1
|
Nickens DG, Feng Z, Shen J, Gray SJ, Simmons R, Niu H, Bochman M. Cdc13 exhibits dynamic DNA strand exchange in the presence of telomeric DNA. Nucleic Acids Res 2024; 52:6317-6332. [PMID: 38613387 PMCID: PMC11194072 DOI: 10.1093/nar/gkae265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/22/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024] Open
Abstract
Telomerase is the enzyme that lengthens telomeres and is tightly regulated by a variety of means to maintain genome integrity. Several DNA helicases function at telomeres, and we previously found that the Saccharomyces cerevisiae helicases Hrq1 and Pif1 directly regulate telomerase. To extend these findings, we are investigating the interplay between helicases, single-stranded DNA (ssDNA) binding proteins (ssBPs), and telomerase. The yeast ssBPs Cdc13 and RPA differentially affect Hrq1 and Pif1 helicase activity, and experiments to measure helicase disruption of Cdc13/ssDNA complexes instead revealed that Cdc13 can exchange between substrates. Although other ssBPs display dynamic binding, this was unexpected with Cdc13 due to the reported in vitro stability of the Cdc13/telomeric ssDNA complex. We found that the DNA exchange by Cdc13 occurs rapidly at physiological temperatures, requires telomeric repeat sequence DNA, and is affected by ssDNA length. Cdc13 truncations revealed that the low-affinity binding site (OB1), which is distal from the high-affinity binding site (OB3), is required for this intermolecular dynamic DNA exchange (DDE). We hypothesize that DDE by Cdc13 is the basis for how Cdc13 'moves' at telomeres to alternate between modes where it regulates telomerase activity and assists in telomere replication.
Collapse
Affiliation(s)
- David G Nickens
- Molecular & Cellular Biochemistry Department, Indiana University, Bloomington, IN 47405, USA
| | - Zhitong Feng
- Molecular & Cellular Biochemistry Department, Indiana University, Bloomington, IN 47405, USA
| | - Jiangchuan Shen
- Molecular & Cellular Biochemistry Department, Indiana University, Bloomington, IN 47405, USA
| | - Spencer J Gray
- Molecular & Cellular Biochemistry Department, Indiana University, Bloomington, IN 47405, USA
| | - Robert H Simmons
- Molecular & Cellular Biochemistry Department, Indiana University, Bloomington, IN 47405, USA
| | - Hengyao Niu
- Molecular & Cellular Biochemistry Department, Indiana University, Bloomington, IN 47405, USA
| | - Matthew L Bochman
- Molecular & Cellular Biochemistry Department, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
2
|
Nickens DG, Feng Z, Shen J, Gray SJ, Simmons RH, Niu H, Bochman ML. Cdc13 exhibits dynamic DNA strand exchange in the presence of telomeric DNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.04.569902. [PMID: 38105973 PMCID: PMC10723391 DOI: 10.1101/2023.12.04.569902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Telomerase is the enzyme that lengthens telomeres and is tightly regulated by a variety of means to maintain genome integrity. Several DNA helicases function at telomeres, and we previously found that the Saccharomyces cerevisiae helicases Hrq1 and Pif1 directly regulate telomerase. To extend these findings, we are investigating the interplay between helicases, single-stranded DNA (ssDNA) binding proteins (ssBPs), and telomerase. The yeast ssBPs Cdc13 and RPA differentially affect Hrq1 and Pif1 helicase activity, and experiments to measure helicase disruption of Cdc13/ssDNA complexes instead revealed that Cdc13 can exchange between substrates. Although other ssBPs display dynamic binding, this was unexpected with Cdc13 due to the reported in vitro stability of the Cdc13/telomeric ssDNA complex. We found that the DNA exchange by Cdc13 occurs rapidly at physiological temperatures, requires telomeric repeat sequence DNA, and is affected by ssDNA length. Cdc13 truncations revealed that the low-affinity binding site (OB1), which is distal from the high-affinity binding site (OB3), is required for this intermolecular dynamic DNA exchange (DDE). We hypothesize that DDE by Cdc13 is the basis for how Cdc13 'moves' at telomeres to alternate between modes where it regulates telomerase activity and assists in telomere replication.
Collapse
|
3
|
Ait Saada A, Guo W, Costa AB, Yang J, Wang J, Lobachev K. Widely spaced and divergent inverted repeats become a potent source of chromosomal rearrangements in long single-stranded DNA regions. Nucleic Acids Res 2023; 51:3722-3734. [PMID: 36919609 PMCID: PMC10164571 DOI: 10.1093/nar/gkad153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 03/16/2023] Open
Abstract
DNA inverted repeats (IRs) are widespread across many eukaryotic genomes. Their ability to form stable hairpin/cruciform secondary structures is causative in triggering chromosome instability leading to several human diseases. Distance and sequence divergence between IRs are inversely correlated with their ability to induce gross chromosomal rearrangements (GCRs) because of a lesser probability of secondary structure formation and chromosomal breakage. In this study, we demonstrate that structural parameters that normally constrain the instability of IRs are overcome when the repeats interact in single-stranded DNA (ssDNA). We established a system in budding yeast whereby >73 kb of ssDNA can be formed in cdc13-707fs mutants. We found that in ssDNA, 12 bp or 30 kb spaced Alu-IRs show similarly high levels of GCRs, while heterology only beyond 25% suppresses IR-induced instability. Mechanistically, rearrangements arise after cis-interaction of IRs leading to a DNA fold-back and the formation of a dicentric chromosome, which requires Rad52/Rad59 for IR annealing as well as Rad1-Rad10, Slx4, Msh2/Msh3 and Saw1 proteins for nonhomologous tail removal. Importantly, using structural characteristics rendering IRs permissive to DNA fold-back in yeast, we found that ssDNA regions mapped in cancer genomes contain a substantial number of potentially interacting and unstable IRs.
Collapse
Affiliation(s)
- Anissia Ait Saada
- School of Biological Sciences and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Wenying Guo
- School of Biological Sciences and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Alex B Costa
- School of Biological Sciences and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Jiaxin Yang
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Jianrong Wang
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Kirill S Lobachev
- School of Biological Sciences and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
4
|
Casari E, Gnugnoli M, Rinaldi C, Pizzul P, Colombo CV, Bonetti D, Longhese MP. To Fix or Not to Fix: Maintenance of Chromosome Ends Versus Repair of DNA Double-Strand Breaks. Cells 2022; 11:cells11203224. [PMID: 36291091 PMCID: PMC9601279 DOI: 10.3390/cells11203224] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/07/2022] [Accepted: 10/12/2022] [Indexed: 02/08/2023] Open
Abstract
Early work by Muller and McClintock discovered that the physical ends of linear chromosomes, named telomeres, possess an inherent ability to escape unwarranted fusions. Since then, extensive research has shown that this special feature relies on specialized proteins and structural properties that confer identity to the chromosome ends, thus allowing cells to distinguish them from intrachromosomal DNA double-strand breaks. Due to the inability of conventional DNA replication to fully replicate the chromosome ends and the downregulation of telomerase in most somatic human tissues, telomeres shorten as cells divide and lose this protective capacity. Telomere attrition causes the activation of the DNA damage checkpoint that leads to a cell-cycle arrest and the entering of cells into a nondividing state, called replicative senescence, that acts as a barrier against tumorigenesis. However, downregulation of the checkpoint overcomes this barrier and leads to further genomic instability that, if coupled with re-stabilization of telomeres, can drive tumorigenesis. This review focuses on the key experiments that have been performed in the model organism Saccharomyces cerevisiae to uncover the mechanisms that protect the chromosome ends from eliciting a DNA damage response, the conservation of these pathways in mammals, as well as the consequences of their loss in human cancer.
Collapse
|
5
|
Yeast Stn1 promotes MCM to circumvent Rad53 control of the S phase checkpoint. Curr Genet 2022; 68:165-179. [PMID: 35150303 PMCID: PMC8976814 DOI: 10.1007/s00294-022-01228-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 12/06/2021] [Accepted: 12/16/2021] [Indexed: 11/17/2022]
Abstract
Treating yeast cells with the replication inhibitor hydroxyurea activates the S phase checkpoint kinase Rad53, eliciting responses that block DNA replication origin firing, stabilize replication forks, and prevent premature extension of the mitotic spindle. We previously found overproduction of Stn1, a subunit of the telomere-binding Cdc13–Stn1–Ten1 complex, circumvents Rad53 checkpoint functions in hydroxyurea, inducing late origin firing and premature spindle extension even though Rad53 is activated normally. Here, we show Stn1 overproduction acts through remarkably similar pathways compared to loss of RAD53, converging on the MCM complex that initiates origin firing and forms the catalytic core of the replicative DNA helicase. First, mutations affecting Mcm2 and Mcm5 block the ability of Stn1 overproduction to disrupt the S phase checkpoint. Second, loss of function stn1 mutations compensate rad53 S phase checkpoint defects. Third Stn1 overproduction suppresses a mutation in Mcm7. Fourth, stn1 mutants accumulate single-stranded DNA at non-telomeric genome locations, imposing a requirement for post-replication DNA repair. We discuss these interactions in terms of a model in which Stn1 acts as an accessory replication factor that facilitates MCM activation at ORIs and potentially also maintains MCM activity at replication forks advancing through challenging templates.
Collapse
|
6
|
Connelly CJ, Vidal-Cardenas S, Goldsmith S, Greider CW. The Bur1 cyclin-dependent kinase regulates telomere length in Saccharomyces cerevisiae. Yeast 2021; 39:177-192. [PMID: 34781413 PMCID: PMC9299788 DOI: 10.1002/yea.3680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 10/09/2021] [Accepted: 11/04/2021] [Indexed: 11/26/2022] Open
Abstract
Telomere length regulation is essential for cell viability in eukaryotes. While many pathways that affect telomere length are known, we do not yet have a complete understanding of the mechanism of length regulation. To identify new pathways that might regulate telomere length, we carried out a genetic screen in yeast and identified the cyclin‐dependent kinase complex Bur1/2 as a regulator of telomere length. Mutations in either BUR1 cyclin‐dependent kinase or the associated BUR2 cyclin resulted in short telomeres. This regulation did not function through the known role of BUR1 in regulating histone modification as bur1∆ set2∆ and bur2∆ set2∆ double mutants rescued cell growth but did not rescue the telomere shortening effects. We found that both bur1∆ and bur2∆ set2∆ were also defective in de novo telomere addition, and deletion of SET2 did also not rescue this elongation defect. The Bur1/2 cyclin‐dependent kinase regulates transcription of many genes. We found that TLC1 RNA levels were reduced in bur2∆ set2∆ mutants; however, overexpression of TLC1 restored the transcript levels but did not restore de novo telomere elongation or telomere length. These data suggest that the Bur1/2 kinase plays a role in telomere elongation separate from its role in transcription of telomerase components. Dissecting the role of the Bur1/2 kinase pathway at telomeres will help complete our understanding of the complex network of telomere length regulation. Loss of Bur1/2 cyclin‐dependent kinase activity causes short telomeres. Short telomere phenotype is not due to the role of Bur1/2 in histone modification. Short telomeres are not due to decreased levels of telomerase components Est1, Est2, Est3, or Tlc1. In absence of Bur1/2 activity, TLC1 deleted cells do not form survivors. Bur1/2 kinase directly or indirectly regulates telomere length.
Collapse
Affiliation(s)
- Carla J Connelly
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sofia Vidal-Cardenas
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Exelixis, Inc., Alameda, California, USA
| | - Stephanie Goldsmith
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Carol W Greider
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, California, USA
| |
Collapse
|
7
|
Complex Mechanisms of Antimony Genotoxicity in Budding Yeast Involves Replication and Topoisomerase I-Associated DNA Lesions, Telomere Dysfunction and Inhibition of DNA Repair. Int J Mol Sci 2021; 22:ijms22094510. [PMID: 33925940 PMCID: PMC8123508 DOI: 10.3390/ijms22094510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 11/26/2022] Open
Abstract
Antimony is a toxic metalloid with poorly understood mechanisms of toxicity and uncertain carcinogenic properties. By using a combination of genetic, biochemical and DNA damage assays, we investigated the genotoxic potential of trivalent antimony in the model organism Saccharomyces cerevisiae. We found that low doses of Sb(III) generate various forms of DNA damage including replication and topoisomerase I-dependent DNA lesions as well as oxidative stress and replication-independent DNA breaks accompanied by activation of DNA damage checkpoints and formation of recombination repair centers. At higher concentrations of Sb(III), moderately increased oxidative DNA damage is also observed. Consistently, base excision, DNA damage tolerance and homologous recombination repair pathways contribute to Sb(III) tolerance. In addition, we provided evidence suggesting that Sb(III) causes telomere dysfunction. Finally, we showed that Sb(III) negatively effects repair of double-strand DNA breaks and distorts actin and microtubule cytoskeleton. In sum, our results indicate that Sb(III) exhibits a significant genotoxic activity in budding yeast.
Collapse
|
8
|
Lee JW, Ong EBB. Genomic Instability and Cellular Senescence: Lessons From the Budding Yeast. Front Cell Dev Biol 2021; 8:619126. [PMID: 33511130 PMCID: PMC7835410 DOI: 10.3389/fcell.2020.619126] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/15/2020] [Indexed: 01/14/2023] Open
Abstract
Aging is a complex biological process that occurs in all living organisms. Aging is initiated by the gradual accumulation of biomolecular damage in cells leading to the loss of cellular function and ultimately death. Cellular senescence is one such pathway that leads to aging. The accumulation of nucleic acid damage and genetic alterations that activate permanent cell-cycle arrest triggers the process of senescence. Cellular senescence can result from telomere erosion and ribosomal DNA instability. In this review, we summarize the molecular mechanisms of telomere length homeostasis and ribosomal DNA stability, and describe how these mechanisms are linked to cellular senescence and longevity through lessons learned from budding yeast.
Collapse
Affiliation(s)
- Jee Whu Lee
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang, Malaysia.,USM-RIKEN International Centre for Aging Science (URICAS), Universiti Sains Malaysia, Penang, Malaysia
| | - Eugene Boon Beng Ong
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang, Malaysia.,USM-RIKEN International Centre for Aging Science (URICAS), Universiti Sains Malaysia, Penang, Malaysia
| |
Collapse
|
9
|
Structural insights into telomere protection and homeostasis regulation by yeast CST complex. Nat Struct Mol Biol 2020; 27:752-762. [PMID: 32661422 DOI: 10.1038/s41594-020-0459-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 05/22/2020] [Indexed: 01/29/2023]
Abstract
Budding yeast Cdc13-Stn1-Ten1 (CST) complex plays an essential role in telomere protection and maintenance. Despite extensive studies, only structural information of individual domains of CST is available; the architecture of CST still remains unclear. Here, we report crystal structures of Kluyveromyces lactis Cdc13-telomeric-DNA, Cdc13-Stn1 and Stn1-Ten1 complexes and propose an integrated model depicting how CST assembles and plays its roles at telomeres. Surprisingly, two oligonucleotide/oligosaccharide-binding (OB) folds of Cdc13 (OB2 and OB4), previously believed to mediate Cdc13 homodimerization, actually form a stable intramolecular interaction. This OB2-OB4 module of Cdc13 is required for the Cdc13-Stn1 interaction that assembles CST into an architecture with a central ring-like core and multiple peripheral modules in a 2:2:2 stoichiometry. Functional analyses indicate that this unique CST architecture is essential for both telomere capping and homeostasis regulation. Overall, our results provide fundamentally valuable structural information regarding the CST complex and its roles in telomere biology.
Collapse
|
10
|
Langston RE, Palazzola D, Bonnell E, Wellinger RJ, Weinert T. Loss of Cdc13 causes genome instability by a deficiency in replication-dependent telomere capping. PLoS Genet 2020; 16:e1008733. [PMID: 32287268 PMCID: PMC7205313 DOI: 10.1371/journal.pgen.1008733] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 05/07/2020] [Accepted: 03/23/2020] [Indexed: 01/02/2023] Open
Abstract
In budding yeast, Cdc13, Stn1, and Ten1 form the telomere-binding heterotrimer CST complex. Here we investigate the role of Cdc13/CST in maintaining genome stability by using a Chr VII disome system that can generate recombinants, chromosome loss, and enigmatic unstable chromosomes. In cells expressing a temperature sensitive CDC13 allele, cdc13F684S, unstable chromosomes frequently arise from problems in or near a telomere. We found that, when Cdc13 is defective, passage through S phase causes Exo1-dependent ssDNA and unstable chromosomes that are then the source for additional chromosome instability events (e.g. recombinants, chromosome truncations, dicentrics, and/or chromosome loss). We observed that genome instability arises from a defect in Cdc13’s function during DNA replication, not Cdc13’s putative post-replication telomere capping function. The molecular nature of the initial unstable chromosomes formed by a Cdc13-defect involves ssDNA and does not involve homologous recombination nor non-homologous end joining; we speculate the original unstable chromosome may be a one-ended double strand break. This system defines a link between Cdc13’s function during DNA replication and genome stability in the form of unstable chromosomes, that then progress to form other chromosome changes. Eukaryotic chromosomes are linear molecules with specialized end structures called telomeres. Telomeres contain both unique repetitive DNA sequences and specialized proteins that solve several biological problems by differentiating chromosomal ends from internal breaks, thus preventing chromosome instability. When telomeres are defective, the entire chromosome can become unstable and change, causing mutations and pathology (cancer, aging, etc.). Here we study how a defect in specific telomere proteins causes chromosomal rearrangements, using the model organism Saccharomyces cerevisiae (budding or brewer’s yeast). We find that when specific telomere proteins are defective, errors in DNA replication generate a type of damage that likely involves extensive single-stranded DNA that forms inherently unstable chromosomes, subject to many subsequent instances of instability (e.g. allelic recombinants, chromosome loss, truncations, dicentrics). The telomere protein Cdc13 is part of a protein complex called CST that is conserved in most organisms including mammalian cells. The technical capacity of studies in budding yeast allow a detailed, real-time examination of how telomere defects compromise chromosome stability in a single cell cycle, generating lessons likely relevant to how human telomeres keep human chromosomes stable.
Collapse
Affiliation(s)
- Rachel E. Langston
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, United States of America
| | - Dominic Palazzola
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, United States of America
| | - Erin Bonnell
- Department of Microbiology and Infectiology, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Raymund J. Wellinger
- Department of Microbiology and Infectiology, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Ted Weinert
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, United States of America
- * E-mail:
| |
Collapse
|
11
|
Menin L, Colombo CV, Maestrini G, Longhese MP, Clerici M. Tel1/ATM Signaling to the Checkpoint Contributes to Replicative Senescence in the Absence of Telomerase. Genetics 2019; 213:411-429. [PMID: 31391264 PMCID: PMC6781906 DOI: 10.1534/genetics.119.302391] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 07/27/2019] [Indexed: 11/18/2022] Open
Abstract
Telomeres progressively shorten at every round of DNA replication in the absence of telomerase. When they become critically short, telomeres trigger replicative senescence by activating a DNA damage response that is governed by the Mec1/ATR and Tel1/ATM protein kinases. While Mec1/ATR is known to block cell division when extended single-stranded DNA (ssDNA) accumulates at eroded telomeres, the molecular mechanism by which Tel1/ATM promotes senescence is still unclear. By characterizing a Tel1-hy184 mutant variant that compensates for the lack of Mec1 functions, we provide evidence that Tel1 promotes senescence by signaling to a Rad9-dependent checkpoint. Tel1-hy184 anticipates senescence onset in telomerase-negative cells, while the lack of Tel1 or the expression of a kinase-defective (kd) Tel1 variant delays it. Both Tel1-hy184 and Tel1-kd do not alter ssDNA generation at telomeric DNA ends. Furthermore, Rad9 and (only partially) Mec1 are responsible for the precocious senescence promoted by Tel1-hy184. This precocious senescence is mainly caused by the F1751I, D1985N, and E2133K amino acid substitutions, which are located in the FRAP-ATM-TRAPP domain of Tel1 and also increase Tel1 binding to DNA ends. Altogether, these results indicate that Tel1 induces replicative senescence by directly signaling dysfunctional telomeres to the checkpoint machinery.
Collapse
Affiliation(s)
- Luca Menin
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milano 20126, Italy
| | - Chiara Vittoria Colombo
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milano 20126, Italy
| | - Giorgia Maestrini
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milano 20126, Italy
| | - Maria Pia Longhese
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milano 20126, Italy
| | - Michela Clerici
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milano 20126, Italy
| |
Collapse
|
12
|
Zhang LL, Wu Z, Zhou JQ. Tel1 and Rif2 oppositely regulate telomere protection at uncapped telomeres in Saccharomyces cerevisiae. J Genet Genomics 2018; 45:467-476. [PMID: 30279093 DOI: 10.1016/j.jgg.2018.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 09/06/2018] [Accepted: 09/10/2018] [Indexed: 12/27/2022]
Abstract
It has been well documented that Tel1 positively regulates telomere-end resection by promoting Mre11-Rad50-Xrs2 (MRX) activity, while Rif2 negatively regulates telomere-end resection by inhibiting MRX activity. At uncapped telomeres, whether Tel1 or Rif2 plays any role remains largely unknown. In this work, we examined the roles of Tel1 and Rif2 at uncapped telomeres in yku70Δ and/or cdc13-1 mutant cells cultured at non-permissive temperature. We found that deletion of TEL1 exacerbates the temperature sensitivity of both yku70Δ and cdc13-1 cells. Further epistasis analysis indicated that MRX and Tel1 function in the same pathway in telomere protection. Consistently, TEL1 deletion increases accumulation of Exo1-dependent telomeric single-stranded DNA (ssDNA) at uncapped telomeres, which stimulates checkpoint-dependent cell cycle arrest. Moreover, TEL1 deletion in yku70Δ cells facilitates Rad51-dependent Y' recombination. In contrast, RIF2 deletion in yku70Δ cells decreases the accumulation of telomeric ssDNA after 8 h of incubation at the non-permissive temperature of 37 °C and suppresses the temperature sensitivity of yku70Δ cells, likely due to the increase of Mre11 association at telomeres. Collectively, our findings indicate that Tel1 and Rif2 regulate telomere protection at uncapped telomeres via their roles in balancing MRX activity in telomere resection.
Collapse
Affiliation(s)
- Ling-Li Zhang
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhenfang Wu
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China.
| | - Jin-Qiu Zhou
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
13
|
Fontana GA, Reinert JK, Thomä NH, Rass U. Shepherding DNA ends: Rif1 protects telomeres and chromosome breaks. MICROBIAL CELL 2018; 5:327-343. [PMID: 29992129 PMCID: PMC6035837 DOI: 10.15698/mic2018.07.639] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cells have evolved conserved mechanisms to protect DNA ends, such as those at the termini of linear chromosomes, or those at DNA double-strand breaks (DSBs). In eukaryotes, DNA ends at chromosomal termini are packaged into proteinaceous structures called telomeres. Telomeres protect chromosome ends from erosion, inadvertent activation of the cellular DNA damage response (DDR), and telomere fusion. In contrast, cells must respond to damage-induced DNA ends at DSBs by harnessing the DDR to restore chromosome integrity, avoiding genome instability and disease. Intriguingly, Rif1 (Rap1-interacting factor 1) has been implicated in telomere homeostasis as well as DSB repair. The protein was first identified in Saccharomyces cerevisiae as being part of the proteinaceous telosome. In mammals, RIF1 is not associated with intact telomeres, but was found at chromosome breaks, where RIF1 has emerged as a key mediator of pathway choice between the two evolutionary conserved DSB repair pathways of non-homologous end-joining (NHEJ) and homologous recombination (HR). While this functional dichotomy has long been a puzzle, recent findings link yeast Rif1 not only to telomeres, but also to DSB repair, and mechanistic parallels likely exist. In this review, we will provide an overview of the actions of Rif1 at DNA ends and explore how exclusion of end-processing factors might be the underlying principle allowing Rif1 to fulfill diverse biological roles at telomeres and chromosome breaks.
Collapse
Affiliation(s)
- Gabriele A Fontana
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
| | - Julia K Reinert
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland.,University of Basel, Petersplatz 10, CH-4003 Basel, Switzerland
| | - Nicolas H Thomä
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
| | - Ulrich Rass
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
| |
Collapse
|
14
|
Wang S, Pike AM, Lee SS, Strong MA, Connelly CJ, Greider CW. BRD4 inhibitors block telomere elongation. Nucleic Acids Res 2017; 45:8403-8410. [PMID: 28854735 PMCID: PMC5737673 DOI: 10.1093/nar/gkx561] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 06/22/2017] [Indexed: 12/25/2022] Open
Abstract
Cancer cells maintain telomere length equilibrium to avoid senescence and apoptosis induced by short telomeres, which trigger the DNA damage response. Limiting the potential for telomere maintenance in cancer cells has been long been proposed as a therapeutic target. Using an unbiased shRNA screen targeting known kinases, we identified bromodomain-containing protein 4 (BRD4) as a telomere length regulator. Four independent BRD4 inhibitors blocked telomere elongation, in a dose-dependent manner, in mouse cells overexpressing telomerase. Long-term treatment with BRD4 inhibitors caused telomere shortening in both mouse and human cells, suggesting BRD4 plays a role in telomere maintenance in vivo. Telomerase enzymatic activity was not directly affected by BRD4 inhibition. BRD4 is in clinical trials for a number of cancers, but its effects on telomere maintenance have not been previously investigated.
Collapse
Affiliation(s)
- Steven Wang
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Cellular and Molecular Medicine Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Alexandra M Pike
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Cellular and Molecular Medicine Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Stella S Lee
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Margaret A Strong
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Carla J Connelly
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Carol W Greider
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
15
|
Yang CW, Tseng SF, Yu CJ, Chung CY, Chang CY, Pobiega S, Teng SC. Telomere shortening triggers a feedback loop to enhance end protection. Nucleic Acids Res 2017; 45:8314-8328. [PMID: 28575419 PMCID: PMC5737367 DOI: 10.1093/nar/gkx503] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Accepted: 05/26/2017] [Indexed: 01/20/2023] Open
Abstract
Telomere homeostasis is controlled by both telomerase machinery and end protection. Telomere shortening induces DNA damage sensing kinases ATM/ATR for telomerase recruitment. Yet, whether telomere shortening also governs end protection is poorly understood. Here we discover that yeast ATM/ATR controls end protection. Rap1 is phosphorylated by Tel1 and Mec1 kinases at serine 731, and this regulation is stimulated by DNA damage and telomere shortening. Compromised Rap1 phosphorylation hampers the interaction between Rap1 and its interacting partner Rif1, which thereby disturbs the end protection. As expected, reduction of Rap1–Rif1 association impairs telomere length regulation and increases telomere–telomere recombination. These results indicate that ATM/ATR DNA damage checkpoint signal contributes to telomere protection by strengthening the Rap1–Rif1 interaction at short telomeres, and the checkpoint signal oversees both telomerase recruitment and end capping pathways to maintain telomere homeostasis.
Collapse
Affiliation(s)
- Chia-Wei Yang
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Shun-Fu Tseng
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei 100, Taiwan
| | - Chia-Jung Yu
- Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, Tao-Yuan 333, Taiwan.,Department of Thoracic Medicine, Chang Gung Memorial Hospital, Linkou, Tao-Yuan 333, Taiwan
| | - Chia-Yu Chung
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Cheng-Yen Chang
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Sabrina Pobiega
- INSERM UMR 967, Institut de Biologie François Jacob, CEA Paris-Saclay, 92265 Fontenay-aux-roses, France
| | - Shu-Chun Teng
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| |
Collapse
|
16
|
Takikawa M, Tarumoto Y, Ishikawa F. Fission yeast Stn1 is crucial for semi-conservative replication at telomeres and subtelomeres. Nucleic Acids Res 2017; 45:1255-1269. [PMID: 28180297 PMCID: PMC5388396 DOI: 10.1093/nar/gkw1176] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 11/08/2016] [Accepted: 11/23/2016] [Indexed: 12/29/2022] Open
Abstract
The CST complex is a phylogenetically conserved protein complex consisting of CTC1/Cdc13, Stn1 and Ten1 that protects telomeres on linear chromosomes. Deletion of the fission yeast homologs stn1 and ten1 results in complete telomere loss; however, the precise function of Stn1 is still largely unknown. Here, we have isolated a high-temperature sensitive stn1 allele (termed stn1-1). stn1-1 cells abruptly lost telomeric sequence almost completely at the restrictive temperature. The loss of chromosomal DNA happened without gradual telomere shortening, and extended to 30 kb from the ends of chromosomes. We found transient and modest single-stranded G-strand exposure, but did not find any evidence of checkpoint activation in stn1-1 at the restrictive temperature. When we probed neutral-neutral 2D gels for subtelomere regions, we found no Y-arc-shaped replication intermediates in cycling cells. We conclude that the loss of telomere and subtelomere DNAs in stn1-1 cells at the restrictive temperature is caused by very frequent replication fork collapses specifically in subtelomere regions. Furthermore, we identified two independent suppressor mutants of the high-temperature sensitivity of stn1-1: a multi-copy form of pmt3 and a deletion of rif1. Collectively, we propose that fission yeast Stn1 primarily safeguards the semi-conservative DNA replication at telomeres and subtelomeres.
Collapse
Affiliation(s)
- Masahiro Takikawa
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, Japan
| | - Yusuke Tarumoto
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, Japan
| | - Fuyuki Ishikawa
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
17
|
Zhao X, Wei C, Li J, Xing P, Li J, Zheng S, Chen X. Cell cycle-dependent control of homologous recombination. Acta Biochim Biophys Sin (Shanghai) 2017; 49:655-668. [PMID: 28541389 DOI: 10.1093/abbs/gmx055] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Indexed: 01/29/2023] Open
Abstract
DNA double-strand breaks (DSBs) are among the most deleterious type of DNA lesions threatening genome integrity. Homologous recombination (HR) and non-homologous end joining (NHEJ) are two major pathways to repair DSBs. HR requires a homologous template to direct DNA repair, and is generally recognized as a high-fidelity pathway. In contrast, NHEJ directly seals broken ends, but the repair product is often accompanied by sequence alterations. The choice of repair pathways is strictly controlled by the cell cycle. The occurrence of HR is restricted to late S to G2 phases while NHEJ operates predominantly in G1 phase, although it can act throughout most of the cell cycle. Deregulation of repair pathway choice can result in genotoxic consequences associated with cancers. How the cell cycle regulates the choice of HR and NHEJ has been extensively studied in the past decade. In this review, we will focus on the current progresses on how HR is controlled by the cell cycle in both Saccharomyces cerevisiae and mammals. Particular attention will be given to how cyclin-dependent kinases modulate DSB end resection, DNA damage checkpoint signaling, repair and processing of recombination intermediates. In addition, we will discuss recent findings on how HR is repressed in G1 and M phases by the cell cycle.
Collapse
Affiliation(s)
- Xin Zhao
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences and the Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Chengwen Wei
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences and the Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Jingjing Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences and the Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Poyuan Xing
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences and the Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Jingyao Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences and the Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Sihao Zheng
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences and the Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Xuefeng Chen
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences and the Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| |
Collapse
|
18
|
Gopalakrishnan V, Tan CR, Li S. Sequential phosphorylation of CST subunits by different cyclin-Cdk1 complexes orchestrate telomere replication. Cell Cycle 2017. [PMID: 28650257 DOI: 10.1080/15384101.2017.1312235] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Telomeres are nucleoprotein structures that cap the ends of linear chromosomes. Telomere homeostasis is central to maintaining genomic integrity. In budding yeast, Cdk1 phosphorylates the telomere-specific binding protein, Cdc13, promoting the recruitment of telomerase to telomere and thereby telomere elongation. Cdc13 is also an integral part of the CST (Cdc13-Stn1-Ten1) complex that is essential for telomere capping and counteracting telomerase-dependent telomere elongation. Therefore, telomere length homeostasis is a balance between telomerase-extendable and CST-unextendable states. In our earlier work, we showed that Cdk1 also phosphorylates Stn1 which occurs sequentially following Cdc13 phosphorylation during cell cycle progression. This stabilizes the CST complex at the telomere and results in telomerase inhibition. Hence Cdk1-dependent phosphorylations of Stn1 acts like a molecular switch that drives Cdc13 to complex with Stn1-Ten1 rather than with telomerase. However, the underlying mechanism of how a single cyclin-dependent kinase phosphorylates Cdc13 and Stn1 in temporally distinct windows is largely unclear. Here, we show that S phase cyclins are necessary for telomere maintenance. The S phase and mitotic cyclins facilitate Cdc13 and Stn1 phosphorylation respectively, to exert opposing outcomes at the telomere. Thus, our results highlight a previously unappreciated role for cyclins in telomere replication.
Collapse
Affiliation(s)
| | - Cherylin Ruiling Tan
- b Department of Biological Sciences , National University of Singapore , Singapore
| | - Shang Li
- a Program in Cancer and Stem Cell Biology , Duke-NUS Medical School , Singapore.,c Department of Physiology , Yong Loo Lin School of Medicine, National University of Singapore , Singapore
| |
Collapse
|
19
|
Cesena D, Cassani C, Rizzo E, Lisby M, Bonetti D, Longhese MP. Regulation of telomere metabolism by the RNA processing protein Xrn1. Nucleic Acids Res 2017; 45:3860-3874. [PMID: 28160602 PMCID: PMC5397203 DOI: 10.1093/nar/gkx072] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 01/23/2017] [Accepted: 01/25/2017] [Indexed: 11/19/2022] Open
Abstract
Telomeric DNA consists of repetitive G-rich sequences that terminate with a 3΄-ended single stranded overhang (G-tail), which is important for telomere extension by telomerase. Several proteins, including the CST complex, are necessary to maintain telomere structure and length in both yeast and mammals. Emerging evidence indicates that RNA processing factors play critical, yet poorly understood, roles in telomere metabolism. Here, we show that the lack of the RNA processing proteins Xrn1 or Rrp6 partially bypasses the requirement for the CST component Cdc13 in telomere protection by attenuating the activation of the DNA damage checkpoint. Xrn1 is necessary for checkpoint activation upon telomere uncapping because it promotes the generation of single-stranded DNA. Moreover, Xrn1 maintains telomere length by promoting the association of Cdc13 to telomeres independently of ssDNA generation and exerts this function by downregulating the transcript encoding the telomerase inhibitor Rif1. These findings reveal novel roles for RNA processing proteins in the regulation of telomere metabolism with implications for genome stability in eukaryotes.
Collapse
Affiliation(s)
- Daniele Cesena
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan 20126, Italy
| | - Corinne Cassani
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan 20126, Italy
| | - Emanuela Rizzo
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan 20126, Italy
| | - Michael Lisby
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Diego Bonetti
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan 20126, Italy
| | - Maria Pia Longhese
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan 20126, Italy
| |
Collapse
|
20
|
Ivanova IG, Maringele L. Polymerases ε and ∂ repair dysfunctional telomeres facilitated by salt. Nucleic Acids Res 2016; 44:3728-38. [PMID: 26883631 PMCID: PMC4856982 DOI: 10.1093/nar/gkw071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 02/01/2016] [Indexed: 12/19/2022] Open
Abstract
Damaged DNA can be repaired by removal and re-synthesis of up to 30 nucleotides during base or nucleotide excision repair. An important question is what happens when many more nucleotides are removed, resulting in long single-stranded DNA (ssDNA) lesions. Such lesions appear on chromosomes during telomere damage, double strand break repair or after the UV damage of stationary phase cells. Here, we show that long single-stranded lesions, formed at dysfunctional telomeres in budding yeast, are re-synthesized when cells are removed from the telomere-damaging environment. This process requires Pol32, an accessory factor of Polymerase δ. However, re-synthesis takes place even when the telomere-damaging conditions persist, in which case the accessory factors of both polymerases δ and ε are required, and surprisingly, salt. Salt added to the medium facilitates the DNA synthesis, independently of the osmotic stress responses. These results provide unexpected insights into the DNA metabolism and challenge the current view on cellular responses to telomere dysfunction.
Collapse
Affiliation(s)
- Iglika G Ivanova
- Institute for Cell and Molecular Biosciences (ICaMB), Newcastle University, Newcastle upon Tyne, NE2 44H, UK
| | - Laura Maringele
- Institute for Cell and Molecular Biosciences (ICaMB), Newcastle University, Newcastle upon Tyne, NE2 44H, UK
| |
Collapse
|
21
|
Lin KW, Zakian VA. 21st Century Genetics: Mass Spectrometry of Yeast Telomerase. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2016; 80:111-6. [PMID: 26763982 PMCID: PMC5441543 DOI: 10.1101/sqb.2015.80.027656] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Telomerase is a specialized reverse transcriptase that maintains the ends of chromosomes in almost all eukaryotes. The core of telomerase consists of telomerase RNA and the reverse transcriptase that uses a short segment without the RNA to template the addition of telomeric repeats. In addition, one or more accessory proteins are required for telomerase action in vivo. The best-studied accessory protein is Est1, which is conserved from yeasts to humans. In budding yeast, Est1 has two critical in vivo functions: By interaction with Cdc13, a telomere-binding protein, it recruits telomerase to telomeres, and it also increases telomerase activity. Although budding yeast telomerase is highly regulated by the cell cycle, Est1 is the only telomerase subunit whose abundance is cell cycle-regulated. Close to 400 yeast genes are reported to affect telomere length, although the specific function of most of them is unknown. With the goal of identifying novel telomerase regulators by mass spectrometry, we developed methods for purifying yeast telomerase and its associated proteins. We summarize the methods we used and describe the experiments that show that four telomerase-associated proteins identified by mass spectrometry, none of which had been linked previously to telomeres, affect telomere length and cell cycle regulation of telomerase by controlling Est1 abundance.
Collapse
Affiliation(s)
- Kah Wai Lin
- Department of Molecular Biology, Lewis Thomas Labs, Princeton University, Princeton, New Jersey 08544
| | - Virginia A Zakian
- Department of Molecular Biology, Lewis Thomas Labs, Princeton University, Princeton, New Jersey 08544
| |
Collapse
|
22
|
Lin KW, McDonald KR, Guise AJ, Chan A, Cristea IM, Zakian VA. Proteomics of yeast telomerase identified Cdc48-Npl4-Ufd1 and Ufd4 as regulators of Est1 and telomere length. Nat Commun 2015; 6:8290. [PMID: 26365526 PMCID: PMC4579843 DOI: 10.1038/ncomms9290] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 08/06/2015] [Indexed: 12/20/2022] Open
Abstract
Almost 400 genes affect yeast telomere length, including Est1, which is critical for recruitment and activation of telomerase. Here we use mass spectrometry to identify novel telomerase regulators by their co-purification with the telomerase holoenzyme. In addition to all known subunits, over 100 proteins are telomerase associated, including all three subunits of the essential Cdc48-Npl4-Ufd1 complex as well as three E3 ubiquitin ligases. The Cdc48 complex is evolutionarily conserved and targets ubiquitinated proteins for degradation. Est1 levels are ∼40-fold higher in cells with reduced Cdc48, yet, paradoxically, telomeres are shorter. Furthermore, Est1 is ubiquitinated and its cell cycle-regulated abundance is lost in Cdc48-deficient cells. Deletion of the telomerase-associated E3 ligase, Ufd4, in cdc48-3 cells further increases Est1 abundance but suppresses the telomere length phenotype of the single mutant. These data argue that, in concert with Ufd4, the Cdc48 complex regulates telomerase by controlling the level and activity of Est1.
Collapse
Affiliation(s)
- Kah-Wai Lin
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Washington Road, 08544 Princeton, New Jersey, USA
| | - Karin R McDonald
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Washington Road, 08544 Princeton, New Jersey, USA
| | - Amanda J Guise
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Washington Road, 08544 Princeton, New Jersey, USA
| | - Angela Chan
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Washington Road, 08544 Princeton, New Jersey, USA
| | - Ileana M Cristea
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Washington Road, 08544 Princeton, New Jersey, USA
| | - Virginia A Zakian
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Washington Road, 08544 Princeton, New Jersey, USA
| |
Collapse
|
23
|
Ngo GHP, Lydall D. The 9-1-1 checkpoint clamp coordinates resection at DNA double strand breaks. Nucleic Acids Res 2015; 43:5017-32. [PMID: 25925573 PMCID: PMC4446447 DOI: 10.1093/nar/gkv409] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 04/16/2015] [Indexed: 11/13/2022] Open
Abstract
DNA-end resection, the generation of single-stranded DNA at DNA double strand break (DSB) ends, is critical for controlling the many cellular responses to breaks. Here we show that the conserved DNA damage checkpoint sliding clamp (the 9-1-1 complex) plays two opposing roles coordinating DSB resection in budding yeast. We show that the major effect of 9-1-1 is to inhibit resection by promoting the recruitment of Rad9(53BP1) near DSBs. However, 9-1-1 also stimulates resection by Exo1- and Dna2-Sgs1-dependent nuclease/helicase activities, and this can be observed in the absence of Rad9(53BP1). Our new data resolve the controversy in the literature about the effect of the 9-1-1 complex on DSB resection. Interestingly, the inhibitory role of 9-1-1 on resection is not observed near uncapped telomeres because less Rad9(53BP1) is recruited near uncapped telomeres. Thus, 9-1-1 both stimulates and inhibits resection and the effects of 9-1-1 are modulated by different regions of the genome. Our experiments illustrate the central role of the 9-1-1 checkpoint sliding clamp in the DNA damage response network that coordinates the response to broken DNA ends. Our results have implications in all eukaryotic cells.
Collapse
Affiliation(s)
- Greg H P Ngo
- Institute for Cell and Molecular Biosciences (ICaMB), Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - David Lydall
- Institute for Cell and Molecular Biosciences (ICaMB), Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| |
Collapse
|
24
|
Amiard S, Olivier M, Allain E, Choi K, Smith-Unna R, Henderson IR, White CI, Gallego ME. Telomere stability and development of ctc1 mutants are rescued by inhibition of EJ recombination pathways in a telomerase-dependent manner. Nucleic Acids Res 2014; 42:11979-91. [PMID: 25274733 PMCID: PMC4231758 DOI: 10.1093/nar/gku897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 09/16/2014] [Accepted: 09/18/2014] [Indexed: 12/11/2022] Open
Abstract
The telomeres of linear eukaryotic chromosomes are protected by caps consisting of evolutionarily conserved nucleoprotein complexes. Telomere dysfunction leads to recombination of chromosome ends and this can result in fusions which initiate chromosomal breakage-fusion-bridge cycles, causing genomic instability and potentially cell death or cancer. We hypothesize that in the absence of the recombination pathways implicated in these fusions, deprotected chromosome ends will instead be eroded by nucleases, also leading to the loss of genes and cell death. In this work, we set out to specifically test this hypothesis in the plant, Arabidopsis. Telomere protection in Arabidopsis implicates KU and CST and their absence leads to chromosome fusions, severe genomic instability and dramatic developmental defects. We have analysed the involvement of end-joining recombination pathways in telomere fusions and the consequences of this on genomic instability and growth. Strikingly, the absence of the multiple end-joining pathways eliminates chromosome fusion and restores normal growth and development to cst ku80 mutant plants. It is thus the chromosomal fusions, per se, which are the underlying cause of the severe developmental defects. This rescue is mediated by telomerase-dependent telomere extension, revealing a competition between telomerase and end-joining recombination proteins for access to deprotected telomeres.
Collapse
Affiliation(s)
- Simon Amiard
- Génétique, Reproduction et Développement, UMR CNRS 6293, Clermont Université, INSERM U1103, Aubière, France
| | - Margaux Olivier
- Génétique, Reproduction et Développement, UMR CNRS 6293, Clermont Université, INSERM U1103, Aubière, France
| | - Elisabeth Allain
- Génétique, Reproduction et Développement, UMR CNRS 6293, Clermont Université, INSERM U1103, Aubière, France Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Kyuha Choi
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | | | - Ian R Henderson
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Charles I White
- Génétique, Reproduction et Développement, UMR CNRS 6293, Clermont Université, INSERM U1103, Aubière, France
| | - Maria Eugenia Gallego
- Génétique, Reproduction et Développement, UMR CNRS 6293, Clermont Université, INSERM U1103, Aubière, France
| |
Collapse
|
25
|
Soudet J, Jolivet P, Teixeira MT. Elucidation of the DNA end-replication problem in Saccharomyces cerevisiae. Mol Cell 2014; 53:954-64. [PMID: 24656131 DOI: 10.1016/j.molcel.2014.02.030] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 01/15/2014] [Accepted: 01/31/2014] [Indexed: 11/26/2022]
Abstract
The model for telomere shortening at each replication cycle is currently incomplete, and the exact contribution of the telomeric 3' overhang to the shortening rate remains unclear. Here, we demonstrate key steps of the mechanism of telomere replication in Saccharomyces cerevisiae. By following the dynamics of telomeres during replication at near-nucleotide resolution, we find that the leading-strand synthesis generates blunt-end intermediates before being 5'-resected and filled in. Importantly, the shortening rate is set by positioning the last Okazaki fragments at the very ends of the chromosome. Thus, telomeres shorten in direct proportion to the 3' overhang lengths of 5-10 nucleotides that are present in parental templates. Furthermore, the telomeric protein Cdc13 coordinates leading- and lagging-strand syntheses. Taken together, our data unravel a precise choreography of telomere replication elucidating the DNA end-replication problem and provide a framework to understand the control of the cell proliferation potential.
Collapse
Affiliation(s)
- Julien Soudet
- Centre National de la Recherche Scientifique, UMR8226, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Institut de Biologie Physico-Chimique, 75005 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR8226, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - Pascale Jolivet
- Centre National de la Recherche Scientifique, UMR8226, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Institut de Biologie Physico-Chimique, 75005 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR8226, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - Maria Teresa Teixeira
- Centre National de la Recherche Scientifique, UMR8226, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Institut de Biologie Physico-Chimique, 75005 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR8226, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Institut de Biologie Physico-Chimique, 75005 Paris, France.
| |
Collapse
|
26
|
|
27
|
Fallet E, Jolivet P, Soudet J, Lisby M, Gilson E, Teixeira MT. Length-dependent processing of telomeres in the absence of telomerase. Nucleic Acids Res 2014; 42:3648-65. [PMID: 24393774 PMCID: PMC3973311 DOI: 10.1093/nar/gkt1328] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
In the absence of telomerase, telomeres progressively shorten with every round of DNA replication, leading to replicative senescence. In telomerase-deficient Saccharomyces cerevisiae, the shortest telomere triggers the onset of senescence by activating the DNA damage checkpoint and recruiting homologous recombination (HR) factors. Yet, the molecular structures that trigger this checkpoint and the mechanisms of repair have remained elusive. By tracking individual telomeres, we show that telomeres are subjected to different pathways depending on their length. We first demonstrate a progressive accumulation of subtelomeric single-stranded DNA (ssDNA) through 5'-3' resection as telomeres shorten. Thus, exposure of subtelomeric ssDNA could be the signal for cell cycle arrest in senescence. Strikingly, early after loss of telomerase, HR counteracts subtelomeric ssDNA accumulation rather than elongates telomeres. We then asked whether replication repair pathways contribute to this mechanism. We uncovered that Rad5, a DNA helicase/Ubiquitin ligase of the error-free branch of the DNA damage tolerance (DDT) pathway, associates with native telomeres and cooperates with HR in senescent cells. We propose that DDT acts in a length-independent manner, whereas an HR-based repair using the sister chromatid as a template buffers precocious 5'-3' resection at the shortest telomeres.
Collapse
Affiliation(s)
- Emilie Fallet
- Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Institut de Biologie Physico-Chimique, Centre National de la Recherche Scientifique, Université Pierre et Marie Curie, FRE3354, 75005 Paris, France, Laboratoire de Biologie Moléculaire de la Cellule, Centre National de la Recherche Scientifique, Ecole Normale Supérieure de Lyon, Université de Lyon 1, UMR5239, 69364 Lyon Cedex 07, France, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark, Institute for Research on Cancer and Aging, Nice (IRCAN), University of Nice Sophia-Antipolis, CNRS UMR7284/INSERM U1081, Faculty of Medicine, Nice F-06107, France and Department of Medical Genetics, CHU Nice, 06202 Nice cedex 3, France
| | | | | | | | | | | |
Collapse
|
28
|
Cdk1 regulates the temporal recruitment of telomerase and Cdc13-Stn1-Ten1 complex for telomere replication. Mol Cell Biol 2013; 34:57-70. [PMID: 24164896 DOI: 10.1128/mcb.01235-13] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
In budding yeast (Saccharomyces cerevisiae), the cell cycle-dependent telomere elongation by telomerase is controlled by the cyclin-dependent kinase 1 (Cdk1). The telomere length homeostasis is balanced between telomerase-unextendable and telomerase-extendable states that both require Cdc13. The recruitment of telomerase complex by Cdc13 promotes telomere elongation, while the formation of Cdc13-Stn1-Ten1 (CST) complex at the telomere blocks telomere elongation by telomerase. However, the cellular signaling that regulates the timing of the telomerase-extendable and telomerase-unextendable states is largely unknown. Phosphorylation of Cdc13 by Cdk1 promotes the interaction between Cdc13 and Est1 and hence telomere elongation. Here, we show that Cdk1 also phosphorylates Stn1 at threonine 223 and serine 250 both in vitro and in vivo, and these phosphorylation events are essential for the stability of the CST complexes at the telomeres. By controlling the timing of Cdc13 and Stn1 phosphorylations during cell cycle progression, Cdk1 regulates the temporal recruitment of telomerase complexes and CST complexes to the telomeres to facilitate telomere maintenance.
Collapse
|
29
|
Bonetti D, Martina M, Falcettoni M, Longhese MP. Telomere-end processing: mechanisms and regulation. Chromosoma 2013; 123:57-66. [PMID: 24122006 DOI: 10.1007/s00412-013-0440-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 10/04/2013] [Accepted: 10/04/2013] [Indexed: 10/26/2022]
Abstract
Telomeres are specialized nucleoprotein complexes that provide protection to the ends of eukaryotic chromosomes. Telomeric DNA consists of tandemly repeated G-rich sequences that terminate with a 3' single-stranded overhang, which is important for telomere extension by the telomerase enzyme. This structure, as well as most of the proteins that specifically bind double and single-stranded telomeric DNA, are conserved from yeast to humans, suggesting that the mechanisms underlying telomere identity are based on common principles. The telomeric 3' overhang is generated by different events depending on whether the newly synthesized strand is the product of leading- or lagging-strand synthesis. Here, we review the mechanisms that regulate these processes at Saccharomyces cerevisiae and mammalian telomeres.
Collapse
Affiliation(s)
- Diego Bonetti
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | | | | | | |
Collapse
|
30
|
Shi T, Bunker RD, Mattarocci S, Ribeyre C, Faty M, Gut H, Scrima A, Rass U, Rubin SM, Shore D, Thomä NH. Rif1 and Rif2 shape telomere function and architecture through multivalent Rap1 interactions. Cell 2013; 153:1340-53. [PMID: 23746845 DOI: 10.1016/j.cell.2013.05.007] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2012] [Revised: 02/26/2013] [Accepted: 05/03/2013] [Indexed: 11/27/2022]
Abstract
Yeast telomeres comprise irregular TG₁₋₃ DNA repeats bound by the general transcription factor Rap1. Rif1 and Rif2, along with Rap1, form the telosome, a protective cap that inhibits telomerase, counteracts SIR-mediated transcriptional silencing, and prevents inadvertent recognition of telomeres as DNA double-strand breaks. We provide a molecular, biochemical, and functional dissection of the protein backbone at the core of the yeast telosome. The X-ray structures of Rif1 and Rif2 bound to the Rap1 C-terminal domain and that of the Rif1 C terminus are presented. Both Rif1 and Rif2 have separable and independent Rap1-binding epitopes, allowing Rap1 binding over large distances (42-110 Å). We identify tetramerization (Rif1) and polymerization (Rif2) modules that, in conjunction with the long-range binding, give rise to a higher-order architecture that interlinks Rap1 units. This molecular Velcro relies on Rif1 and Rif2 to recruit and stabilize Rap1 on telomeric arrays and is required for telomere homeostasis in vivo.
Collapse
Affiliation(s)
- Tianlai Shi
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Koltovaya NA. Involvement of cyclin-dependent kinase CDK1/CDC28 in regulation of cell cycle. RUSS J GENET+ 2013. [DOI: 10.1134/s1022795413050086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Webb CJ, Wu Y, Zakian VA. DNA repair at telomeres: keeping the ends intact. Cold Spring Harb Perspect Biol 2013; 5:5/6/a012666. [PMID: 23732473 DOI: 10.1101/cshperspect.a012666] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The molecular era of telomere biology began with the discovery that telomeres usually consist of G-rich simple repeats and end with 3' single-stranded tails. Enormous progress has been made in identifying the mechanisms that maintain and replenish telomeric DNA and the proteins that protect them from degradation, fusions, and checkpoint activation. Although telomeres in different organisms (or even in the same organism under different conditions) are maintained by different mechanisms, the disparate processes have the common goals of repairing defects caused by semiconservative replication through G-rich DNA, countering the shortening caused by incomplete replication, and postreplication regeneration of G tails. In addition, standard DNA repair mechanisms must be suppressed or modified at telomeres to prevent their being recognized and processed as DNA double-strand breaks. Here, we discuss the players and processes that maintain and regenerate telomere structure.
Collapse
Affiliation(s)
- Christopher J Webb
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | | | | |
Collapse
|
33
|
Pfeiffer V, Lingner J. Replication of telomeres and the regulation of telomerase. Cold Spring Harb Perspect Biol 2013; 5:a010405. [PMID: 23543032 DOI: 10.1101/cshperspect.a010405] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Telomeres are the physical ends of eukaryotic chromosomes. They protect chromosome ends from DNA degradation, recombination, and DNA end fusions, and they are important for nuclear architecture. Telomeres provide a mechanism for their replication by semiconservative DNA replication and length maintenance by telomerase. Through telomerase repression and induced telomere shortening, telomeres provide the means to regulate cellular life span. In this review, we introduce the current knowledge on telomere composition and structure. We then discuss in depth the current understanding of how telomere components mediate their function during semiconservative DNA replication and how telomerase is regulated at the end of the chromosome. We focus our discussion on the telomeres from mammals and the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe.
Collapse
Affiliation(s)
- Verena Pfeiffer
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Frontiers in Genetics National Center of Competence in Research, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | | |
Collapse
|
34
|
Churikov D, Corda Y, Luciano P, Géli V. Cdc13 at a crossroads of telomerase action. Front Oncol 2013; 3:39. [PMID: 23450759 PMCID: PMC3584321 DOI: 10.3389/fonc.2013.00039] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 02/11/2013] [Indexed: 01/21/2023] Open
Abstract
Telomere elongation by telomerase involves sequential steps that must be highly coordinated to ensure the maintenance of telomeres at a proper length. Telomerase is delivered to telomere ends, where it engages single-strand DNA end as a primer, elongates it, and dissociates from the telomeres via mechanism that is likely coupled to the synthesis of the complementary C-strand. In Saccharomyces cerevisiae, the telomeric G-overhang bound Cdc13 acts as a platform for the recruitment of several factors that orchestrate timely transitions between these steps. In this review, we focus on some unresolved aspects of telomerase recruitment and on the mechanisms that regulate telomere elongation by telomerase after its recruitment to chromosome ends. We also highlight the key regulatory modifications of Cdc13 that promote transitions between the steps of telomere elongation.
Collapse
Affiliation(s)
- Dmitri Churikov
- Marseille Cancer Research Center, U1068 INSERM, UMR7258 CNRS, Aix-Marseille University Institut Paoli-Calmettes, Marseille, France
| | | | | | | |
Collapse
|
35
|
Abstract
The mechanisms that maintain the stability of chromosome ends have broad impact on genome integrity in all eukaryotes. Budding yeast is a premier organism for telomere studies. Many fundamental concepts of telomere and telomerase function were first established in yeast and then extended to other organisms. We present a comprehensive review of yeast telomere biology that covers capping, replication, recombination, and transcription. We think of it as yeast telomeres—soup to nuts.
Collapse
|
36
|
Wu Y, DiMaggio PA, Perlman DH, Zakian VA, Garcia BA. Novel phosphorylation sites in the S. cerevisiae Cdc13 protein reveal new targets for telomere length regulation. J Proteome Res 2012. [PMID: 23181431 DOI: 10.1021/pr300408v] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The S. cerevisiae Cdc13 is a multifunctional protein with key roles in regulation of telomerase, telomere end protection, and conventional telomere replication, all of which are cell cycle-regulated processes. Given that phosphorylation is a key mechanism for regulating protein function, we identified sites of phosphorylation using nano liquid chromatography-tandem mass spectrometry (nanoLC-MS/MS). We also determined phosphorylation abundance on both wild type (WT) and a telomerase deficient form of Cdc13, encoded by the cdc13-2 allele, in both G1 phase cells, when telomerase is not active, and G2/M phase cells, when it is. We identified 21 sites of in vivo phosphorylation, of which only five had been reported previously. In contrast, phosphorylation of two in vitro targets of the ATM-like Tel1 kinase, S249 and S255, was not detected. This result helps resolve conflicting data on the importance of phosphorylation of these residues in telomerase recruitment. Multiple residues showed differences in their cell cycle pattern of modification. For example, phosphorylation of S314 was significantly higher in the G2/M compared to the G1 phase and in WT versus mutant Cdc13, and a S314D mutation negatively affected telomere length. Our findings provide new targets in a key telomerase regulatory protein for modulation of telomere dynamics.
Collapse
Affiliation(s)
- Yun Wu
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, United States
| | | | | | | | | |
Collapse
|
37
|
Dai X, Huang C, Chai W. CDK1 differentially regulates G-overhang generation at leading- and lagging-strand telomeres in telomerase-negative cells in G2 phase. Cell Cycle 2012; 11:3079-86. [PMID: 22871736 DOI: 10.4161/cc.21472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Human telomeres contain single-stranded 3' G-overhangs that function in telomere end protection and telomerase action. Previously we have demonstrated that multiple steps involving C-strand end resection, telomerase elongation and C-strand fill-in contribute to G-overhang generation in telomerase-positive cancer cells. However, how G-overhangs are generated in telomerase-negative human somatic cells is unknown. Here, we report that C-strand fill-in is present at lagging-strand telomeres in telomerase-negative human cells but not at leading-strand telomeres, suggesting that C-strand fill-in is independent of telomerase extension of G-strand. We further show that while cyclin-dependent kinase 1 (CDK1) positively regulates C-strand fill-in, CDK1 unlikely regulates G-overhang generation at leading-strand telomeres. In addition, DNA polymerase α (Polα) association with telomeres is not altered upon CDK1 inhibition, suggesting that CDK1 does not control the loading of Polα to telomeres during fill-in. In summary, our results reveal that G-overhang generation at leading- and lagging-strand telomeres are regulated by distinct mechanisms in human cells.
Collapse
Affiliation(s)
- Xueyu Dai
- School of Molecular Biosciences, Washington State University, Spokane, WA, USA
| | | | | |
Collapse
|
38
|
Choi YH, Lim JK, Jeong MW, Kim KT. HnRNP A1 phosphorylated by VRK1 stimulates telomerase and its binding to telomeric DNA sequence. Nucleic Acids Res 2012; 40:8499-518. [PMID: 22740652 PMCID: PMC3458570 DOI: 10.1093/nar/gks634] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The telomere integrity is maintained via replication machinery, telomere associated proteins and telomerase. Many telomere associated proteins are regulated in a cell cycle-dependent manner. Heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1), a single-stranded oligonucleotide binding protein, is thought to play a pivotal role in telomere maintenance. Here, we identified hnRNP A1 as a novel substrate for vaccinia-related kinase 1 (VRK1), a cell cycle regulating kinase. Phosphorylation by VRK1 potentiates the binding of hnRNP A1 to telomeric ssDNA and telomerase RNA in vitro and enhances its function for telomerase reaction. VRK1 deficiency induces a shortening of telomeres with an abnormal telomere arrangement and activation of DNA-damage signaling in mouse male germ cells. Together, our data suggest that VRK1 is required for telomere maintenance via phosphorylation of hnRNP A1, which regulates proteins associated with the telomere and telomerase RNA.
Collapse
Affiliation(s)
- Yoon Ha Choi
- Department of Life Science, Division of Molecular and Life Science, Pohang University of Science and Technology (POSTECH), San-31, Hyoja-Dong, Pohang 790-784, Republic of Korea
| | | | | | | |
Collapse
|
39
|
Starnes JH, Thornbury DW, Novikova OS, Rehmeyer CJ, Farman ML. Telomere-targeted retrotransposons in the rice blast fungus Magnaporthe oryzae: agents of telomere instability. Genetics 2012; 191:389-406. [PMID: 22446319 PMCID: PMC3374306 DOI: 10.1534/genetics.111.137950] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Accepted: 03/11/2012] [Indexed: 02/07/2023] Open
Abstract
The fungus Magnaporthe oryzae is a serious pathogen of rice and other grasses. Telomeric restriction fragments in Magnaporthe isolates that infect perennial ryegrass (prg) are hotspots for genomic rearrangement and undergo frequent, spontaneous alterations during fungal culture. The telomeres of rice-infecting isolates are very stable by comparison. Sequencing of chromosome ends from a number of prg-infecting isolates revealed two related non-LTR retrotransposons (M. oryzae Telomeric Retrotransposons or MoTeRs) inserted in the telomere repeats. This contrasts with rice pathogen telomeres that are uninterrupted by other sequences. Genetic evidence indicates that the MoTeR elements are responsible for the observed instability. MoTeRs represent a new family of telomere-targeted transposons whose members are found exclusively in fungi.
Collapse
Affiliation(s)
| | - David W. Thornbury
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky 40546
| | - Olga S. Novikova
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky 40546
| | | | - Mark L. Farman
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky 40546
| |
Collapse
|
40
|
A naturally thermolabile activity compromises genetic analysis of telomere function in Saccharomyces cerevisiae. Genetics 2012; 191:79-93. [PMID: 22377634 DOI: 10.1534/genetics.111.137869] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The core assumption driving the use of conditional loss-of-function reagents such as temperature-sensitive mutations is that the resulting phenotype(s) are solely due to depletion of the mutant protein under nonpermissive conditions. However, prior published data, combined with observations presented here, challenge the generality of this assumption at least for telomere biology: for both wild-type yeast and strains bearing null mutations in telomere protein complexes, there is an additional phenotypic consequence when cells are grown above 34°. We propose that this synthetic phenotype is due to a naturally thermolabile activity that confers a telomere-specific defect, which we call the Tmp(-) phenotype. This prompted a re-examination of commonly used cdc13-ts and stn1-ts mutations, which indicates that these alleles are instead hypomorphic mutations that behave as apparent temperature-sensitive mutations due to the additive effects of the Tmp(-) phenotype. We therefore generated new cdc13-ts reagents, which are nonpermissive below 34°, to allow examination of cdc13-depleted phenotypes in the absence of this temperature-dependent defect. A return-to-viability experiment following prolonged incubation at 32°, 34°, and 36° with one of these new cdc13-ts alleles argues that the accelerated inviability previously observed at 36° in cdc13-1 rad9-Δ mutant strains is a consequence of the Tmp(-) phenotype. Although this study focused on telomere biology, viable null mutations that confer inviability at 36° have been identified for multiple cellular pathways. Thus, phenotypic analysis of other aspects of yeast biology may similarly be compromised at high temperatures by pathway-specific versions of the Tmp(-) phenotype.
Collapse
|
41
|
RPA facilitates telomerase activity at chromosome ends in budding and fission yeasts. EMBO J 2012; 31:2034-46. [PMID: 22354040 DOI: 10.1038/emboj.2012.40] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 01/31/2012] [Indexed: 11/08/2022] Open
Abstract
In Saccharomyces cerevisiae, the telomerase complex binds to chromosome ends and is activated in late S-phase through a process coupled to the progression of the replication fork. Here, we show that the single-stranded DNA-binding protein RPA (replication protein A) binds to the two daughter telomeres during telomere replication but only its binding to the leading-strand telomere depends on the Mre11/Rad50/Xrs2 (MRX) complex. We further demonstrate that RPA specifically co-precipitates with yKu, Cdc13 and telomerase. The interaction of RPA with telomerase appears to be mediated by both yKu and the telomerase subunit Est1. Moreover, a mutation in Rfa1 that affects both the interaction with yKu and telomerase reduces the dramatic increase in telomere length of a rif1Δ, rif2Δ double mutant. Finally, we show that the RPA/telomerase association and function are conserved in Schizosaccharomyces pombe. Our results indicate that in both yeasts, RPA directly facilitates telomerase activity at chromosome ends.
Collapse
|
42
|
A balance between Tel1 and Rif2 activities regulates nucleolytic processing and elongation at telomeres. Mol Cell Biol 2012; 32:1604-17. [PMID: 22354991 DOI: 10.1128/mcb.06547-11] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Generation of G-strand overhangs at Saccharomyces cerevisiae yeast telomeres depends primarily on the MRX (Mre11-Rad50-Xrs2) complex, which is also necessary to maintain telomere length by recruiting the Tel1 kinase. MRX physically interacts with Rif2, which inhibits both resection and elongation of telomeres. We provide evidence that regulation of telomere processing and elongation relies on a balance between Tel1 and Rif2 activities. Tel1 regulates telomere nucleolytic processing by promoting MRX activity. In fact, the lack of Tel1 impairs MRX-dependent telomere resection, which is instead enhanced by the Tel1-hy909 mutant variant, which causes telomerase-dependent telomere overelongation. The Tel1-hy909 variant is more robustly associated than wild-type Tel1 to double-strand-break (DSB) ends carrying telomeric repeat sequences. Furthermore, it increases the persistence at a DSB adjacent to telomeric repeats of both MRX and Est1, which in turn likely account for the increased telomere resection and elongation in TEL1-hy909 cells. Strikingly, Rif2 is unable to negatively regulate processing and lengthening at TEL1-hy909 telomeres, indicating that the Tel1-hy909 variant overcomes the inhibitory activity exerted by Rif2 on MRX. Altogether, these findings highlight a primary role of Tel1 in overcoming Rif2-dependent negative regulation of MRX activity in telomere resection and elongation.
Collapse
|
43
|
Ribeyre C, Shore D. Anticheckpoint pathways at telomeres in yeast. Nat Struct Mol Biol 2012; 19:307-13. [PMID: 22343724 DOI: 10.1038/nsmb.2225] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 12/07/2011] [Indexed: 11/09/2022]
Abstract
Telomeres hide (or 'cap') chromosome ends from DNA-damage surveillance mechanisms that arrest the cell cycle and promote repair, but the checkpoint status of telomeres is not well understood. Here we characterize the response in Saccharomyces cerevisiae to DNA double-strand breaks (DSBs) flanked by varying amounts of telomeric repeat sequences (TG(1-3)). We show that even short arrays of TG(1-3) repeats do not induce G2/M arrest. Both Rif1 and Rif2 are required for capping at short, rapidly elongating ends, yet are largely dispensable for protection of longer telomeric arrays. Rif1 and Rif2 act through parallel pathways to block accumulation of both RPA and Rad24, activators of checkpoint kinase Mec1 (ATR). Finally, we show that Rif function is correlated with an 'anticheckpoint' effect, in which checkpoint recovery at an adjacent unprotected end is stimulated, and we provide insight into the molecular mechanism of this phenomenon.
Collapse
Affiliation(s)
- Cyril Ribeyre
- Department of Molecular Biology, University of Geneva, Geneva, Switzerland
| | | |
Collapse
|
44
|
Stewart JA, Chaiken MF, Wang F, Price CM. Maintaining the end: roles of telomere proteins in end-protection, telomere replication and length regulation. Mutat Res 2012; 730:12-9. [PMID: 21945241 PMCID: PMC3256267 DOI: 10.1016/j.mrfmmm.2011.08.011] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 08/15/2011] [Accepted: 08/17/2011] [Indexed: 11/16/2022]
Abstract
Chromosome end protection is essential to protect genome integrity. Telomeres, tracts of repetitive DNA sequence and associated proteins located at the chromosomal terminus, serve to safeguard the ends from degradation and unwanted double strand break repair. Due to the essential nature of telomeres in protecting the genome, a number of unique proteins have evolved to ensure that telomere length and structure are preserved. The inability to properly maintain telomeres can lead to diseases such as dyskeratosis congenita, pulmonary fibrosis and cancer. In this review, we will discuss the known functions of mammalian telomere-associated proteins, their role in telomere replication and length regulation and how these processes relate to genome instability and human disease.
Collapse
Affiliation(s)
- Jason A. Stewart
- Department of Cancer and Cell Biology, University of Cincinnati, Cincinnati, Ohio 45267, USA
| | - Mary F. Chaiken
- Department of Cancer and Cell Biology, University of Cincinnati, Cincinnati, Ohio 45267, USA
| | - Feng Wang
- Department of Cancer and Cell Biology, University of Cincinnati, Cincinnati, Ohio 45267, USA
| | - Carolyn M. Price
- Department of Cancer and Cell Biology, University of Cincinnati, Cincinnati, Ohio 45267, USA
| |
Collapse
|
45
|
Dewar JM, Lydall D. Simple, non-radioactive measurement of single-stranded DNA at telomeric, sub-telomeric, and genomic loci in budding yeast. Methods Mol Biol 2012; 920:341-8. [PMID: 22941615 DOI: 10.1007/978-1-61779-998-3_24] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Single-stranded DNA (ssDNA) is a DNA repair, replication, and recombination intermediate and a stimulus for checkpoint kinase-dependent cell cycle arrest. Current assays to detect ssDNA generated in vivo are indirect, laborious, and generally require the use of radioactivity. Here, we describe simple, quantitative approaches to measure ssDNA generated in yeast, at single- and multi-copy chromosomal loci and in highly repetitive telomeric sequences. We describe a fluorescence in-gel assay to measure ssDNA in the telomeric TG repeats of telomere cap-defective budding yeast yku70∆ and cdc13-1 mutants. We also describe a rapid method to prepare DNA for Quantitative Amplification of ssDNA, used to measure ssDNA in single-copy and repetitive sub-telomeric loci. These complementary methods are useful to understand the important roles of ssDNA in yeast cells and could be readily extended to other cell types.
Collapse
Affiliation(s)
- James M Dewar
- Institute for Cell and Molecular Biosciences, Newcastle University,Medical School, Newcastle upon Tyne, UK
| | | |
Collapse
|
46
|
Dewar JM, Lydall D. Similarities and differences between "uncapped" telomeres and DNA double-strand breaks. Chromosoma 2011; 121:117-30. [PMID: 22203190 DOI: 10.1007/s00412-011-0357-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 12/08/2011] [Indexed: 11/25/2022]
Abstract
Telomeric DNA is present at the ends of eukaryotic chromosomes and is bound by telomere "capping" proteins, which are the (Cdc13-Stn1-Ten1) CST complex, Ku (Yku70-Yku80), and Rap1-Rif1-Rif2 in budding yeast. Inactivation of any of these complexes causes telomere "uncapping," stimulating a DNA damage response (DDR) that frequently involves resection of telomeric DNA and stimulates cell cycle arrest. This is presumed to occur because telomeres resemble one half of a DNA double-strand break (DSB). In this review, we outline the DDR that occurs at DSBs and compare it to the DDR occurring at uncapped telomeres, in both budding yeast and metazoans. We give particular attention to the resection of DSBs in budding yeast by Mre11-Xrs2-Rad50 (MRX), Sgs1/Dna2, and Exo1 and compare their roles at DSBs and uncapped telomeres. We also discuss how resection uncapped telomeres in budding yeast is promoted by the by 9-1-1 complex (Rad17-Mec3-Ddc1), to illustrate how analysis of uncapped telomeres can serve as a model for the DDR elsewhere in the genome. Finally, we discuss the role of the helicase Pif1 and its requirement for resection of uncapped telomeres, but not DSBs. Pif1 has roles in DNA replication and mammalian and plant CST complexes have been identified and have roles in global genome replication. Based on these observations, we suggest that while the DDR at uncapped telomeres is partially due to their resemblance to a DSB, it may also be partially due to defective DNA replication. Specifically, we propose that the budding yeast CST complex has dual roles to inhibit a DSB-like DDR initiated by Exo1 and a replication-associated DDR initiated by Pif1. If true, this would suggest that the mammalian CST complex inhibits a Pif1-dependent DDR.
Collapse
Affiliation(s)
- James M Dewar
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| | | |
Collapse
|
47
|
Xue Y, Rushton MD, Maringele L. A novel checkpoint and RPA inhibitory pathway regulated by Rif1. PLoS Genet 2011; 7:e1002417. [PMID: 22194703 PMCID: PMC3240596 DOI: 10.1371/journal.pgen.1002417] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 10/11/2011] [Indexed: 12/27/2022] Open
Abstract
Cells accumulate single-stranded DNA (ssDNA) when telomere capping, DNA replication, or DNA repair is impeded. This accumulation leads to cell cycle arrest through activating the DNA-damage checkpoints involved in cancer protection. Hence, ssDNA accumulation could be an anti-cancer mechanism. However, ssDNA has to accumulate above a certain threshold to activate checkpoints. What determines this checkpoint-activation threshold is an important, yet unanswered question. Here we identify Rif1 (Rap1-Interacting Factor 1) as a threshold-setter. Following telomere uncapping, we show that budding yeast Rif1 has unprecedented effects for a protein, inhibiting the recruitment of checkpoint proteins and RPA (Replication Protein A) to damaged chromosome regions, without significantly affecting the accumulation of ssDNA at those regions. Using chromatin immuno-precipitation, we provide evidence that Rif1 acts as a molecular "band-aid" for ssDNA lesions, associating with DNA damage independently of Rap1. In consequence, small or incipient lesions are protected from RPA and checkpoint proteins. When longer stretches of ssDNA are generated, they extend beyond the junction-proximal Rif1-protected regions. In consequence, the damage is detected and checkpoint signals are fired, resulting in cell cycle arrest. However, increased Rif1 expression raises the checkpoint-activation threshold to the point it simulates a checkpoint knockout and can also terminate a checkpoint arrest, despite persistent telomere deficiency. Our work has important implications for understanding the checkpoint and RPA-dependent DNA-damage responses in eukaryotic cells.
Collapse
Affiliation(s)
- Yuan Xue
- Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Michael D. Rushton
- Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Laura Maringele
- Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
48
|
Fukunaga K, Hirano Y, Sugimoto K. Subtelomere-binding protein Tbf1 and telomere-binding protein Rap1 collaborate to inhibit localization of the Mre11 complex to DNA ends in budding yeast. Mol Biol Cell 2011; 23:347-59. [PMID: 22130795 PMCID: PMC3258178 DOI: 10.1091/mbc.e11-06-0568] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Rap1 acts together with the subtelomere-binding protein Tbf1 and inhibits localization of Mre11 complex to DNA ends. Depletion of Tbf1 protein stimulates checkpoint activation in cells containing short telomeres. The results suggest that Tbf1 and Rap1 collaborate to maintain genomic stability of short telomeres. Chromosome ends, known as telomeres, have to be distinguished from DNA double-strand breaks that activate DNA damage checkpoints. In budding yeast, the Mre11-Rad50-Xrs2 (MRX) complex associates with DNA ends and promotes checkpoint activation. Rap1 binds to double-stranded telomeric regions and recruits Rif1 and Rif2 to telomeres. Rap1 collaborates with Rif1 and Rif2 and inhibits MRX localization to DNA ends. This Rap1-Rif1-Rif2 function becomes attenuated at shortened telomeres. Here we show that Rap1 acts together with the subtelomere-binding protein Tbf1 and inhibits MRX localization to DNA ends. The placement of a subtelomeric sequence or TTAGGG repeats together with a short telomeric TG repeat sequence inhibits MRX accumulation at nearby DNA ends in a Tbf1-dependent manner. Moreover, tethering of both Tbf1 and Rap1 proteins decreases MRX and Tel1 accumulation at nearby DNA ends. This Tbf1- and Rap1-dependent pathway operates independently of Rif1 or Rif2 function. Depletion of Tbf1 protein stimulates checkpoint activation in cells containing short telomeres but not in cells containing normal-length telomeres. These data support a model in which Tbf1 and Rap1 collaborate to maintain genomic stability of short telomeres.
Collapse
Affiliation(s)
- Kenzo Fukunaga
- Department of Microbiology and Molecular Genetics, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, Newark, NJ 07103, USA
| | | | | |
Collapse
|
49
|
Ribaud V, Ribeyre C, Damay P, Shore D. DNA-end capping by the budding yeast transcription factor and subtelomeric binding protein Tbf1. EMBO J 2011; 31:138-49. [PMID: 21952045 DOI: 10.1038/emboj.2011.349] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 09/01/2011] [Indexed: 11/09/2022] Open
Abstract
Telomere repeats in budding yeast are maintained at a constant average length and protected ('capped'), in part, by mechanisms involving the TG(1-3) repeat-binding protein Rap1. However, metazoan telomere repeats (T(2)AG(3)) can be maintained in yeast through a Rap1-independent mechanism. Here, we examine the dynamics of capping and telomere formation at an induced DNA double-strand break flanked by varying lengths of T(2)AG(3) repeats. We show that a 60-bp T(2)AG(3) repeat array induces a transient G2/M checkpoint arrest, but is rapidly elongated by telomerase to generate a stable T(2)AG(3)/TG(1-3) hybrid telomere. In contrast, a 230-bp T(2)AG(3) array induces neither G2/M arrest nor telomerase elongation. This capped state requires the T(2)AG(3)-binding protein Tbf1, but is independent of two Tbf1-interacting factors, Vid22 and Ygr071c. Arrays of binding sites for three other subtelomeric or Myb/SANT domain-containing proteins fail to display a similar end-protection effect, indicating that Tbf1 capping is an evolved function. Unexpectedly, we observed strong telomerase association with non-telomeric ends, whose elongation is blocked by a Mec1-dependent mechanism, apparently acting at the level of Cdc13 binding.
Collapse
Affiliation(s)
- Virginie Ribaud
- Department of Molecular Biology, NCCR Program Frontiers in Genetics, University of Geneva, Geneva, Switzerland
| | | | | | | |
Collapse
|
50
|
Lopez CR, Ribes-Zamora A, Indiviglio SM, Williams CL, Haricharan S, Bertuch AA. Ku must load directly onto the chromosome end in order to mediate its telomeric functions. PLoS Genet 2011; 7:e1002233. [PMID: 21852961 PMCID: PMC3154960 DOI: 10.1371/journal.pgen.1002233] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 06/23/2011] [Indexed: 02/08/2023] Open
Abstract
The Ku heterodimer associates with the Saccharomyces cerevisiae telomere, where it impacts several aspects of telomere structure and function. Although Ku avidly binds DNA ends via a preformed channel, its ability to associate with telomeres via this mechanism could be challenged by factors known to bind directly to the chromosome terminus. This has led to uncertainty as to whether Ku itself binds directly to telomeric ends and whether end association is crucial for Ku's telomeric functions. To address these questions, we constructed DNA end binding-defective Ku heterodimers by altering amino acid residues in Ku70 and Ku80 that were predicted to contact DNA. These mutants continued to associate with their known telomere-related partners, such as Sir4, a factor required for telomeric silencing, and TLC1, the RNA component of telomerase. Despite these interactions, we found that the Ku mutants had markedly reduced association with telomeric chromatin and null-like deficiencies for telomere end protection, length regulation, and silencing functions. In contrast to Ku null strains, the DNA end binding defective Ku mutants resulted in increased, rather than markedly decreased, imprecise end-joining proficiency at an induced double-strand break. This result further supports that it was the specific loss of Ku's telomere end binding that resulted in telomeric defects rather than global loss of Ku's functions. The extensive telomere defects observed in these mutants lead us to propose that Ku is an integral component of the terminal telomeric cap, where it promotes a specific architecture that is central to telomere function and maintenance.
Collapse
Affiliation(s)
- Christopher R Lopez
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America.
| | | | | | | | | | | |
Collapse
|