mRNAs.
Collapse
|
28
|
|
29
|
Ma L, Horvitz HR. Mutations in the Caenorhabditis elegans U2AF large subunit UAF-1 alter the choice of a 3' splice site in vivo. PLoS Genet 2009; 5:e1000708. [PMID: 19893607 PMCID: PMC2762039 DOI: 10.1371/journal.pgen.1000708] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Accepted: 10/05/2009] [Indexed: 11/18/2022] Open
Abstract
The removal of introns from eukaryotic RNA transcripts requires the activities of five multi-component ribonucleoprotein complexes and numerous associated proteins. The lack of mutations affecting splicing factors essential for animal survival has limited the study of the in vivo regulation of splicing. From a screen for suppressors of the Caenorhabditis elegans unc-93(e1500) rubberband Unc phenotype, we identified mutations in genes that encode the C. elegans orthologs of two splicing factors, the U2AF large subunit (UAF-1) and SF1/BBP (SFA-1). The uaf-1(n4588) mutation resulted in temperature-sensitive lethality and caused the unc-93 RNA transcript to be spliced using a cryptic 3′ splice site generated by the unc-93(e1500) missense mutation. The sfa-1(n4562) mutation did not cause the utilization of this cryptic 3′ splice site. We isolated four uaf-1(n4588) intragenic suppressors that restored the viability of uaf-1 mutants at 25°C. These suppressors differentially affected the recognition of the cryptic 3′ splice site and implicated a small region of UAF-1 between the U2AF small subunit-interaction domain and the first RNA recognition motif in affecting the choice of 3′ splice site. We constructed a reporter for unc-93 splicing and using site-directed mutagenesis found that the position of the cryptic splice site affects its recognition. We also identified nucleotides of the endogenous 3′ splice site important for recognition by wild-type UAF-1. Our genetic and molecular analyses suggested that the phenotypic suppression of the unc-93(e1500) Unc phenotype by uaf-1(n4588) and sfa-1(n4562) was likely caused by altered splicing of an unknown gene. Our observations provide in vivo evidence that UAF-1 can act in regulating 3′ splice-site choice and establish a system that can be used to investigate the in vivo regulation of RNA splicing in C. elegans. Eukaryotic genes contain intervening intronic sequences that must be removed from pre-mRNA transcripts by RNA splicing to generate functional messenger RNAs. While studying genes that encode and control a presumptive muscle potassium channel complex in the nematode Caenorhabditis elegans, we found that mutations in two splicing factors, the U2AF large subunit and SF1/BBP suppress the rubberband Unc phenotype caused by a rare missense mutation in the gene unc-93. Mutations affecting the U2AF large subunit caused the recognition of a cryptic 3′ splice site generated by the unc-93 mutation, providing in vivo evidence that the U2AF large subunit can affect splice-site selection. By contrast, an SF1/BBP mutation that suppressed the rubberband Unc phenotype did not cause splicing using this cryptic 3′ splice site. Our genetic studies identified a region of the U2AF large subunit important for its effect on 3′ splice-site choice. Our mutagenesis analysis of in vivo transgene splicing identified a positional effect on weak 3′ splice site selection and nucleotides of the endogenous 3′ splice site important for recognition. The system we have defined should facilitate future in vivo analyses of pre–mRNA splicing.
Collapse
Affiliation(s)
- Long Ma
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - H. Robert Horvitz
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
30
|
Abstract
RNA-protein interactions profoundly impact organismal development and function through their contributions to the basal gene expression machineries and their regulation of post-transcriptional processes. The repertoire of predicted RNA binding proteins (RBPs) in plants is particularly large, suggesting that the RNA-protein interactome in plants may be more complex and dynamic even than that in metazoa. To dissect RNA-protein interaction networks, it is necessary to identify the RNAs with which each RBP interacts and to determine how those interactions influence RNA fate and downstream processes. Identification of the native RNA ligands of RBPs remains a challenge, but several high-throughput methods for the analysis of RNAs that copurify with specific RBPs from cell extract have been reported recently. This chapter reviews approaches for defining the native RNA ligands of RBPs on a genome-wide scale and provides a protocol for a method that has been used to this end for RBPs that localize to the chloroplast.
Collapse
Affiliation(s)
- Alice Barkan
- Institute of Molecular Biology, University of Oregon, Eugene, OR, USA
| |
Collapse
|
31
|
Heyd F, Carmo-Fonseca M, Möröy T. Differential Isoform Expression and Interaction with the P32 Regulatory Protein Controls the Subcellular Localization of the Splicing Factor U2AF26. J Biol Chem 2008; 283:19636-45. [DOI: 10.1074/jbc.m801014200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
32
|
Wang Q, Zhang L, Lynn B, Rymond BC. A BBP-Mud2p heterodimer mediates branchpoint recognition and influences splicing substrate abundance in budding yeast. Nucleic Acids Res 2008; 36:2787-98. [PMID: 18375978 PMCID: PMC2377449 DOI: 10.1093/nar/gkn144] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The 3′ end of mammalian introns is marked by the branchpoint binding protein, SF1, and the U2AF65-U2AF35 heterodimer bound at an adjacent sequence. Baker's yeast has equivalent proteins, branchpoint binding protein (BBP) (SF1) and Mud2p (U2AF65), but lacks an obvious U2AF35 homolog, leaving open the question of whether another protein substitutes during spliceosome assembly. Gel filtration, affinity selection and mass spectrometry were used to show that rather than a U2AF65/U2AF35-like heterodimer, Mud2p forms a complex with BBP without a third (U2AF35-like) factor. Using mutants of MUD2 and BBP, we show that the BBP–Mud2p complex bridges partner-specific Prp39p, Mer1p, Clf1p and Smy2p two-hybrid interactions. In addition to inhibiting Mud2p association, the bbpΔ56 mutation impairs splicing, enhances pre-mRNA release from the nucleus, and similar to a mud2::KAN knockout, suppresses a lethal sub2::KAN mutation. Unexpectedly, rather than exacerbating bbpΔ56, the mud2::KAN mutation partially suppresses a pre-mRNA accumulation defect observed with bbpΔ56. We propose that a BBP–Mud2p heterodimer binds as a unit to the branchpoint in vivo and serves as a target for the Sub2p-DExD/H-box ATPase and for other splicing factors during spliceosome assembly. In addition, our results suggest the possibility that the Mud2p may enhance the turnover of pre-mRNA with impaired BBP-branchpoint association.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Biology and Department of Chemistry, University of Kentucky, Lexington, KY 40506-0225, USA
| | | | | | | |
Collapse
|
33
|
Abstract
Alternative mRNA splicing is a rich source of transcript diversity in eukaryotic cells with broad roles in development and disease. Systems-wide experimental methods have started to define how global splicing regulation shapes complex biological properties and pathways. Here, we review these approaches, describe recent insights they have yielded, and discuss avenues of future investigation.
Collapse
Affiliation(s)
- Michael J Moore
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
34
|
Friend K, Lovejoy AF, Steitz JA. U2 snRNP binds intronless histone pre-mRNAs to facilitate U7-snRNP-dependent 3' end formation. Mol Cell 2008; 28:240-52. [PMID: 17964263 PMCID: PMC2149891 DOI: 10.1016/j.molcel.2007.09.026] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Revised: 08/08/2007] [Accepted: 09/14/2007] [Indexed: 11/17/2022]
Abstract
In metazoa, pre-mRNA 3' end formation occurs via two pathways: cleavage/polyadenylation for the majority of RNA polymerase II transcripts and U7-snRNP-dependent cleavage for replication-dependent histone pre-mRNAs. An RNA element derived from a replication-dependent histone gene affects multiple steps of pre-mRNA processing. Here, we demonstrate that a portion of this RNA element, present in the majority of histone mRNAs, stimulates U7-snRNP-dependent cleavage. Surprisingly, this element binds U2 snRNP, although it is derived from an intronless mRNA. Specifically, SF3b, a U2 and U12-snRNP component, contacts the RNA element both in vitro and in vivo in conjunction with hPrp43, a DEAH-box helicase. Tethering either U2 or U12 snRNP to histone pre-mRNA substrates stimulates U7-snRNP-dependent cleavage in vitro and in vivo. Finally, we show that U2 snRNP associates with histone pre-mRNAs in vivo. We conclude that U2 snRNP plays a nonsplicing role in histone mRNA maturation.
Collapse
Affiliation(s)
- Kyle Friend
- Howard Hughes Medical Institute, Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | | | | |
Collapse
|
35
|
Mannen T, Andoh T, Tani T. Dss1 associating with the proteasome functions in selective nuclear mRNA export in yeast. Biochem Biophys Res Commun 2007; 365:664-71. [PMID: 18023413 DOI: 10.1016/j.bbrc.2007.11.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Accepted: 11/06/2007] [Indexed: 10/22/2022]
Abstract
Dss1p is an evolutionarily conserved small protein that interacts with BRCA2, a tumor suppressor protein, in humans. The Schizosaccharomyces pombe strain lacking the dss1(+) gene (Deltadss1) shows a temperature-sensitive growth defect and accumulation of bulk poly(A)(+) RNA in the nucleus at a nonpermissive temperature. In situ hybridization using probes for several specific mRNAs, however, revealed that the analyzed mRNAs were exported normally to the cytoplasm in Deltadss1, suggesting that Dss1p is required for export of some subsets of mRNAs. We identified the pad1(+) gene, which encodes a component of the 26S proteasome, as a suppressor for the ts(-) phenotype of Deltadss1. Unexpectedly, overexpression of Pad1p could suppress neither the defect in nuclear mRNA export nor a defect in proteasome function. In addition, loss of proteasome functions does not cause defective nuclear mRNA export. Dss1p seems to be a multifunctional protein involved in nuclear export of specific sets of mRNAs and the ubiquitin-proteasome pathway in fission yeast.
Collapse
Affiliation(s)
- Taro Mannen
- Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
| | | | | |
Collapse
|
36
|
Abstract
The application of genomic technologies to the study of mRNA processing is increasingly conducted in metazoan organisms in order to understand the complex events that occur during and after transcription. Large-scale systems analyses of mRNA-protein interactions and mRNA dynamics have revealed specificity in mRNA transcription, splicing, transport, translation, and turnover, and have begun to make connections between the different layers of mRNA processing. Here, we review global studies of post-transcriptional processes and discuss the challenges facing our understanding of mRNA regulation in metazoan organisms. In parallel, we examine genome-scale investigations that have expanded our knowledge of RNA-binding proteins and the networks of mRNAs that they regulate.
Collapse
Affiliation(s)
- Adrienne E McKee
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
37
|
Gama-Carvalho M, Barbosa-Morais NL, Brodsky AS, Silver PA, Carmo-Fonseca M. Genome-wide identification of functionally distinct subsets of cellular mRNAs associated with two nucleocytoplasmic-shuttling mammalian splicing factors. Genome Biol 2007; 7:R113. [PMID: 17137510 PMCID: PMC1794580 DOI: 10.1186/gb-2006-7-11-r113] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2006] [Revised: 10/18/2006] [Accepted: 11/30/2006] [Indexed: 11/19/2022] Open
Abstract
A genome wide identification of mRNAs that were associated with the splicing factor subunit U2AF65 suggests that U2AF65 associates with specific subsets of spliced mRNAs and may be involved in novel cellular functions in addition to splicing. Background Pre-mRNA splicing is an essential step in gene expression that occurs co-transcriptionally in the cell nucleus, involving a large number of RNA binding protein splicing factors, in addition to core spliceosome components. Several of these proteins are required for the recognition of intronic sequence elements, transiently associating with the primary transcript during splicing. Some protein splicing factors, such as the U2 small nuclear RNP auxiliary factor (U2AF), are known to be exported to the cytoplasm, despite being implicated solely in nuclear functions. This observation raises the question of whether U2AF associates with mature mRNA-ribonucleoprotein particles in transit to the cytoplasm, participating in additional cellular functions. Results Here we report the identification of RNAs immunoprecipitated by a monoclonal antibody specific for the U2AF 65 kDa subunit (U2AF65) and demonstrate its association with spliced mRNAs. For comparison, we analyzed mRNAs associated with the polypyrimidine tract binding protein (PTB), a splicing factor that also binds to intronic pyrimidine-rich sequences but additionally participates in mRNA localization, stability, and translation. Our results show that 10% of cellular mRNAs expressed in HeLa cells associate differentially with U2AF65 and PTB. Among U2AF65-associated mRNAs there is a predominance of transcription factors and cell cycle regulators, whereas PTB-associated transcripts are enriched in mRNA species that encode proteins implicated in intracellular transport, vesicle trafficking, and apoptosis. Conclusion Our results show that U2AF65 associates with specific subsets of spliced mRNAs, strongly suggesting that it is involved in novel cellular functions in addition to splicing.
Collapse
Affiliation(s)
- Margarida Gama-Carvalho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Nuno L Barbosa-Morais
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
- Hutchison/MRC Research Centre, Department of Oncology, University of Cambridge, Hills Road, Cambridge CB2 0XZ, UK
| | - Alexander S Brodsky
- Department of Systems Biology, Harvard Medical School, 200 Longwood Ave, Alpert 536, Boston, MA 02115, USA
- Department of Molecular Biology, Cell Biology and Biochemistry and Center for Genomics & Proteomics, Brown University, 69 Brown Street, Providence, Rhode Island 02912, USA
| | - Pamela A Silver
- Department of Systems Biology, Harvard Medical School, 200 Longwood Ave, Alpert 536, Boston, MA 02115, USA
| | - Maria Carmo-Fonseca
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| |
Collapse
|
38
|
Akdemir F, Christich A, Sogame N, Chapo J, Abrams JM. p53 directs focused genomic responses in Drosophila. Oncogene 2007; 26:5184-93. [PMID: 17310982 DOI: 10.1038/sj.onc.1210328] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
p53 is a fundamental determinant of cancer susceptibility and other age-related pathologies. Similar to mammalian counterparts, Drosophila p53 integrates stress signals and elicits apoptotic responses that maintain genomic stability. To illuminate core-adaptive functions controlled by this gene family, we examined the Drosophila p53 regulatory network at a genomic scale. In development, the absence of p53 impacted constitutive expression for a surprisingly broad scope of genes. By contrast, stimulus-dependent responses governed by Drosophila p53 were limited in scope. The vast majority of stress responders were induced and p53 dependent (RIPD) genes. The signature set of 29 'high stringency' RIPD genes identified here were enriched for intronless loci, with a non-uniform distribution that includes a recently evolved cluster unique to Drosophila melanogaster. Two RIPD genes, with known and unknown biochemical activities, were functionally examined. One RIPD gene, designated XRP1, maintains genome stability after genotoxic challenge and prevents cell proliferation upon induced expression. A second gene, RnrL, is an apoptogenic effector required for caspase activation in a model of p53-dependent killing. Together, these studies identify ancient and convergent features of the p53 regulatory network.
Collapse
Affiliation(s)
- F Akdemir
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | | | |
Collapse
|
39
|
The coupling of alternative splicing and nonsense-mediated mRNA decay. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 623:190-211. [PMID: 18380348 DOI: 10.1007/978-0-387-77374-2_12] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Most human genes exhibit alternative splicing, but not all alternatively spliced transcripts produce functional proteins. Computational and experimental results indicate that a substantial fraction of alternative splicing events in humans result in mRNA isoforms that harbor a premature termination codon (PTC). These transcripts are predicted to be degraded by the nonsense-mediated mRNA decay (NMD) pathway. One explanation for the abundance of PTC-containing isoforms is that they represent splicing errors that are identified and degraded by the NMD pathway. Another potential explanation for this startling observation is that cells may link alternative splicing and NMD to regulate the abundance of mRNA transcripts. This mechanism, which we call "Regulated Unproductive Splicing and Translation" (RUST), has been experimentally shown to regulate expression of a wide variety of genes in many organisms from yeast to human. It is frequently employed for autoregulation of proteins that affect the splicing process itself. Thus, alternative splicing and NMD act together to play an important role in regulating gene expression.
Collapse
|
40
|
Lopato S, Borisjuk L, Milligan AS, Shirley N, Bazanova N, Parsley K, Langridge P. Systematic identification of factors involved in post-transcriptional processes in wheat grain. PLANT MOLECULAR BIOLOGY 2006; 62:637-53. [PMID: 16941218 DOI: 10.1007/s11103-006-9046-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2006] [Accepted: 07/06/2006] [Indexed: 05/11/2023]
Abstract
Post-transcriptional processing of primary transcripts can significantly affect both the quantity and the structure of mature mRNAs and the corresponding protein products. It is an important mechanism of gene regulation in animals, yeast and plants. Here we have investigated the interactive networks of pre-mRNA processing factors in the developing grain of wheat (Triticum aestivum), one of the world's major food staples. As a first step we isolated a homologue of the plant specific AtRSZ33 splicing factor, which has been shown to be involved in the early stages of embryo development in Arabidopsis. Real-time PCR showed that the wheat gene, designated TaRSZ38, is expressed mainly in young, developing organs (flowers, root, stem), and expression peaks in immature grain. In situ hybridization and immunodetection revealed preferential abundance of TaRSZ38 in mitotically active tissues of the major storage organ of the grain, the endosperm. The protein encoded by TaRSZ38 was subsequently used as a starting bait in a two-hybrid screen to identify additional factors in grain that are involved in pre-mRNA processing. Most of the identified proteins showed high homology to known splicing factors and splicing related proteins, supporting a role for TaRSZ38 in spliceosome formation and 5' site selection. Several clones were selected as baits in further yeast two-hybrid screens. In total, cDNAs for 16 proteins were isolated. Among these proteins, TaRSZ22, TaSRp30, TaU1-70K, and the large and small subunits of TaU2AF, are wheat homologues of known plant splicing factors. Several, additional proteins are novel for plants and show homology to known pre-mRNA splicing, splicing related and mRNA export factors from yeast and mammals.
Collapse
Affiliation(s)
- Sergiy Lopato
- Australian Centre for Plant Functional Genomics, The University of Adelaide, PMB1, Glen Osmond, SA 5064, Australia.
| | | | | | | | | | | | | |
Collapse
|
41
|
Millevoi S, Loulergue C, Dettwiler S, Karaa SZ, Keller W, Antoniou M, Vagner S. An interaction between U2AF 65 and CF I(m) links the splicing and 3' end processing machineries. EMBO J 2006; 25:4854-64. [PMID: 17024186 PMCID: PMC1618107 DOI: 10.1038/sj.emboj.7601331] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2006] [Accepted: 07/31/2006] [Indexed: 11/08/2022] Open
Abstract
The protein factor U2 snRNP Auxiliary Factor (U2AF) 65 is an essential component required for splicing and involved in the coupling of splicing and 3' end processing of vertebrate pre-mRNAs. Here we have addressed the mechanisms by which U2AF 65 stimulates pre-mRNA 3' end processing. We identify an arginine/serine-rich region of U2AF 65 that mediates an interaction with an RS-like alternating charge domain of the 59 kDa subunit of the human cleavage factor I (CF I(m)), an essential 3' processing factor that functions at an early step in the recognition of the 3' end processing signal. Tethered functional analysis shows that the U2AF 65/CF I(m) 59 interaction stimulates in vitro 3' end cleavage and polyadenylation. These results therefore uncover a direct role of the U2AF 65/CF I(m) 59 interaction in the functional coordination of splicing and 3' end processing.
Collapse
Affiliation(s)
- Stefania Millevoi
- INSERM U563, Toulouse, France
- Institut Claudius Regaud, Toulouse, France
- Université Toulouse III Paul Sabatier, Toulouse, France
| | - Clarisse Loulergue
- INSERM U563, Toulouse, France
- Institut Claudius Regaud, Toulouse, France
- Université Toulouse III Paul Sabatier, Toulouse, France
- Nuclear Biology Group, Department of Medical and Molecular Genetics, King's College London School of Medicine, Guy's Campus, Guy's Hospital, London, UK
| | - Sabine Dettwiler
- Department of Cell Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Sarah Zeïneb Karaa
- INSERM U563, Toulouse, France
- Université Toulouse III Paul Sabatier, Toulouse, France
| | - Walter Keller
- Department of Cell Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Michael Antoniou
- Nuclear Biology Group, Department of Medical and Molecular Genetics, King's College London School of Medicine, Guy's Campus, Guy's Hospital, London, UK
| | - Stéphan Vagner
- INSERM U563, Toulouse, France
- Institut Claudius Regaud, Toulouse, France
- Université Toulouse III Paul Sabatier, Toulouse, France
- INSERM U563, Institut Claudius Régaud, 20–24 Rue du Pont St Pierre, Toulouse 31052, France. Tel.: +33 5 67 69 63 11; Fax: +33 5 61 42 46 31; E-mail:
| |
Collapse
|
42
|
Manceau V, Swenson M, Le Caer JP, Sobel A, Kielkopf CL, Maucuer A. Major phosphorylation of SF1 on adjacent Ser-Pro motifs enhances interaction with U2AF65. FEBS J 2006; 273:577-87. [PMID: 16420481 PMCID: PMC1949809 DOI: 10.1111/j.1742-4658.2005.05091.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Protein phosphorylation ensures the accurate and controlled expression of the genome, for instance by regulating the activities of pre-mRNA splicing factors. Here we report that splicing factor 1 (SF1), which is involved in an early step of intronic sequence recognition, is highly phosphorylated in mammalian cells on two serines within an SPSP motif at the junction between its U2AF65 and RNA binding domains. We show that SF1 interacts in vitro with the protein kinase KIS, which possesses a 'U2AF homology motif' (UHM) domain. The UHM domain of KIS is required for KIS and SF1 to interact, and for KIS to efficiently phosphorylate SF1 on the SPSP motif. Importantly, SPSP phosphorylation by KIS increases binding of SF1 to U2AF65, and enhances formation of the ternary SF1-U2AF65-RNA complex. These results further suggest that this phosphorylation event has an important role for the function of SF1, and possibly for the structural rearrangements associated with spliceosome assembly and function.
Collapse
Affiliation(s)
- Valérie Manceau
- INSERM U706, Institut du Fer à Moulin, 17, rue du Fer à Moulin, F-75005 Paris, France; UPMC, F-75005 Paris, France
| | - Matthew Swenson
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205,USA
| | - Jean-Pierre Le Caer
- Ecole Polytechnique, Laboratoire de Chimie des Mécanismes Réactionnels, Route de Saclay, F-91128 Palaiseau, France
| | - André Sobel
- INSERM U706, Institut du Fer à Moulin, 17, rue du Fer à Moulin, F-75005 Paris, France; UPMC, F-75005 Paris, France
| | - Clara L. Kielkopf
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205,USA
| | - Alexandre Maucuer
- INSERM U706, Institut du Fer à Moulin, 17, rue du Fer à Moulin, F-75005 Paris, France; UPMC, F-75005 Paris, France
| |
Collapse
|
43
|
Holste D, Huo G, Tung V, Burge CB. HOLLYWOOD: a comparative relational database of alternative splicing. Nucleic Acids Res 2006; 34:D56-62. [PMID: 16381932 PMCID: PMC1347411 DOI: 10.1093/nar/gkj048] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2005] [Revised: 09/26/2005] [Accepted: 10/04/2005] [Indexed: 01/05/2023] Open
Abstract
RNA splicing is an essential step in gene expression, and is often variable, giving rise to multiple alternatively spliced mRNA and protein isoforms from a single gene locus. The design of effective databases to support experimental and computational investigations of alternative splicing (AS) is a significant challenge. In an effort to integrate accurate exon and splice site annotation with current knowledge about splicing regulatory elements and predicted AS events, and to link information about the splicing of orthologous genes in different species, we have developed the Hollywood system. This database was built upon genomic annotation of splicing patterns of known genes derived from spliced alignment of complementary DNAs (cDNAs) and expressed sequence tags, and links features such as splice site sequence and strength, exonic splicing enhancers and silencers, conserved and non-conserved patterns of splicing, and cDNA library information for inferred alternative exons. Hollywood was implemented as a relational database and currently contains comprehensive information for human and mouse. It is accompanied by a web query tool that allows searches for sets of exons with specific splicing characteristics or splicing regulatory element composition, or gives a graphical or sequence-level summary of splicing patterns for a specific gene. A streamlined graphical representation of gene splicing patterns is provided, and these patterns can alternatively be layered onto existing information in the UCSC Genome Browser. The database is accessible at http://hollywood.mit.edu.
Collapse
Affiliation(s)
- Dirk Holste
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02319, USA.
| | | | | | | |
Collapse
|
44
|
Ujvári A, Luse DS. RNA emerging from the active site of RNA polymerase II interacts with the Rpb7 subunit. Nat Struct Mol Biol 2005; 13:49-54. [PMID: 16327806 DOI: 10.1038/nsmb1026] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2005] [Accepted: 10/25/2005] [Indexed: 01/22/2023]
Abstract
Structural studies of RNA polymerase II have suggested two possible exit paths for the nascent RNA: groove 1, which points toward the subcomplex of subunits Rpb4 and Rpb7, and groove 2, which points toward Rpb8. These alternatives could not be distinguished previously because less than 10 nucleotides (nt) of transcript were resolved in the structures. We have approached this question by UV cross-linking nascent RNA to components of the transcription complex through uridine analogs located within the first six nucleotides of the RNA. We find that the emerging transcript cross-links to the Rpb7 subunit of RNA polymerase II in various complexes containing 26- to 32-nt transcripts. This interaction is greatly reduced in complexes with 41- or 43-nt RNAs and absent when the transcript is 125 nt. Our results are consistent with groove 1 being the exit path for nascent RNA.
Collapse
Affiliation(s)
- Andrea Ujvári
- Department of Molecular Genetics, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | |
Collapse
|
45
|
|
46
|
Mata J, Marguerat S, Bähler J. Post-transcriptional control of gene expression: a genome-wide perspective. Trends Biochem Sci 2005; 30:506-14. [PMID: 16054366 DOI: 10.1016/j.tibs.2005.07.005] [Citation(s) in RCA: 203] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2005] [Revised: 06/22/2005] [Accepted: 07/19/2005] [Indexed: 01/29/2023]
Abstract
Gene expression is regulated at multiple levels, and cells need to integrate and coordinate different layers of control to implement the information in the genome. Post-transcriptional levels of regulation such as transcript turnover and translational control are an integral part of gene expression and might rival the sophistication and importance of transcriptional control. Microarray-based methods are increasingly used to study not only transcription but also global patterns of transcript decay and translation rates in addition to comprehensively identify targets of RNA-binding proteins. Such large-scale analyses have recently provided supplementary and unique insights into gene expression programs. Integration of several different datasets will ultimately lead to a system-wide understanding of the varied and complex mechanisms for gene expression control.
Collapse
Affiliation(s)
- Juan Mata
- Cancer Research UK Fission Yeast Functional Genomics Group, Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | | | | |
Collapse
|
47
|
Abstract
Transcription is coupled with the concomitant assembly of RNA-binding proteins to the nascent mRNA to generate a stable and export-competent mRNP particle. RNA-binding factors recruited at active transcription sites specify the processing, nuclear export, subcellular localization, translation and stability of the mRNA. The assembly of the mRNP particle starts with the association of the cap-binding protein complex followed by the splicing-dependent assembly of the exon-junction complex in intron-containing genes and by the binding of RNA-export adaptor proteins. New findings suggest that mRNP assembly is a genetically controlled process that plays a key role in gene expression and other cellular processes, including the maintenance of genome integrity.
Collapse
Affiliation(s)
- Andrés Aguilera
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Avd. Reina Mercedes 6, 41012 Sevilla, Spain.
| |
Collapse
|
48
|
Görnemann J, Kotovic KM, Hujer K, Neugebauer KM. Cotranscriptional spliceosome assembly occurs in a stepwise fashion and requires the cap binding complex. Mol Cell 2005; 19:53-63. [PMID: 15989964 DOI: 10.1016/j.molcel.2005.05.007] [Citation(s) in RCA: 213] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2005] [Revised: 04/05/2005] [Accepted: 05/09/2005] [Indexed: 10/25/2022]
Abstract
Coupling between transcription and pre-mRNA splicing is a key regulatory mechanism in gene expression. Here, we investigate cotranscriptional spliceosome assembly in yeast, using in vivo crosslinking to determine the distribution of spliceosome components along intron-containing genes. Accumulation of the U1, U2, and U5 small nuclear ribonucleoprotein particles (snRNPs) and the 3' splice site binding factors Mud2p and BBP was detected in patterns indicative of progressive and complete spliceosome assembly; recruitment of the nineteen complex (NTC) component Prp19p suggests that splicing catalysis is also cotranscriptional. The separate dynamics of the U1, U2, and U5 snRNPs are consistent with stepwise recruitment of individual snRNPs rather than a preformed "penta-snRNP", as recently proposed. Finally, we show that the cap binding complex (CBC) is necessary, but not sufficient, for cotranscriptional spliceosome assembly. Thus, the demonstration of an essential link between CBC and spliceosome assembly in vivo indicates that 5' end capping couples pre-mRNA splicing to transcription.
Collapse
Affiliation(s)
- Janina Görnemann
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | | | | | | |
Collapse
|
49
|
Matlin AJ, Clark F, Smith CWJ. Understanding alternative splicing: towards a cellular code. Nat Rev Mol Cell Biol 2005; 6:386-98. [PMID: 15956978 DOI: 10.1038/nrm1645] [Citation(s) in RCA: 937] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In violation of the 'one gene, one polypeptide' rule, alternative splicing allows individual genes to produce multiple protein isoforms - thereby playing a central part in generating complex proteomes. Alternative splicing also has a largely hidden function in quantitative gene control, by targeting RNAs for nonsense-mediated decay. Traditional gene-by-gene investigations of alternative splicing mechanisms are now being complemented by global approaches. These promise to reveal details of the nature and operation of cellular codes that are constituted by combinations of regulatory elements in pre-mRNA substrates and by cellular complements of splicing regulators, which together determine regulated splicing pathways.
Collapse
Affiliation(s)
- Arianne J Matlin
- Department of Biochemistry, 80 Tennis Court Road, University of Cambridge, CB2 1GA, UK
| | | | | |
Collapse
|
50
|
Tan W, Zolotukhin AS, Tretyakova I, Bear J, Lindtner S, Smulevitch SV, Felber BK. Identification and characterization of the mouse nuclear export factor (Nxf) family members. Nucleic Acids Res 2005; 33:3855-65. [PMID: 16027110 PMCID: PMC1175460 DOI: 10.1093/nar/gki706] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
TAP/hNXF1 is a key factor that mediates general cellular mRNA export from the nucleus, and its orthologs are structurally and functionally conserved from yeast to humans. Metazoans encode additional proteins that share homology and domain organization with TAP/hNXF1, suggesting their participation in mRNA metabolism; however, the precise role(s) of these proteins is not well understood. Here, we found that the human mRNA export factor hNXF2 is specifically expressed in the brain, suggesting a brain-specific role in mRNA metabolism. To address the roles of additional NXF factors, we have identified and characterized the two Nxf genes, Nxf2 and Nxf7, which together with the TAP/hNXF1's ortholog Nxf1 comprise the murine Nxf family. Both mNXF2 and mNXF7 have a domain structure typical of the NXF family. We found that mNXF2 protein is expressed during mouse brain development. Similar to TAP/hNXF1, the mNXF2 protein is found in the nucleus, the nuclear envelope and cytoplasm, and is an active mRNA export receptor. In contrast, mNXF7 localizes exclusively to cytoplasmic granules and, despite its overall conserved sequence, lacks mRNA export activity. We concluded that mNXF2 is an active mRNA export receptor similar to the prototype TAP/hNXF1, whereas mNXF7 may have a more specialized role in the cytoplasm.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Barbara K. Felber
- To whom correspondence should be addressed. Tel: +1 301 846 5159; Fax: +1 301 846 7146;
| |
Collapse
|