1
|
Dale HJA, Sutherland JD. Indirect Formation of Peptide Bonds as a Prelude to Ribosomal Transpeptidation. J Am Chem Soc 2025; 147:305-317. [PMID: 39693575 PMCID: PMC11726440 DOI: 10.1021/jacs.4c10326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 12/20/2024]
Abstract
The catalytic competency of the ribosome in extant protein biosynthesis is thought to arise primarily from two sources: an ability to precisely juxtapose the termini of two key substrates─3'-aminoacyl and N-acyl-aminoacyl tRNAs─and an ability to ease direct transpeptidation by their desolvation and encapsulation. In the absence of ribosomal, or enzymatic, protection, however, these activated alkyl esters undergo efficient hydrolysis, while significant entropic barriers serve to hamper their intermolecular cross-aminolysis in bulk water. Given that the spontaneous emergence of a catalyst of comparable size and sophistication to the ribosome in a prebiotic RNA world would appear implausible, it is thus natural to ask how appreciable peptide formation could have occurred with such substrates in bulk water without the aid of advanced ribozymatic catalysis. Using a combination of fluorine-tagged aminoacyl adenylate esters, in situ monitoring by 19F{1H} NMR spectroscopy, analytical deconvolution of kinetics, pH-rate profile analysis, and temperature-dependence studies, we here explore the mechanistic landscape of indirect amidation, via transesterification and O-to-N rearrangement, as a highly efficient, alternative manifold for transpeptidation that may have served as a prelude to ribosomal peptide synthesis. Our results suggest a potentially overlooked role for those amino acids implicated by the cyanosulfidic reaction network with hydroxyl side chains (Ser and Thr), and they also help to resolve some outstanding ambiguities in the broader literature regarding studies of similar systems (e.g., aminolyzes with Tris buffer). The evolutionary implications of this mode of peptide synthesis and the involvement of a very specific subset of amino acids are discussed.
Collapse
Affiliation(s)
- Harvey J. A. Dale
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, U.K.
| | - John D. Sutherland
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, U.K.
| |
Collapse
|
2
|
Joiret M, Kerff F, Rapino F, Close P, Geris L. Reversing the relative time courses of the peptide bond reaction with oligopeptides of different lengths and charged amino acid distributions in the ribosome exit tunnel. Comput Struct Biotechnol J 2024; 23:2453-2464. [PMID: 38882677 PMCID: PMC11179572 DOI: 10.1016/j.csbj.2024.05.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/10/2024] [Accepted: 05/27/2024] [Indexed: 06/18/2024] Open
Abstract
The kinetics of the protein elongation cycle by the ribosome depends on intertwined factors. One of these factors is the electrostatic interaction of the nascent protein with the ribosome exit tunnel. In this computational biology theoretical study, we focus on the rate of the peptide bond formation and its dependence on the ribosome exit tunnel electrostatic potential profile. We quantitatively predict how oligopeptides of variable lengths can affect the peptide bond formation rate. We applied the Michaelis-Menten model as previously extended to incorporate the mechano-biochemical effects of forces on the rate of reaction at the catalytic site of the ribosome. For a given pair of carboxy-terminal amino acid substrate at the P- and an aminoacyl-tRNA at the A-sites, the relative time courses of the peptide bond formation reaction can be reversed depending on the oligopeptide sequence embedded in the tunnel and their variable lengths from the P-site. The reversal is predicted to occur from a shift in positions of charged amino acids upstream in the oligopeptidyl-tRNA at the P-site. The position shift must be adjusted by clever design of the oligopeptide probes using the electrostatic potential profile along the exit tunnel axial path. These predicted quantitative results bring strong evidence of the importance and relative contribution of the electrostatic interaction of the ribosome exit tunnel with the nascent peptide chain during elongation.
Collapse
Affiliation(s)
- Marc Joiret
- Biomechanics Research Unit, GIGA In Silico Medicine, Liège University, CHU-B34(+5) 1 Avenue de l'Hôpital, 4000 Liège, Belgium
| | - Frederic Kerff
- UR InBios Centre d'Ingénierie des Protéines, Liège University, Bât B6a, Allèe du 6 Août, 19, B-4000 Liège, Belgium
| | - Francesca Rapino
- Cancer Signaling, GIGA Stem Cells, Liège University, CHU-B34(+2) 1 Avenue de l'Hôpital, B-4000 Liège, Belgium
| | - Pierre Close
- Cancer Signaling, GIGA Stem Cells, Liège University, CHU-B34(+2) 1 Avenue de l'Hôpital, B-4000 Liège, Belgium
| | - Liesbet Geris
- Biomechanics Research Unit, GIGA In Silico Medicine, Liège University, CHU-B34(+5) 1 Avenue de l'Hôpital, 4000 Liège, Belgium
- Skeletal Biology & Engineering Research Center, KU Leuven, ON I Herestraat 49 - Box 813, 3000 Leuven, Belgium
- Biomechanics Section, KU Leuven, Celestijnenlaan 300C - Box 2419, B-3001 Heverlee, Belgium
| |
Collapse
|
3
|
Li H, Sun J, Zhang Y, Wang N, Li T, Dong H, Yang M, Xu C, Hu L, Liu C, Chen Q, Foyer CH, Qi Z. Soybean Oil and Protein: Biosynthesis, Regulation and Strategies for Genetic Improvement. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39582139 DOI: 10.1111/pce.15272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 10/23/2024] [Accepted: 10/27/2024] [Indexed: 11/26/2024]
Abstract
Soybean (Glycine max [L.] Merr.) is one of the world's most important sources of oil and vegetable protein. Much of the energy required for germination and early growth of soybean seeds is stored in fatty acids, mainly as triacylglycerols (TAGs), and the main seed storage proteins are β-conglycinin (7S) and glycinin (11S). Recent research advances have deepened our understanding of the biosynthetic pathways and transcriptional regulatory networks that control fatty acid and protein synthesis in organelles such as the plastid, ribosome and endoplasmic reticulum. Here, we review the composition and biosynthetic pathways of soybean oils and proteins, summarizing the key enzymes and transcription factors that have recently been shown to regulate oil and protein synthesis/metabolism. We then discuss the newest genomic strategies for manipulating these genes to increase the food value of soybeans, highlighting important priorities for future research and genetic improvement of this staple crop.
Collapse
Affiliation(s)
- Hui Li
- National Key Laboratory of Smart Farm Technology and System, National Research Center of Soybean Engineering and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Jia Sun
- National Key Laboratory of Smart Farm Technology and System, National Research Center of Soybean Engineering and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Ying Zhang
- National Key Laboratory of Smart Farm Technology and System, National Research Center of Soybean Engineering and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Ning Wang
- National Key Laboratory of Smart Farm Technology and System, National Research Center of Soybean Engineering and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Tianshu Li
- National Key Laboratory of Smart Farm Technology and System, National Research Center of Soybean Engineering and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Huiying Dong
- National Key Laboratory of Smart Farm Technology and System, National Research Center of Soybean Engineering and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Mingliang Yang
- National Key Laboratory of Smart Farm Technology and System, National Research Center of Soybean Engineering and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Chang Xu
- National Key Laboratory of Smart Farm Technology and System, National Research Center of Soybean Engineering and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Limin Hu
- National Key Laboratory of Smart Farm Technology and System, National Research Center of Soybean Engineering and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Chunyan Liu
- National Key Laboratory of Smart Farm Technology and System, National Research Center of Soybean Engineering and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Qingshan Chen
- National Key Laboratory of Smart Farm Technology and System, National Research Center of Soybean Engineering and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Christine H Foyer
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, UK
| | - Zhaoming Qi
- National Key Laboratory of Smart Farm Technology and System, National Research Center of Soybean Engineering and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China
| |
Collapse
|
4
|
Joiret M, Kerff F, Rapino F, Close P, Geris L. A simple geometrical model of the electrostatic environment around the catalytic center of the ribosome and its significance for the elongation cycle kinetics. Comput Struct Biotechnol J 2023; 21:3768-3795. [PMID: 37560126 PMCID: PMC10407619 DOI: 10.1016/j.csbj.2023.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 08/11/2023] Open
Abstract
The central function of the large subunit of the ribosome is to catalyze peptide bond formation. This biochemical reaction is conducted at the peptidyl transferase center (PTC). Experimental evidence shows that the catalytic activity is affected by the electrostatic environment around the peptidyl transferase center. Here, we set up a minimal geometrical model fitting the available x-ray solved structures of the ribonucleic cavity around the catalytic center of the large subunit of the ribosome. The purpose of this phenomenological model is to estimate quantitatively the electrostatic potential and electric field that are experienced during the peptidyl transfer reaction. At least two reasons motivate the need for developing this quantification. First, we inquire whether the electric field in this particular catalytic environment, made only of nucleic acids, is of the same order of magnitude as the one prevailing in catalytic centers of the proteic enzymes counterparts. Second, the protein synthesis rate is dependent on the nature of the amino acid sequentially incorporated in the nascent chain. The activation energy of the catalytic reaction and its detailed kinetics are shown to be dependent on the mechanical work exerted on the amino acids by the electric field, especially when one of the four charged amino acid residues (R, K, E, D) has previously been incorporated at the carboxy-terminal end of the peptidyl-tRNA. Physical values of the electric field provide quantitative knowledge of mechanical work, activation energy and rate of the peptide bond formation catalyzed by the ribosome. We show that our theoretical calculations are consistent with two independent sets of previously published experimental results. Experimental results for E.coli in the minimal case of the dipeptide bond formation when puromycin is used as the final amino acid acceptor strongly support our theoretically derived reaction time courses. Experimental Ribo-Seq results on E. coli and S. cerevisiae comparing the residence time distribution of ribosomes upon specific codons are also well accounted for by our theoretical calculations. The statistical queueing time theory was used to model the ribosome residence time per codon during nascent protein elongation and applied for the interpretation of the Ribo-Seq data. The hypo-exponential distribution fits the residence time observed distribution of the ribosome on a codon. An educated deconvolution of this distribution is used to estimate the rates of each elongation step in a codon specific manner. Our interpretation of all these results sheds light on the functional role of the electrostatic profile around the PTC and its impact on the ribosome elongation cycle.
Collapse
Affiliation(s)
- Marc Joiret
- Biomechanics Research Unit, GIGA in silico medicine, Liège University, CHU-B34(+5) 1 Avenue de l'Hôpital, 4000 Liège, Belgium
| | - Frederic Kerff
- UR InBios Centre d'Ingénierie des Protéines, Liège University, Bât B6a, Allèe du 6 Août, 19, B-4000 Liège, Belgium
| | - Francesca Rapino
- Cancer Signaling, GIGA Stem Cells, Liège University, CHU-B34(+2) 1 Avenue de l'Hôpital, B-4000 Liège, Belgium
| | - Pierre Close
- Cancer Signaling, GIGA Stem Cells, Liège University, CHU-B34(+2) 1 Avenue de l'Hôpital, B-4000 Liège, Belgium
| | - Liesbet Geris
- Biomechanics Research Unit, GIGA in silico medicine, Liège University, CHU-B34(+5) 1 Avenue de l'Hôpital, 4000 Liège, Belgium
- Skeletal Biology & Engineering Research Center, KU Leuven, ON I Herestraat 49 - box 813, 3000 Leuven, Belgium
- Biomechanics Section, KU Leuven, Celestijnenlaan 300C box 2419, B-3001 Heverlee, Belgium
| |
Collapse
|
5
|
Alfonso-Prieto M, Cuxart I, Potocki-Véronèse G, André I, Rovira C. Substrate-Assisted Mechanism for the Degradation of N-Glycans by a Gut Bacterial Mannoside Phosphorylase. ACS Catal 2023. [DOI: 10.1021/acscatal.3c00451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Affiliation(s)
- Mercedes Alfonso-Prieto
- Departament de Química Inorgànica i Orgànica and Institute of Theoretical and Computational Chemistry (IQTCUB), Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - Irene Cuxart
- Departament de Química Inorgànica i Orgànica and Institute of Theoretical and Computational Chemistry (IQTCUB), Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - Gabrielle Potocki-Véronèse
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRAE, INSA, 135 Avenue de Rangueil, F-31077 Toulouse Cedex 04, France
| | - Isabelle André
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRAE, INSA, 135 Avenue de Rangueil, F-31077 Toulouse Cedex 04, France
| | - Carme Rovira
- Departament de Química Inorgànica i Orgànica and Institute of Theoretical and Computational Chemistry (IQTCUB), Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
6
|
Krüger A, Watkins AM, Wellington-Oguri R, Romano J, Kofman C, DeFoe A, Kim Y, Anderson-Lee J, Fisker E, Townley J, d'Aquino AE, Das R, Jewett MC. Community science designed ribosomes with beneficial phenotypes. Nat Commun 2023; 14:961. [PMID: 36810740 PMCID: PMC9944925 DOI: 10.1038/s41467-023-35827-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 01/04/2023] [Indexed: 02/23/2023] Open
Abstract
Functional design of ribosomes with mutant ribosomal RNA (rRNA) can expand opportunities for understanding molecular translation, building cells from the bottom-up, and engineering ribosomes with altered capabilities. However, such efforts are hampered by cell viability constraints, an enormous combinatorial sequence space, and limitations on large-scale, 3D design of RNA structures and functions. To address these challenges, we develop an integrated community science and experimental screening approach for rational design of ribosomes. This approach couples Eterna, an online video game that crowdsources RNA sequence design to community scientists in the form of puzzles, with in vitro ribosome synthesis, assembly, and translation in multiple design-build-test-learn cycles. We apply our framework to discover mutant rRNA sequences that improve protein synthesis in vitro and cell growth in vivo, relative to wild type ribosomes, under diverse environmental conditions. This work provides insights into rRNA sequence-function relationships and has implications for synthetic biology.
Collapse
Affiliation(s)
- Antje Krüger
- Department of Chemical and Biological Engineering, Chemistry of Life Processes Institute, and Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA.,Resilience US Inc, 9310 Athena Circle, La Jolla, CA, 92037, USA
| | - Andrew M Watkins
- Department of Biochemistry, Stanford University, Stanford, CA, 94305, USA.,Prescient Design, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | | | - Jonathan Romano
- Department of Biochemistry, Stanford University, Stanford, CA, 94305, USA.,Eterna Massive Open Laboratory, Stanford, CA, 94305, USA.,Department of Computer Science and Engineering, State University of New York at Buffalo, Buffalo, NY, 14260, USA
| | - Camila Kofman
- Department of Chemical and Biological Engineering, Chemistry of Life Processes Institute, and Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
| | - Alysse DeFoe
- Department of Chemical and Biological Engineering, Chemistry of Life Processes Institute, and Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
| | - Yejun Kim
- Department of Chemical and Biological Engineering, Chemistry of Life Processes Institute, and Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
| | | | - Eli Fisker
- Eterna Massive Open Laboratory, Stanford, CA, 94305, USA
| | - Jill Townley
- Eterna Massive Open Laboratory, Stanford, CA, 94305, USA
| | | | - Anne E d'Aquino
- Department of Chemical and Biological Engineering, Chemistry of Life Processes Institute, and Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
| | - Rhiju Das
- Department of Biochemistry, Stanford University, Stanford, CA, 94305, USA. .,Howard Hughes Medical Institute, Stanford University, Stanford, CA, 94305, USA.
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Chemistry of Life Processes Institute, and Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA. .,Robert H. Lurie Comprehensive Cancer Center and Simpson Querrey Institute, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
7
|
Cruz RMS, Krauter V, Krauter S, Agriopoulou S, Weinrich R, Herbes C, Scholten PBV, Uysal-Unalan I, Sogut E, Kopacic S, Lahti J, Rutkaite R, Varzakas T. Bioplastics for Food Packaging: Environmental Impact, Trends and Regulatory Aspects. Foods 2022; 11:3087. [PMID: 36230164 PMCID: PMC9563026 DOI: 10.3390/foods11193087] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 11/19/2022] Open
Abstract
The demand to develop and produce eco-friendly alternatives for food packaging is increasing. The huge negative impact that the disposal of so-called "single-use plastics" has on the environment is propelling the market to search for new solutions, and requires initiatives to drive faster responses from the scientific community, the industry, and governmental bodies for the adoption and implementation of new materials. Bioplastics are an alternative group of materials that are partly or entirely produced from renewable sources. Some bioplastics are biodegradable or even compostable under the right conditions. This review presents the different properties of these materials, mechanisms of biodegradation, and their environmental impact, but also presents a holistic overview of the most important bioplastics available in the market and their potential application for food packaging, consumer perception of the bioplastics, regulatory aspects, and future challenges.
Collapse
Affiliation(s)
- Rui M S Cruz
- Department of Food Engineering, Institute of Engineering, Campus da Penha, Universidade do Algarve, 8005-139 Faro, Portugal
- MED-Mediterranean Institute for Agriculture, Environment and Development and CHANGE-Global Change and Sustainability Institute, Faculty of Sciences and Technology, Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Victoria Krauter
- Packaging and Resource Management, Department Applied Life Sciences, FH Campus Wien, University of Applied Sciences, 1100 Vienna, Austria
| | - Simon Krauter
- Packaging and Resource Management, Department Applied Life Sciences, FH Campus Wien, University of Applied Sciences, 1100 Vienna, Austria
| | - Sofia Agriopoulou
- Department of Food Science and Technology, University of Peloponnese, 24100 Kalamata, Greece
| | - Ramona Weinrich
- Department of Consumer Behaviour in the Bioeconomy, University of Hohenheim, Wollgrasweg 49, 70599 Stuttgart, Germany
| | - Carsten Herbes
- Institute for International Research on Sustainable Management and Renewable Energy, Nuertingen Geislingen University, Neckarsteige 6-10, 72622 Nuertingen, Germany
| | - Philip B V Scholten
- Bloom Biorenewables, Route de l'Ancienne Papeterie 106, 1723 Marly, Switzerland
| | - Ilke Uysal-Unalan
- Department of Food Science, Aarhus University, Agro Food Park 48, 8200 Aarhus, Denmark
- CiFOOD-Center for Innovative Food Research, Aarhus University, Agro Food Park 48, 8200 Aarhus, Denmark
| | - Ece Sogut
- Department of Food Science, Aarhus University, Agro Food Park 48, 8200 Aarhus, Denmark
- Department of Food Engineering, Suleyman Demirel University, 32200 Isparta, Turkey
| | - Samir Kopacic
- Institute for Bioproducts and Paper Technology, Graz University of Technology, Inffeldgasse 23, 8010 Graz, Austria
| | - Johanna Lahti
- Sustainable Products and Materials, VTT Technical Research Centre of Finland, Visiokatu 4, 33720 Tampere, Finland
| | - Ramune Rutkaite
- Department of Polymer Chemistry and Technology, Kaunas University of Technology, Radvilenu Rd 19, 50254 Kaunas, Lithuania
| | - Theodoros Varzakas
- Department of Food Science and Technology, University of Peloponnese, 24100 Kalamata, Greece
| |
Collapse
|
8
|
Xu B, Liu L, Song G. Functions and Regulation of Translation Elongation Factors. Front Mol Biosci 2022; 8:816398. [PMID: 35127825 PMCID: PMC8807479 DOI: 10.3389/fmolb.2021.816398] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/20/2021] [Indexed: 12/18/2022] Open
Abstract
Translation elongation is a key step of protein synthesis, during which the nascent polypeptide chain extends by one amino acid residue during one elongation cycle. More and more data revealed that the elongation is a key regulatory node for translational control in health and disease. During elongation, elongation factor Tu (EF-Tu, eEF1A in eukaryotes) is used to deliver aminoacyl-tRNA (aa-tRNA) to the A-site of the ribosome, and elongation factor G (EF-G, EF2 in eukaryotes and archaea) is used to facilitate the translocation of the tRNA2-mRNA complex on the ribosome. Other elongation factors, such as EF-Ts/eEF1B, EF-P/eIF5A, EF4, eEF3, SelB/EFsec, TetO/Tet(M), RelA and BipA, have been found to affect the overall rate of elongation. Here, we made a systematic review on the canonical and non-canonical functions and regulation of these elongation factors. In particular, we discussed the close link between translational factors and human diseases, and clarified how post-translational modifications control the activity of translational factors in tumors.
Collapse
Affiliation(s)
- Benjin Xu
- Department of Medical Laboratory Science, Fenyang College, Shanxi Medical University, Fenyang, China
- *Correspondence: Benjin Xu, ; Guangtao Song,
| | - Ling Liu
- Department of Medical Laboratory Science, Fenyang College, Shanxi Medical University, Fenyang, China
| | - Guangtao Song
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- *Correspondence: Benjin Xu, ; Guangtao Song,
| |
Collapse
|
9
|
Joiret M, Kerff F, Rapino F, Close P, Geris L. Ribosome exit tunnel electrostatics. Phys Rev E 2022; 105:014409. [PMID: 35193250 DOI: 10.1103/physreve.105.014409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
The impact of ribosome exit tunnel electrostatics on the protein elongation rate or on forces acting upon the nascent polypeptide chain are currently not fully elucidated. In the past, researchers have measured the electrostatic potential inside the ribosome polypeptide exit tunnel at a limited number of spatial points, at least in rabbit reticulocytes. Here we present a basic electrostatic model of the exit tunnel of the ribosome, providing a quantitative physical description of the tunnel interaction with the nascent proteins at all centro-axial points inside the tunnel. We show that a strong electrostatic screening is due to water molecules (not mobile ions) attracted to the ribosomal nucleic acid phosphate moieties buried in the immediate vicinity of the tunnel wall. We also show how the tunnel wall components and local ribosomal protein protrusions impact on the electrostatic potential profile and impede charged amino acid residues from progressing through the tunnel, affecting the elongation rate in a range of -40% to +85% when compared to the average elongation rate. The time spent by the ribosome to decode the genetic encrypted message is constrained accordingly. We quantitatively derive, at single-residue resolution, the axial forces acting on the nascent peptide from its particular sequence embedded in the tunnel. The model sheds light on how the experimental data point measurements of the potential are linked to the local structural chemistry of the inner wall, shape, and size of the tunnel. The model consistently connects experimental observations coming from different fields in molecular biology, x-ray crystallography, physical chemistry, biomechanics, and synthetic and multiomics biology. Our model should be a valuable tool to gain insight into protein synthesis dynamics, translational control, and the role of the ribosome's mechanochemistry in the cotranslational protein folding.
Collapse
Affiliation(s)
- Marc Joiret
- Biomechanics Research Unit, GIGA In Silico Medicine, Liège University, CHU-B34(+5) 1 Avenue de l'Hôpital, 4000 Liège, Belgium
| | - Frederic Kerff
- UR InBios, Centre d'Ingénierie des Protéines, Bât B6a, Allée du 6 Août, 19, B-4000 Liège, Belgium
| | - Francesca Rapino
- Cancer Signaling, GIGA Stem Cells, CHU-B34(+2) 1 Avenue de l'Hôpital, B-4000 Liège, Belgium
| | - Pierre Close
- Cancer Signaling, GIGA Stem Cells, CHU-B34(+2) 1 Avenue de l'Hôpital, B-4000 Liège, Belgium
| | - Liesbet Geris
- Biomechanics Research Unit, GIGA In Silico Medicine, Liège University, CHU-B34(+5) 1 Avenue de l'Hôpital, 4000 Liège, Belgium
- Skeletal Biology & Engineering Research Center, KU Leuven, ON I Herestraat 49 - box 813, 3000 Leuven, Belgium
- Biomechanics Section, KU Leuven, Celestijnenlaan 300C box 2419, B-3001 Heverlee, Belgium
| |
Collapse
|
10
|
Tirumalai MR, Anane-Bediakoh D, Rajesh S, Fox GE. Net Charges of the Ribosomal Proteins of the S10 and spc Clusters of Halophiles Are Inversely Related to the Degree of Halotolerance. Microbiol Spectr 2021; 9:e0178221. [PMID: 34908470 PMCID: PMC8672879 DOI: 10.1128/spectrum.01782-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/24/2021] [Indexed: 11/20/2022] Open
Abstract
Net positive charge(s) on ribosomal proteins (r-proteins) have been reported to influence the assembly and folding of ribosomes. A high percentage of r-proteins from extremely halophilic archaea are known to be acidic or even negatively charged. Those proteins that remain positively charged are typically far less positively charged. Here, the analysis is extended to non-archaeal halophilic bacteria, eukaryotes, and halotolerant archaea. The net charges (pH 7.4) of the r-proteins that comprise the S10-spc operon/cluster from individual microbial and eukaryotic genomes were estimated and intercompared. It was observed that, as a general rule, the net charges of individual proteins remained mostly basic as the salt tolerance of the bacterial strains increased from 5 to 15%. The most striking exceptions were the extremely halophilic bacterial strains, Salinibacter ruber SD01, Acetohalobium arabaticum DSM 5501 and Selenihalanaerobacter shriftii ATCC BAA-73, which are reported to require a minimum of 18% to 21% salt for their growth. All three strains have higher numbers of acidic S10-spc cluster r-proteins than what is seen in the moderate halophiles or the halotolerant strains. Of the individual proteins, only uL2 never became acidic. uS14 and uL16 also seldom became acidic. The net negative charges on several of the S10-spc cluster r-proteins are a feature generally shared by all extremely halophilic archaea and bacteria. The S10-spc cluster r-proteins of halophilic fungi and algae (eukaryotes) were exceptions: these were positively charged despite the halophilicity of the organisms. IMPORTANCE The net charges (at pH 7.4) of the ribosomal proteins (r-proteins) that comprise the S10-spc cluster show an inverse relationship with the halophilicity/halotolerance levels in both bacteria and archaea. In non-halophilic bacteria, the S10-spc cluster r-proteins are generally basic (positively charged), while the rest of the proteomes in these strains are generally acidic. On the other hand, the whole proteomes of the extremely halophilic strains are overall negatively charged, including the S10-spc cluster r-proteins. Given that the distribution of charged residues in the ribosome exit tunnel influences cotranslational folding, the contrasting charges observed in the S10-spc cluster r-proteins have potential implications for the rate of passage of these proteins through the ribosomal exit tunnel. Furthermore, the universal protein uL2, which lies in the oldest part of the ribosome, is always positively charged irrespective of the strain/organism it belongs to. This has implications for its role in the prebiotic context.
Collapse
Affiliation(s)
- Madhan R. Tirumalai
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | | | - Sidharth Rajesh
- Clements High School (Class of 2023), Fort Bend Independent School District, Sugar Land, Texas, USA
| | - George E. Fox
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| |
Collapse
|
11
|
Tirumalai MR, Rivas M, Tran Q, Fox GE. The Peptidyl Transferase Center: a Window to the Past. Microbiol Mol Biol Rev 2021; 85:e0010421. [PMID: 34756086 PMCID: PMC8579967 DOI: 10.1128/mmbr.00104-21] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
In his 2001 article, "Translation: in retrospect and prospect," the late Carl Woese made a prescient observation that there was a need for the then-current view of translation to be "reformulated to become an all-embracing perspective about which 21st century Biology can develop" (RNA 7:1055-1067, 2001, https://doi.org/10.1017/s1355838201010615). The quest to decipher the origins of life and the road to the genetic code are both inextricably linked with the history of the ribosome. After over 60 years of research, significant progress in our understanding of how ribosomes work has been made. Particularly attractive is a model in which the ribosome may facilitate an ∼180° rotation of the CCA end of the tRNA from the A-site to the P-site while the acceptor stem of the tRNA would then undergo a translation from the A-site to the P-site. However, the central question of how the ribosome originated remains unresolved. Along the path from a primitive RNA world or an RNA-peptide world to a proto-ribosome world, the advent of the peptidyl transferase activity would have been a seminal event. This functionality is now housed within a local region of the large-subunit (LSU) rRNA, namely, the peptidyl transferase center (PTC). The PTC is responsible for peptide bond formation during protein synthesis and is usually considered to be the oldest part of the modern ribosome. What is frequently overlooked is that by examining the origins of the PTC itself, one is likely going back even further in time. In this regard, it has been proposed that the modern PTC originated from the association of two smaller RNAs that were once independent and now comprise a pseudosymmetric region in the modern PTC. Could such an association have survived? Recent studies have shown that the extant PTC is largely depleted of ribosomal protein interactions. It is other elements like metallic ion coordination and nonstandard base/base interactions that would have had to stabilize the association of RNAs. Here, we present a detailed review of the literature focused on the nature of the extant PTC and its proposed ancestor, the proto-ribosome.
Collapse
Affiliation(s)
- Madhan R. Tirumalai
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Mario Rivas
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Quyen Tran
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - George E. Fox
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| |
Collapse
|
12
|
Alonso D, Mondragón A. Mechanisms of catalytic RNA molecules. Biochem Soc Trans 2021; 49:1529-1535. [PMID: 34415304 PMCID: PMC10583251 DOI: 10.1042/bst20200465] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/20/2021] [Accepted: 07/28/2021] [Indexed: 11/17/2022]
Abstract
Ribozymes are folded catalytic RNA molecules that perform important biological functions. Since the discovery of the first RNA with catalytic activity in 1982, a large number of ribozymes have been reported. While most catalytic RNA molecules act alone, some RNA-based catalysts, such as RNase P, the ribosome, and the spliceosome, need protein components to perform their functions in the cell. In the last decades, the structure and mechanism of several ribozymes have been studied in detail. Aside from the ribosome, which catalyzes peptide bond formation during protein synthesis, the majority of known ribozymes carry out mostly phosphoryl transfer reactions, notably trans-esterification or hydrolysis reactions. In this review, we describe the main features of the mechanisms of various types of ribozymes that can function with or without the help of proteins to perform their biological functions.
Collapse
Affiliation(s)
- Dulce Alonso
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, U.S.A
| | - Alfonso Mondragón
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, U.S.A
| |
Collapse
|
13
|
Tan Z, Song Z, Xue T, Zheng L, Jiang L, Jiang Y, Fu Z, Nguyen A, Leal C, Cheng J. Open-air synthesis of oligo(ethylene glycol)-functionalized polypeptides from non-purified N-carboxyanhydrides. Biomater Sci 2021; 9:4120-4126. [PMID: 33949455 DOI: 10.1039/d1bm00223f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
With PEG-like properties, such as hydrophilicity and stealth effect against protein absorption, oligo(ethylene glycol) (OEG)-functionalized polypeptides have emerged as a new class of biomaterials alternative to PEG with polypeptide-like properties. Synthesis of this class of materials, however, has been demonstrated very challenging, as the synthesis and purification of OEG-functionalized N-carboxyanhydrides (OEG-NCAs) in high purity, which is critical for the success in polymerization, is tedious and often results in low yield. OEG-functionalized polypeptides are therefore only accessible to a few limited labs with expertise in this specialized NCA chemistry and materials. Here, we report the controlled synthesis of OEG-functionalized polypeptides in high yield directly from the OEG-functionalized amino acids via easy and reproducible polymerization of non-purified OEG-NCAs. The prepared amphiphilic block copolypeptides can self-assemble into narrowly dispersed nanoparticles in water, which show properties suitable for drug delivery applications.
Collapse
Affiliation(s)
- Zhengzhong Tan
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| | - Ziyuan Song
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| | - Tianrui Xue
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Lining Zheng
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| | - Lei Jiang
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA. and State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Yunjiang Jiang
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| | - Zihuan Fu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Anh Nguyen
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Cecilia Leal
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| | - Jianjun Cheng
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA. and Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA and Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA and Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
14
|
Blackout in the powerhouse: clinical phenotypes associated with defects in the assembly of OXPHOS complexes and the mitoribosome. Biochem J 2021; 477:4085-4132. [PMID: 33151299 PMCID: PMC7657662 DOI: 10.1042/bcj20190767] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 09/29/2020] [Accepted: 10/05/2020] [Indexed: 12/26/2022]
Abstract
Mitochondria produce the bulk of the energy used by almost all eukaryotic cells through oxidative phosphorylation (OXPHOS) which occurs on the four complexes of the respiratory chain and the F1–F0 ATPase. Mitochondrial diseases are a heterogenous group of conditions affecting OXPHOS, either directly through mutation of genes encoding subunits of OXPHOS complexes, or indirectly through mutations in genes encoding proteins supporting this process. These include proteins that promote assembly of the OXPHOS complexes, the post-translational modification of subunits, insertion of cofactors or indeed subunit synthesis. The latter is important for all 13 of the proteins encoded by human mitochondrial DNA, which are synthesised on mitochondrial ribosomes. Together the five OXPHOS complexes and the mitochondrial ribosome are comprised of more than 160 subunits and many more proteins support their biogenesis. Mutations in both nuclear and mitochondrial genes encoding these proteins have been reported to cause mitochondrial disease, many leading to defective complex assembly with the severity of the assembly defect reflecting the severity of the disease. This review aims to act as an interface between the clinical and basic research underpinning our knowledge of OXPHOS complex and ribosome assembly, and the dysfunction of this process in mitochondrial disease.
Collapse
|
15
|
Skariah G, Todd PK. Translational control in aging and neurodegeneration. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 12:e1628. [PMID: 32954679 DOI: 10.1002/wrna.1628] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/19/2020] [Accepted: 09/07/2020] [Indexed: 12/13/2022]
Abstract
Protein metabolism plays central roles in age-related decline and neurodegeneration. While a large body of research has explored age-related changes in protein degradation, alterations in the efficiency and fidelity of protein synthesis with aging are less well understood. Age-associated changes occur in both the protein synthetic machinery (ribosomal proteins and rRNA) and within regulatory factors controlling translation. At the same time, many of the interventions that prolong lifespan do so in part by pre-emptively decreasing protein synthesis rates to allow better harmonization to age-related declines in protein catabolism. Here we review the roles of translation regulation in aging, with a specific focus on factors implicated in age-related neurodegeneration. We discuss how emerging technologies such as ribosome profiling and superior mass spectrometric approaches are illuminating age-dependent mRNA-specific changes in translation rates across tissues to reveal a critical interplay between catabolic and anabolic pathways that likely contribute to functional decline. These new findings point to nodes in posttranscriptional gene regulation that both contribute to aging and offer targets for therapy. This article is categorized under: Translation > Translation Regulation Translation > Ribosome Biogenesis Translation > Translation Mechanisms.
Collapse
Affiliation(s)
- Geena Skariah
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | - Peter K Todd
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
- Ann Arbor VA Healthcare System, Department of Veterans Affairs, Ann Arbor, Michigan, USA
| |
Collapse
|
16
|
Bowman JC, Petrov AS, Frenkel-Pinter M, Penev PI, Williams LD. Root of the Tree: The Significance, Evolution, and Origins of the Ribosome. Chem Rev 2020; 120:4848-4878. [PMID: 32374986 DOI: 10.1021/acs.chemrev.9b00742] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The ribosome is an ancient molecular fossil that provides a telescope to the origins of life. Made from RNA and protein, the ribosome translates mRNA to coded protein in all living systems. Universality, economy, centrality and antiquity are ingrained in translation. The translation machinery dominates the set of genes that are shared as orthologues across the tree of life. The lineage of the translation system defines the universal tree of life. The function of a ribosome is to build ribosomes; to accomplish this task, ribosomes make ribosomal proteins, polymerases, enzymes, and signaling proteins. Every coded protein ever produced by life on Earth has passed through the exit tunnel, which is the birth canal of biology. During the root phase of the tree of life, before the last common ancestor of life (LUCA), exit tunnel evolution is dominant and unremitting. Protein folding coevolved with evolution of the exit tunnel. The ribosome shows that protein folding initiated with intrinsic disorder, supported through a short, primitive exit tunnel. Folding progressed to thermodynamically stable β-structures and then to kinetically trapped α-structures. The latter were enabled by a long, mature exit tunnel that partially offset the general thermodynamic tendency of all polypeptides to form β-sheets. RNA chaperoned the evolution of protein folding from the very beginning. The universal common core of the ribosome, with a mass of nearly 2 million Daltons, was finalized by LUCA. The ribosome entered stasis after LUCA and remained in that state for billions of years. Bacterial ribosomes never left stasis. Archaeal ribosomes have remained near stasis, except for the superphylum Asgard, which has accreted rRNA post LUCA. Eukaryotic ribosomes in some lineages appear to be logarithmically accreting rRNA over the last billion years. Ribosomal expansion in Asgard and Eukarya has been incremental and iterative, without substantial remodeling of pre-existing basal structures. The ribosome preserves information on its history.
Collapse
Affiliation(s)
- Jessica C Bowman
- Center for the Origins of Life, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Anton S Petrov
- Center for the Origins of Life, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Moran Frenkel-Pinter
- Center for the Origins of Life, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Petar I Penev
- Center for the Origins of Life, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Loren Dean Williams
- Center for the Origins of Life, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
17
|
Zarecki AP, Kolanowski JL, Markiewicz WT. Microwave-Assisted Catalytic Method for a Green Synthesis of Amides Directly from Amines and Carboxylic Acids. Molecules 2020; 25:molecules25081761. [PMID: 32290373 PMCID: PMC7221698 DOI: 10.3390/molecules25081761] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/07/2020] [Accepted: 04/09/2020] [Indexed: 01/30/2023] Open
Abstract
Amide bonds are among the most interesting and abundant molecules of life and products of the chemical pharmaceutical industry. In this work, we describe a method of the direct synthesis of amides from carboxylic acids and amines under solvent-free conditions using minute quantities of ceric ammonium nitrate (CAN) as a catalyst. The reactions are carried out in an open microwave reactor and allow the corresponding amides to be obtained in a fast and effective manner when compared to other procedures of the direct synthesis of amides from acids and amines reported so far in the literature. The amide product isolation procedure is simple, environmentally friendly, and is performed with no need for chromatographic purification of secondary amides due to high yields. In this report, primary amines were used in most examples. However, the developed procedure seems to be applicable for secondary amines as well. The methodology produces a limited amount of wastes, and a catalyst can be easily separated. This highly efficient, robust, rapid, solvent-free, and additional reagent-free method provides a major advancement in the development of an ideal green protocol for amide bond formation.
Collapse
Affiliation(s)
| | - Jacek L. Kolanowski
- Correspondence: (J.L.K.); (W.T.M.); Tel.: +48-61-852-85-03 (ext. 165) (J.L.K.); +48-61-852-85-03 (ext. 180) (W.T.M.)
| | - Wojciech T. Markiewicz
- Correspondence: (J.L.K.); (W.T.M.); Tel.: +48-61-852-85-03 (ext. 165) (J.L.K.); +48-61-852-85-03 (ext. 180) (W.T.M.)
| |
Collapse
|
18
|
Novikov IB, Wilkins AD, Lichtarge O. An Evolutionary Trace method defines functionally important bases and sites common to RNA families. PLoS Comput Biol 2020; 16:e1007583. [PMID: 32208421 PMCID: PMC7092961 DOI: 10.1371/journal.pcbi.1007583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 11/27/2019] [Indexed: 11/18/2022] Open
Abstract
Functional non-coding (fnc)RNAs are nucleotide sequences of varied lengths, structures, and mechanisms that ubiquitously influence gene expression and translation, genome stability and dynamics, and human health and disease. Here, to shed light on their functional determinants, we seek to exploit the evolutionary record of variation and divergence read from sequence comparisons. The approach follows the phylogenetic Evolutionary Trace (ET) paradigm, first developed and extensively validated on proteins. We assigned a relative rank of importance to every base in a study of 1070 functional RNAs, including the ribosome, and observed evolutionary patterns strikingly similar to those seen in proteins, namely, (1) the top-ranked bases clustered in secondary and tertiary structures. (2) In turn, these clusters mapped functional regions for catalysis, binding proteins and drugs, post-transcriptional modification, and deleterious mutations. (3) Moreover, the quantitative quality of these clusters correlated with the identification of functional regions. (4) As a result of this correlation, smoother structural distributions of evolutionary important nucleotides improved functional site predictions. Thus, in practice, phylogenetic analysis can broadly identify functional determinants in RNA sequences and functional sites in RNA structures, and reveal details on the basis of RNA molecular functions. As example of application, we report several previously undocumented and potentially functional ET nucleotide clusters in the ribosome. This work is broadly relevant to studies of structure-function in ribonucleic acids. Additionally, this generalization of ET shows that evolutionary constraints among sequence, structure, and function are similar in structured RNA and proteins. RNA ET is currently available as part of the ET command-line package, and will be available as a web-server. Traditionally, RNA has been delegated to the role of an intermediate between DNA and proteins. However, we now recognize that RNAs are broadly functional beyond their role in translation, and that a number of diverse classes exist. Because functional, non-coding RNAs are prevalent in biology and impact human health, it is important to better understand their functional determinants. However, the classical solution to this problem, targeted mutagenesis, is time-consuming and scales poorly. We propose an alternative computational approach to this problem, the Evolutionary Trace method. Previously developed and validated for proteins, Evolutionary Trace examines evolutionary history of a molecule and predicts evolutionarily important residues in the sequence. We apply Evolutionary Trace to a set of diverse RNAs, and find that the evolutionarily important nucleotides cluster on the three-dimensional structure, and that these clusters closely overlap functional sites. We also find that the clustering property can be used to refine and improve predictions. These findings are in close agreement with our observations of Evolutionary Trace in proteins, and suggest that structured functional RNAs and proteins evolve under similar constraints. In practice, the approach is to be used by RNA researches seeking insight into their molecule of interest, and the Evolutionary Trace program, along with a working example, is available at https://github.com/LichtargeLab/RNA_ET_ms.
Collapse
Affiliation(s)
- Ilya B. Novikov
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Angela D. Wilkins
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Olivier Lichtarge
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
19
|
d’Aquino AE, Azim T, Aleksashin NA, Hockenberry AJ, Krüger A, Jewett MC. Mutational characterization and mapping of the 70S ribosome active site. Nucleic Acids Res 2020; 48:2777-2789. [PMID: 32009164 PMCID: PMC7049736 DOI: 10.1093/nar/gkaa001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 12/06/2019] [Accepted: 01/03/2020] [Indexed: 12/20/2022] Open
Abstract
The synthetic capability of the Escherichia coli ribosome has attracted efforts to repurpose it for novel functions, such as the synthesis of polymers containing non-natural building blocks. However, efforts to repurpose ribosomes are limited by the lack of complete peptidyl transferase center (PTC) active site mutational analyses to inform design. To address this limitation, we leverage an in vitro ribosome synthesis platform to build and test every possible single nucleotide mutation within the PTC-ring, A-loop and P-loop, 180 total point mutations. These mutant ribosomes were characterized by assessing bulk protein synthesis kinetics, readthrough, assembly, and structure mapping. Despite the highly-conserved nature of the PTC, we found that >85% of the PTC nucleotides possess mutational flexibility. Our work represents a comprehensive single-point mutant characterization and mapping of the 70S ribosome's active site. We anticipate that it will facilitate structure-function relationships within the ribosome and make possible new synthetic biology applications.
Collapse
Affiliation(s)
- Anne E d’Aquino
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL 60208, USA
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL 60208, USA
| | - Tasfia Azim
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL 60208, USA
| | - Nikolay A Aleksashin
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Adam J Hockenberry
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL 60208, USA
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL 60208, USA
| | - Antje Krüger
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL 60208, USA
| | - Michael C Jewett
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL 60208, USA
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL 60208, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
- Simpson Querrey Institute, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
20
|
Velema WA, Kool ET. The chemistry and applications of RNA 2'-OH acylation. Nat Rev Chem 2020; 4:22-37. [PMID: 32984545 PMCID: PMC7513686 DOI: 10.1038/s41570-019-0147-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2019] [Indexed: 12/19/2022]
Abstract
RNA is a versatile biomolecule with a broad range of biological functions that go far beyond its initially described role as a simple information carrier. The development of chemical methods to control, manipulate and modify RNA has the potential to yield new insights into its many functions and properties. Traditionally, most of these methods involved the chemical modification of RNA structure using solid-state synthesis or enzymatic transformations. However, over the past 15 years, the direct functionalization of RNA by selective acylation of the 2'-hydroxyl (2'-OH) group has emerged as a powerful alternative that enables the simple modification of both synthetic and transcribed RNAs. In this Review, we discuss the chemical properties and design of effective reagents for RNA 2'-OH acylation, highlighting the unique problem of 2'-OH reactivity in the presence of water. We elaborate on how RNA 2'-OH acylation is being exploited to develop selective chemical probes that enable interrogation of RNA structure and function, and describe new developments and applications in the field.
Collapse
Affiliation(s)
| | - Eric T. Kool
- Department of Chemistry, Stanford University, Stanford, CA, USA
| |
Collapse
|
21
|
Tam B, Sherf D, Cohen S, Eisdorfer SA, Perez M, Soffer A, Vilenchik D, Akabayov SR, Wagner G, Akabayov B. Discovery of small-molecule inhibitors targeting the ribosomal peptidyl transferase center (PTC) of M. tuberculosis. Chem Sci 2019; 10:8764-8767. [PMID: 31803448 PMCID: PMC6849635 DOI: 10.1039/c9sc02520k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 08/05/2019] [Indexed: 01/06/2023] Open
Abstract
M. tuberculosis (Mtb) is a pathogenic bacterium that causes tuberculosis, which kills more than 1.5 million people worldwide every year. Strains resistant to available antibiotics pose a significant healthcare problem. The enormous complexity of the ribosome poses a barrier for drug discovery. We have overcome this in a tractable way by using an RNA segment that represents the peptidyl transferase center as a target. By using a novel combination of NMR transverse relaxation times (T 2) and computational chemistry approaches, we have obtained improved inhibitors of the Mtb ribosomal PTC. Two phenylthiazole derivatives were predicted by machine learning models as effective inhibitors, and this was confirmed by their IC50 values, which were significantly improved over standard antibiotic drugs.
Collapse
Affiliation(s)
- Benjamin Tam
- Department of Chemistry , Ben-Gurion University of the Negev , Beer-Sheva , Israel .
| | - Dror Sherf
- Department of Chemistry , Ben-Gurion University of the Negev , Beer-Sheva , Israel .
| | - Shira Cohen
- Department of Chemistry , Ben-Gurion University of the Negev , Beer-Sheva , Israel .
| | - Sarah Adi Eisdorfer
- Department of Chemistry , Ben-Gurion University of the Negev , Beer-Sheva , Israel .
| | - Moshe Perez
- Department of Structural Biology , Weizmann Institute of Science , Rehovot , Israell
| | - Adam Soffer
- School of Computer and Electrical Engineering , Ben-Gurion University of the Negev , Israel
| | - Dan Vilenchik
- School of Computer and Electrical Engineering , Ben-Gurion University of the Negev , Israel
| | - Sabine Ruth Akabayov
- Department of Structural Biology , Weizmann Institute of Science , Rehovot , Israell
| | - Gerhard Wagner
- Department of Biological Chemistry and Molecular Pharmacology , Harvard Medical School , Boston , MA , USA
| | - Barak Akabayov
- Department of Chemistry , Ben-Gurion University of the Negev , Beer-Sheva , Israel .
| |
Collapse
|
22
|
Expression profiling of snoRNAs in normal hematopoiesis and AML. Blood Adv 2019; 2:151-163. [PMID: 29365324 DOI: 10.1182/bloodadvances.2017006668] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 12/21/2017] [Indexed: 12/13/2022] Open
Abstract
Small nucleolar RNAs (snoRNAs) are noncoding RNAs that contribute to ribosome biogenesis and RNA splicing by modifying ribosomal RNA and spliceosome RNAs, respectively. We optimized a next-generation sequencing approach and a custom analysis pipeline to identify and quantify expression of snoRNAs in acute myeloid leukemia (AML) and normal hematopoietic cell populations. We show that snoRNAs are expressed in a lineage- and development-specific fashion during hematopoiesis. The most striking examples involve snoRNAs located in 2 imprinted loci, which are highly expressed in hematopoietic progenitors and downregulated during myeloid differentiation. Although most snoRNAs are expressed at similar levels in AML cells compared with CD34+, a subset of snoRNAs showed consistent differential expression, with the great majority of these being decreased in the AML samples. Analysis of host gene expression, splicing patterns, and whole-genome sequence data for mutational events did not identify transcriptional patterns or genetic alterations that account for these expression differences. These data provide a comprehensive analysis of the snoRNA transcriptome in normal and leukemic cells and should be helpful in the design of studies to define the contribution of snoRNAs to normal and malignant hematopoiesis.
Collapse
|
23
|
English SL, Forsythe JG. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of model prebiotic peptides: Optimization of sample preparation. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2018; 32:1507-1513. [PMID: 29885215 DOI: 10.1002/rcm.8201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/01/2018] [Accepted: 06/03/2018] [Indexed: 06/08/2023]
Abstract
RATIONALE Depsipeptides, or peptides with a mixture of amide and ester linkages, may have evolved into peptides on primordial Earth. Previous studies on depsipeptides utilized electrospray ionization ion mobility quadrupole time-of-flight (ESI-IM-QTOF) tandem mass spectrometry; such analysis was thorough yet time-consuming. Here, a complementary matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) approach was optimized for rapid characterization of depsipeptide length and monomer composition. METHODS Depsipeptide mixtures of varying hydrophobicity were formed by subjecting aqueous mixtures of α-hydroxy acids and α-amino acids to evaporative cycles. Ester and amide content of depsipeptides was orthogonally confirmed using infrared spectroscopy. MALDI-TOF MS analysis was performed on a Voyager DE-STR in reflection geometry and positive ion mode. Optimization parameters included choice of matrix, sample solvent, matrix-to-analyte ratio, and ionization additives. RESULTS It was determined that evaporated depsipeptide samples should be mixed with 2,5-dihydroxybenzoic acid (DHB) matrix in order to detect the highest number of unique signals. Low matrix-to-analyte ratios were found to generate higher quality spectra, likely due to a combination of matrix suppression and improved co-crystallization. Using this optimized protocol, a new depsipeptide mixture was characterized. CONCLUSIONS Understanding the diversity and chemical evolution of proto-peptides is of interest to origins-of-life research. Here, we have demonstrated MALDI-TOF MS can be used to rapidly screen the length and monomer composition of model prebiotic peptides containing a mixture of ester and amide backbone linkages.
Collapse
Affiliation(s)
- Sloane L English
- Department of Chemistry and Biochemistry, College of Charleston, Charleston, SC, 29424
- NSF/NASA Center for Chemical Evolution
| | - Jay G Forsythe
- Department of Chemistry and Biochemistry, College of Charleston, Charleston, SC, 29424
- NSF/NASA Center for Chemical Evolution
| |
Collapse
|
24
|
Abstract
During protein synthesis, ribosomes encounter many roadblocks, the outcomes of which are largely determined by substrate availability, amino acid features and reaction kinetics. Prolonged ribosome stalling is likely to be resolved by ribosome rescue or quality control pathways, whereas shorter stalling is likely to be resolved by ongoing productive translation. How ribosome function is affected by such hindrances can therefore have a profound impact on the translational output (yield) of a particular mRNA. In this Review, we focus on these roadblocks and the resumption of normal translation elongation rather than on alternative fates wherein the stalled ribosome triggers degradation of the mRNA and the incomplete protein product. We discuss the fundamental stages of the translation process in eukaryotes, from elongation through ribosome recycling, with particular attention to recent discoveries of the complexity of the genetic code and regulatory elements that control gene expression, including ribosome stalling during elongation, the role of mRNA context in translation termination and mechanisms of ribosome rescue that resemble recycling.
Collapse
Affiliation(s)
- Anthony P Schuller
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rachel Green
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
25
|
Choi J, Grosely R, Prabhakar A, Lapointe CP, Wang J, Puglisi JD. How Messenger RNA and Nascent Chain Sequences Regulate Translation Elongation. Annu Rev Biochem 2018; 87:421-449. [PMID: 29925264 PMCID: PMC6594189 DOI: 10.1146/annurev-biochem-060815-014818] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Translation elongation is a highly coordinated, multistep, multifactor process that ensures accurate and efficient addition of amino acids to a growing nascent-peptide chain encoded in the sequence of translated messenger RNA (mRNA). Although translation elongation is heavily regulated by external factors, there is clear evidence that mRNA and nascent-peptide sequences control elongation dynamics, determining both the sequence and structure of synthesized proteins. Advances in methods have driven experiments that revealed the basic mechanisms of elongation as well as the mechanisms of regulation by mRNA and nascent-peptide sequences. In this review, we highlight how mRNA and nascent-peptide elements manipulate the translation machinery to alter the dynamics and pathway of elongation.
Collapse
Affiliation(s)
- Junhong Choi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305-5126, USA; , , , , ,
- Department of Applied Physics, Stanford University, Stanford, California 94305-4090, USA
| | - Rosslyn Grosely
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305-5126, USA; , , , , ,
| | - Arjun Prabhakar
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305-5126, USA; , , , , ,
- Program in Biophysics, Stanford University, Stanford, California 94305, USA
| | - Christopher P Lapointe
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305-5126, USA; , , , , ,
| | - Jinfan Wang
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305-5126, USA; , , , , ,
| | - Joseph D Puglisi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305-5126, USA; , , , , ,
| |
Collapse
|
26
|
Lundberg H, Tinnis F, Zhang J, Algarra AG, Himo F, Adolfsson H. Mechanistic Elucidation of Zirconium-Catalyzed Direct Amidation. J Am Chem Soc 2017; 139:2286-2295. [DOI: 10.1021/jacs.6b10973] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Helena Lundberg
- Department
of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Fredrik Tinnis
- Department
of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Jiji Zhang
- Department
of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Andrés G. Algarra
- Department
of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
- Departamento
de Ciencia de los Materiales e Ingeniería Metalúrgica
y Química Inorgánica, Universidad de Cádiz, Campus
Universitario de Puerto Real, 11510 Puerto Real, Spain
| | - Fahmi Himo
- Department
of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Hans Adolfsson
- Department
of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
- Department
of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| |
Collapse
|
27
|
Petrov AI, Kay SJE, Kalvari I, Howe KL, Gray KA, Bruford EA, Kersey PJ, Cochrane G, Finn RD, Bateman A, Kozomara A, Griffiths-Jones S, Frankish A, Zwieb CW, Lau BY, Williams KP, Chan PP, Lowe TM, Cannone JJ, Gutell R, Machnicka MA, Bujnicki JM, Yoshihama M, Kenmochi N, Chai B, Cole JR, Szymanski M, Karlowski WM, Wood V, Huala E, Berardini TZ, Zhao Y, Chen R, Zhu W, Paraskevopoulou MD, Vlachos IS, Hatzigeorgiou AG, Ma L, Zhang Z, Puetz J, Stadler PF, McDonald D, Basu S, Fey P, Engel SR, Cherry JM, Volders PJ, Mestdagh P, Wower J, Clark MB, Quek XC, Dinger ME. RNAcentral: a comprehensive database of non-coding RNA sequences. Nucleic Acids Res 2017; 45:D128-D134. [PMID: 27794554 PMCID: PMC5210518 DOI: 10.1093/nar/gkw1008] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 10/13/2016] [Accepted: 10/18/2016] [Indexed: 12/12/2022] Open
Abstract
RNAcentral is a database of non-coding RNA (ncRNA) sequences that aggregates data from specialised ncRNA resources and provides a single entry point for accessing ncRNA sequences of all ncRNA types from all organisms. Since its launch in 2014, RNAcentral has integrated twelve new resources, taking the total number of collaborating database to 22, and began importing new types of data, such as modified nucleotides from MODOMICS and PDB. We created new species-specific identifiers that refer to unique RNA sequences within a context of single species. The website has been subject to continuous improvements focusing on text and sequence similarity searches as well as genome browsing functionality. All RNAcentral data is provided for free and is available for browsing, bulk downloads, and programmatic access at http://rnacentral.org/.
Collapse
|
28
|
Yang J, Sharma S, Watzinger P, Hartmann JD, Kötter P, Entian KD. Mapping of Complete Set of Ribose and Base Modifications of Yeast rRNA by RP-HPLC and Mung Bean Nuclease Assay. PLoS One 2016; 11:e0168873. [PMID: 28033325 PMCID: PMC5199042 DOI: 10.1371/journal.pone.0168873] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 12/07/2016] [Indexed: 12/31/2022] Open
Abstract
Ribosomes are large ribonucleoprotein complexes that are fundamental for protein synthesis. Ribosomes are ribozymes because their catalytic functions such as peptidyl transferase and peptidyl-tRNA hydrolysis depend on the rRNA. rRNA is a heterogeneous biopolymer comprising of at least 112 chemically modified residues that are believed to expand its topological potential. In the present study, we established a comprehensive modification profile of Saccharomyces cerevisiae's 18S and 25S rRNA using a high resolution Reversed-Phase High Performance Liquid Chromatography (RP-HPLC). A combination of mung bean nuclease assay, rDNA point mutants and snoRNA deletions allowed us to systematically map all ribose and base modifications on both rRNAs to a single nucleotide resolution. We also calculated approximate molar levels for each modification using their UV (254nm) molar response factors, showing sub-stoichiometric amount of modifications at certain residues. The chemical nature, their precise location and identification of partial modification will facilitate understanding the precise role of these chemical modifications, and provide further evidence for ribosome heterogeneity in eukaryotes.
Collapse
MESH Headings
- Base Sequence
- Chromatography, Reverse-Phase
- Methylation
- Plant Proteins/metabolism
- Point Mutation
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- RNA, Ribosomal, 18S/genetics
- RNA, Ribosomal, 18S/metabolism
- RNA, Small Nucleolar/genetics
- RNA, Small Nucleolar/metabolism
- Ribose/metabolism
- Ribosomes/genetics
- Ribosomes/metabolism
- Saccharomyces cerevisiae/genetics
- Single-Strand Specific DNA and RNA Endonucleases/metabolism
Collapse
Affiliation(s)
- Jun Yang
- Institute of Molecular and Cellular Microbiology Goethe University, Frankfurt am Main, Germany
| | - Sunny Sharma
- Institute of Molecular and Cellular Microbiology Goethe University, Frankfurt am Main, Germany
| | - Peter Watzinger
- Institute of Molecular and Cellular Microbiology Goethe University, Frankfurt am Main, Germany
| | - Johannes David Hartmann
- Institute of Molecular and Cellular Microbiology Goethe University, Frankfurt am Main, Germany
| | - Peter Kötter
- Institute of Molecular and Cellular Microbiology Goethe University, Frankfurt am Main, Germany
| | - Karl-Dieter Entian
- Institute of Molecular and Cellular Microbiology Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
29
|
Ojeda-Porras A, Gamba-Sánchez D. Recent Developments in Amide Synthesis Using Nonactivated Starting Materials. J Org Chem 2016; 81:11548-11555. [PMID: 27934465 DOI: 10.1021/acs.joc.6b02358] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Amides are unquestionably one of the most important functional groups in organic chemistry because of their presence in numerous interesting molecules such as peptides, pharmaceutical agents, naturally occurring molecules, proteins and alkaloids, among others. This synopsis surveys the diverse recent approaches to amide synthesis from nonactivated carboxylic acids and derivatives as well as noncarboxylic compounds, highlighting the most innovative methodologies and those that are more eco-friendly compared to traditional methods while focusing on recent developments during the past two years.
Collapse
Affiliation(s)
- Andrea Ojeda-Porras
- Laboratory of Organic Synthesis, Bio and Organocatalysis, Chemistry Department, Universidad de los Andes , Cra 1 No. 18A-12 Q:305, Bogotá 111711, Colombia
| | - Diego Gamba-Sánchez
- Laboratory of Organic Synthesis, Bio and Organocatalysis, Chemistry Department, Universidad de los Andes , Cra 1 No. 18A-12 Q:305, Bogotá 111711, Colombia
| |
Collapse
|
30
|
Context-specific inhibition of translation by ribosomal antibiotics targeting the peptidyl transferase center. Proc Natl Acad Sci U S A 2016; 113:12150-12155. [PMID: 27791002 DOI: 10.1073/pnas.1613055113] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The first broad-spectrum antibiotic chloramphenicol and one of the newest clinically important antibacterials, linezolid, inhibit protein synthesis by targeting the peptidyl transferase center of the bacterial ribosome. Because antibiotic binding should prevent the placement of aminoacyl-tRNA in the catalytic site, it is commonly assumed that these drugs are universal inhibitors of peptidyl transfer and should readily block the formation of every peptide bond. However, our in vitro experiments showed that chloramphenicol and linezolid stall ribosomes at specific mRNA locations. Treatment of bacterial cells with high concentrations of these antibiotics leads to preferential arrest of translation at defined sites, resulting in redistribution of the ribosomes on mRNA. Antibiotic-mediated inhibition of protein synthesis is most efficient when the nascent peptide in the ribosome carries an alanine residue and, to a lesser extent, serine or threonine in its penultimate position. In contrast, the inhibitory action of the drugs is counteracted by glycine when it is either at the nascent-chain C terminus or at the incoming aminoacyl-tRNA. The context-specific action of chloramphenicol illuminates the operation of the mechanism of inducible resistance that relies on programmed drug-induced translation arrest. In addition, our findings expose the functional interplay between the nascent chain and the peptidyl transferase center.
Collapse
|
31
|
Kuo CH, Lin JA, Chien CM, Tsai CH, Liu YC, Shieh CJ. Formation of amide bond catalyzed by lipase in aqueous phase for peptide synthesis. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2016.03.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
32
|
Abstract
Mitochondrial ribosomes (mitoribosomes) perform protein synthesis inside mitochondria, the organelles responsible for energy conversion and adenosine triphosphate production in eukaryotic cells. Throughout evolution, mitoribosomes have become functionally specialized for synthesizing mitochondrial membrane proteins, and this has been accompanied by large changes to their structure and composition. We review recent high-resolution structural data that have provided unprecedented insight into the structure and function of mitoribosomes in mammals and fungi.
Collapse
Affiliation(s)
- Basil J Greber
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, CH-8093 Zurich, Switzerland; .,*Present address: California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, California 94720-3220
| | - Nenad Ban
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, CH-8093 Zurich, Switzerland;
| |
Collapse
|
33
|
Shigeno Y, Uchiumi T, Nomura T. Involvement of ribosomal protein L6 in assembly of functional 50S ribosomal subunit in Escherichia coli cells. Biochem Biophys Res Commun 2016; 473:237-242. [PMID: 27003253 DOI: 10.1016/j.bbrc.2016.03.085] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 03/18/2016] [Indexed: 11/28/2022]
Abstract
Ribosomal protein L6, an essential component of the large (50S) subunit, primarily binds to helix 97 of 23S rRNA and locates near the sarcin/ricin loop of helix 95 that directly interacts with GTPase translation factors. Although L6 is believed to play important roles in factor-dependent ribosomal function, crucial biochemical evidence for this hypothesis has not been obtained. We constructed and characterized an Escherichia coli mutant bearing a chromosomal L6 gene (rplF) disruption and carrying a plasmid with an arabinose-inducible L6 gene. Although this ΔL6 mutant grew more slowly than its wild-type parent, it proliferated in the presence of arabinose. Interestingly, cell growth in the absence of arabinose was biphasic. Early growth lasted only a few generations (LI-phase) and was followed by a suspension of growth for several hours (S-phase). This suspension was followed by a second growth phase (LII-phase). Cells harvested at both LI- and S-phases contained ribosomes with reduced factor-dependent GTPase activity and accumulated 50S subunit precursors (45S particles). The 45S particles completely lacked L6. Complete 50S subunits containing L6 were observed in all growth phases regardless of the L6-depleted condition, implying that the ΔL6 mutant escaped death because of a leaky expression of L6 from the complementing plasmid. We conclude that L6 is essential for the assembly of functional 50S subunits at the late stage. We thus established conditions for the isolation of L6-depleted 50S subunits, which are essential to study the role of L6 in translation.
Collapse
Affiliation(s)
- Yuta Shigeno
- Division of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Ueda 386-8567, Japan
| | - Toshio Uchiumi
- Department of Biology, Faculty of Science, Niigata University, Niigata 950-2181, Japan
| | - Takaomi Nomura
- Division of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Ueda 386-8567, Japan.
| |
Collapse
|
34
|
Abstract
Amides are widespread in biologically active compounds with a broad range of applications in biotechnology, agriculture and medicine. Therefore, as alternative to chemical synthesis the biocatalytic amide synthesis is a very interesting field of research. As usual, Nature can serve as guide in the quest for novel biocatalysts. Several mechanisms for carboxylate activation involving mainly acyl-adenylate, acyl-phosphate or acyl-enzyme intermediates have been discovered, but also completely different pathways to amides are found. In addition to ribosomes, selected enzymes of almost all main enzyme classes are able to synthesize amides. In this review we give an overview about amide synthesis in Nature, as well as biotechnological applications of these enzymes. Moreover, several examples of biocatalytic amide synthesis are given.
Collapse
|
35
|
Kaminishi T, Schedlbauer A, Fabbretti A, Brandi L, Ochoa-Lizarralde B, He CG, Milón P, Connell SR, Gualerzi CO, Fucini P. Crystallographic characterization of the ribosomal binding site and molecular mechanism of action of Hygromycin A. Nucleic Acids Res 2015; 43:10015-25. [PMID: 26464437 PMCID: PMC4787777 DOI: 10.1093/nar/gkv975] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 08/20/2015] [Accepted: 08/22/2015] [Indexed: 11/13/2022] Open
Abstract
Hygromycin A (HygA) binds to the large ribosomal subunit and inhibits its peptidyl transferase (PT) activity. The presented structural and biochemical data indicate that HygA does not interfere with the initial binding of aminoacyl-tRNA to the A site, but prevents its subsequent adjustment such that it fails to act as a substrate in the PT reaction. Structurally we demonstrate that HygA binds within the peptidyl transferase center (PTC) and induces a unique conformation. Specifically in its ribosomal binding site HygA would overlap and clash with aminoacyl-A76 ribose moiety and, therefore, its primary mode of action involves sterically restricting access of the incoming aminoacyl-tRNA to the PTC.
Collapse
MESH Headings
- Binding Sites
- Cinnamates/chemistry
- Cinnamates/metabolism
- Cinnamates/pharmacology
- Crystallography, X-Ray
- Hygromycin B/analogs & derivatives
- Hygromycin B/chemistry
- Hygromycin B/metabolism
- Hygromycin B/pharmacology
- Models, Molecular
- Peptidyl Transferases/chemistry
- Peptidyl Transferases/drug effects
- Protein Synthesis Inhibitors/chemistry
- Protein Synthesis Inhibitors/metabolism
- Protein Synthesis Inhibitors/pharmacology
- RNA, Transfer, Amino Acyl/metabolism
- Ribosome Subunits, Large, Bacterial/chemistry
- Ribosome Subunits, Large, Bacterial/drug effects
- Ribosome Subunits, Large, Bacterial/enzymology
- Ribosome Subunits, Large, Bacterial/metabolism
Collapse
Affiliation(s)
- Tatsuya Kaminishi
- Structural Biology Unit, CIC bioGUNE, Parque Tecnológico de Bizkaia, 48160 Derio, Bizkaia, Spain
| | - Andreas Schedlbauer
- Structural Biology Unit, CIC bioGUNE, Parque Tecnológico de Bizkaia, 48160 Derio, Bizkaia, Spain
| | - Attilio Fabbretti
- Laboratory of Genetics, Department of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy
| | - Letizia Brandi
- Laboratory of Genetics, Department of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy
| | - Borja Ochoa-Lizarralde
- Structural Biology Unit, CIC bioGUNE, Parque Tecnológico de Bizkaia, 48160 Derio, Bizkaia, Spain
| | - Cheng-Guang He
- Laboratory of Genetics, Department of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy
| | - Pohl Milón
- School of Medicine, Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas - UPC, Lima, L-33, Perú
| | - Sean R Connell
- Structural Biology Unit, CIC bioGUNE, Parque Tecnológico de Bizkaia, 48160 Derio, Bizkaia, Spain IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Claudio O Gualerzi
- Laboratory of Genetics, Department of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy
| | - Paola Fucini
- Structural Biology Unit, CIC bioGUNE, Parque Tecnológico de Bizkaia, 48160 Derio, Bizkaia, Spain IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
36
|
Transcriptome analyses to understand effects of the Fusarium deoxynivalenol and nivalenol mycotoxins on Escherichia coli. J Biotechnol 2015; 192 Pt A:231-9. [PMID: 25456064 DOI: 10.1016/j.jbiotec.2014.10.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 10/09/2014] [Accepted: 10/13/2014] [Indexed: 01/12/2023]
Abstract
Fusarium spp. cause many diseases in farming systems and can produce diverse mycotoxins that can easily impact humans and animals through the ingestion of food and feed. Among these mycotoxins, deoxynivalenol (DON) and nivalenol (NIV) are considered the most important hazards because they can rapidly diffuse into cells and block eukaryotic ribosomes, leading to inhibition of the translation system. Conversely, the effects of DON and NIV mycotoxins on bacteria remain unclear. We employed RNA-seq technology to obtain information regarding the biological responses of bacteria and putative bacterial mechanisms of resistance to DON and NIV mycotoxins. Most differentially expressed genes down-regulated in response to these mycotoxins were commonly involved in phenylalanine metabolism, glyoxylate cycle, and cytochrome o ubiquinol oxidase systems. In addition, we generated an overall network of 1028 up-regulated genes to identify core genes under DON and NIV conditions. The results of our study provide a snapshot view of the transcriptome of Escherichia coli K-12 under DON and NIV conditions. Furthermore, the information provided herein will be useful for development of methods to detect DON and NIV.
Collapse
|
37
|
Structural Insights into tRNA Dynamics on the Ribosome. Int J Mol Sci 2015; 16:9866-95. [PMID: 25941930 PMCID: PMC4463622 DOI: 10.3390/ijms16059866] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 04/21/2015] [Accepted: 04/22/2015] [Indexed: 11/17/2022] Open
Abstract
High-resolution structures at different stages, as well as biochemical, single molecule and computational approaches have highlighted the elasticity of tRNA molecules when bound to the ribosome. It is well acknowledged that the inherent structural flexibility of the tRNA lies at the heart of the protein synthesis process. Here, we review the recent advances and describe considerations that the conformational changes of the tRNA molecules offer about the mechanisms grounded in translation.
Collapse
|
38
|
Thompson CDK, Sharma AK, Frank J, Gonzalez RL, Chowdhury D. Quantitative Connection between Ensemble Thermodynamics and Single-Molecule Kinetics: A Case Study Using Cryogenic Electron Microscopy and Single-Molecule Fluorescence Resonance Energy Transfer Investigations of the Ribosome. J Phys Chem B 2015; 119:10888-10901. [PMID: 25785884 DOI: 10.1021/jp5128805] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
At equilibrium, thermodynamic and kinetic information can be extracted from biomolecular energy landscapes by many techniques. However, while static, ensemble techniques yield thermodynamic data, often only dynamic, single-molecule techniques can yield the kinetic data that describe transition-state energy barriers. Here we present a generalized framework based upon dwell-time distributions that can be used to connect such static, ensemble techniques with dynamic, single-molecule techniques, and thus characterize energy landscapes to greater resolutions. We demonstrate the utility of this framework by applying it to cryogenic electron microscopy (cryo-EM) and single-molecule fluorescence resonance energy transfer (smFRET) studies of the bacterial ribosomal pre-translocation complex. Among other benefits, application of this framework to these data explains why two transient, intermediate conformations of the pre-translocation complex, which are observed in a cryo-EM study, may not be observed in several smFRET studies.
Collapse
|
39
|
Miller SA, Leadbeater NE. Direct, rapid, solvent-free conversion of unactivated esters to amides using lithium hydroxide as a catalyst. RSC Adv 2015. [DOI: 10.1039/c5ra21394k] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A simple, solvent-free methodology is reported for the direct conversion of esters to amides using lithium hydroxide as a catalyst.
Collapse
Affiliation(s)
| | - Nicholas E. Leadbeater
- Department of Chemistry
- University of Connecticut
- Storrs
- USA
- Department of Community Medicine & Health Care
| |
Collapse
|
40
|
Greber BJ, Boehringer D, Leibundgut M, Bieri P, Leitner A, Schmitz N, Aebersold R, Ban N. The complete structure of the large subunit of the mammalian mitochondrial ribosome. Nature 2014; 515:283-6. [DOI: 10.1038/nature13895] [Citation(s) in RCA: 204] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 09/26/2014] [Indexed: 12/12/2022]
|
41
|
Giessen TW, Marahiel MA. The tRNA-dependent biosynthesis of modified cyclic dipeptides. Int J Mol Sci 2014; 15:14610-31. [PMID: 25196600 PMCID: PMC4159871 DOI: 10.3390/ijms150814610] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 08/01/2014] [Accepted: 08/18/2014] [Indexed: 01/28/2023] Open
Abstract
In recent years it has become apparent that aminoacyl-tRNAs are not only crucial components involved in protein biosynthesis, but are also used as substrates and amino acid donors in a variety of other important cellular processes, ranging from bacterial cell wall biosynthesis and lipid modification to protein turnover and secondary metabolite assembly. In this review, we focus on tRNA-dependent biosynthetic pathways that generate modified cyclic dipeptides (CDPs). The essential peptide bond-forming catalysts responsible for the initial generation of a CDP-scaffold are referred to as cyclodipeptide synthases (CDPSs) and use loaded tRNAs as their substrates. After initially discussing the phylogenetic distribution and organization of CDPS gene clusters, we will focus on structural and catalytic properties of CDPSs before turning to two recently characterized CDPS-dependent pathways that assemble modified CDPs. Finally, possible applications of CDPSs in the rational design of structural diversity using combinatorial biosynthesis will be discussed before concluding with a short outlook.
Collapse
Affiliation(s)
- Tobias W Giessen
- Department of Chemistry/Biochemistry and LOEWE Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Hans-Meerwein-Strasse-4, 35032 Marburg, Germany.
| | - Mohamed A Marahiel
- Department of Chemistry/Biochemistry and LOEWE Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Hans-Meerwein-Strasse-4, 35032 Marburg, Germany.
| |
Collapse
|
42
|
Baldridge KC, Contreras LM. Functional implications of ribosomal RNA methylation in response to environmental stress. Crit Rev Biochem Mol Biol 2013; 49:69-89. [PMID: 24261569 DOI: 10.3109/10409238.2013.859229] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The study of post-transcriptional RNA modifications has long been focused on the roles these chemical modifications play in maintaining ribosomal function. The field of ribosomal RNA modification has reached a milestone in recent years with the confirmation of the final unknown ribosomal RNA methyltransferase in Escherichia coli in 2012. Furthermore, the last 10 years have brought numerous discoveries in non-coding RNAs and the roles that post-transcriptional modification play in their functions. These observations indicate the need for a revitalization of this field of research to understand the role modifications play in maintaining cellular health in a dynamic environment. With the advent of high-throughput sequencing technologies, the time is ripe for leaps and bounds forward. This review discusses ribosomal RNA methyltransferases and their role in responding to external stress in Escherichia coli, with a specific focus on knockout studies and on analysis of transcriptome data with respect to rRNA methyltransferases.
Collapse
Affiliation(s)
- Kevin C Baldridge
- McKetta Department of Chemical Engineering, The University of Texas at Austin , Austin, TX , USA
| | | |
Collapse
|
43
|
Fica SM, Tuttle N, Novak T, Li NS, Lu J, Koodathingal P, Dai Q, Staley JP, Piccirilli JA. RNA catalyses nuclear pre-mRNA splicing. Nature 2013; 503:229-34. [PMID: 24196718 PMCID: PMC4666680 DOI: 10.1038/nature12734] [Citation(s) in RCA: 254] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 10/03/2013] [Indexed: 12/24/2022]
Abstract
In nuclear pre-messenger RNA splicing, introns are excised by the spliceosome, a multi-megadalton machine composed of both proteins and small nuclear RNAs (snRNAs). Over thirty years ago, following the discovery of self-splicing group II intron RNAs, the snRNAs were hypothesized to catalyze splicing. However, no definitive evidence for a role of either RNA or protein in catalysis by the spliceosome has been reported to date. By using metal rescue strategies, here we show that the U6 snRNA catalyzes both splicing reactions by positioning divalent metals that stabilize the leaving groups during each reaction. Strikingly, all of the U6 catalytic metal ligands we identified correspond to the ligands observed to position catalytic, divalent metals in crystal structures of a group II intron RNA. These findings indicate that group II introns and the spliceosome share common catalytic mechanisms, and likely common evolutionary origins. Our results demonstrate that RNA mediates catalysis within the spliceosome.
Collapse
Affiliation(s)
- Sebastian M Fica
- 1] Graduate Program in Cell and Molecular Biology, The University of Chicago, Chicago, Illinois 60637, USA [2] Department of Molecular Genetics and Cell Biology, Cummings Life Sciences Center, 920 East 58th Street, The University of Chicago, Chicago, Illinois 60637, USA [3]
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Ruiz-Mirazo K, Briones C, de la Escosura A. Prebiotic Systems Chemistry: New Perspectives for the Origins of Life. Chem Rev 2013; 114:285-366. [DOI: 10.1021/cr2004844] [Citation(s) in RCA: 563] [Impact Index Per Article: 46.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Kepa Ruiz-Mirazo
- Biophysics
Unit (CSIC-UPV/EHU), Leioa, and Department of Logic and Philosophy
of Science, University of the Basque Country, Avenida de Tolosa 70, 20080 Donostia−San Sebastián, Spain
| | - Carlos Briones
- Department
of Molecular Evolution, Centro de Astrobiología (CSIC−INTA, associated to the NASA Astrobiology Institute), Carretera de Ajalvir, Km 4, 28850 Torrejón de Ardoz, Madrid, Spain
| | - Andrés de la Escosura
- Organic
Chemistry Department, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
45
|
Matsubara T, Iijima K, Watanabe T, Hohsaka T, Sato T. Incorporation of glycosylated amino acid into protein by an in vitro translation system. Bioorg Med Chem Lett 2013; 23:5634-6. [DOI: 10.1016/j.bmcl.2013.08.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 08/03/2013] [Accepted: 08/06/2013] [Indexed: 10/26/2022]
|
46
|
Structure of novel enzyme in mannan biodegradation process 4-O-β-D-mannosyl-D-glucose phosphorylase MGP. J Mol Biol 2013; 425:4468-78. [PMID: 23954514 DOI: 10.1016/j.jmb.2013.08.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 08/01/2013] [Accepted: 08/05/2013] [Indexed: 11/20/2022]
Abstract
The crystal structure of a novel component of the mannan biodegradation system, 4-O-β-D-mannosyl-D-glucose phosphorylase (MGP), was determined to a 1.68-Å resolution. The structure of the enzyme revealed a unique homohexameric structure, which was formed by using two helices attached to the N-terminus and C-terminus as a tab for sticking between subunits. The structures of MGP complexes with genuine substrates, 4-O-β-D-mannosyl-D-glucose and phosphate, and the product D-mannose-1-phosphate were also determined. The complex structures revealed that the invariant residue Asp131, which is supposed to be the general acid/base, did not exist close to the glycosidic Glc-O4 atom, which should be protonated in the catalytic reaction. Also, no solvent molecule that might mediate a proton transfer from Asp131 was observed in the substrate complex structure, suggesting that the catalytic mechanism of MGP is different from those of known disaccharide phosphorylases.
Collapse
|
47
|
Li N, Chen Y, Guo Q, Zhang Y, Yuan Y, Ma C, Deng H, Lei J, Gao N. Cryo-EM structures of the late-stage assembly intermediates of the bacterial 50S ribosomal subunit. Nucleic Acids Res 2013; 41:7073-83. [PMID: 23700310 PMCID: PMC3737534 DOI: 10.1093/nar/gkt423] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Ribosome assembly is a process fundamental for all cellular activities. The efficiency and accuracy of the subunit assembly are tightly regulated and closely monitored. In the present work, we characterized, both compositionally and structurally, a set of in vivo 50S subunit precursors (45S), isolated from a mutant bacterial strain. Our qualitative mass spectrometry data indicate that L28, L16, L33, L36 and L35 are dramatically underrepresented in the 45S particles. This protein spectrum shows interesting similarity to many qualitatively analyzed 50S precursors from different genetic background, indicating the presence of global rate-limiting steps in the late-stage assembly of 50S subunit. Our structural data reveal two major intermediate states for the 45S particles. Consistently, both states severally lack those proteins, but they also differ in the stability of the functional centers of the 50S subunit, demonstrating that they are translationally inactive. Detailed analysis indicates that the orientation of H38 accounts for the global conformational differences in these intermediate structures, and suggests that the reorientation of H38 to its native position is rate-limiting during the late-stage assembly. Especially, H38 plays an essential role in stabilizing the central protuberance, through the interaction with the 5S rRNA, and the correctly orientated H38 is likely a prerequisite for further maturation of the 50S subunit.
Collapse
Affiliation(s)
- Ningning Li
- Ministry of Education Key Laboratory of Protein Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Goh GB, Knight JL, Brooks CL. Towards Accurate Prediction of Protonation Equilibrium of Nucleic Acids. J Phys Chem Lett 2013; 4:760-766. [PMID: 23526474 PMCID: PMC3601767 DOI: 10.1021/jz400078d] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The role of protonated nucleotides in modulating the pH-dependent properties of nucleic acids is one of the emerging frontiers in the field of nucleic acid biology. The recent development of a constant pH molecular dynamics simulation (CPHMDMSλD) framework for simulating nucleic acids has provided a tool for realistic simulations of pH-dependent dynamics. We enhanced the CPHMDMSλD framework with pH-based replica exchange (pH-REX), which significantly improves the sampling of both titration and spatial coordinates. The results from our pKa calculations for the GAAA tetraloop, which was predicted with lower accuracy previously due to sampling challenges, demonstrates that pH-REX reduces the average unsigned error (AUE) to 0.7 pKa units, and the error of the most poorly predicted residue A17 was drastically reduced from 2.9 to 1.2 pKa unit. Lastly, we show that pH-REX CPHMDMSλD simulations can be used to identify the dominant conformation of nucleic acid structures in alternate pH environments. This work suggests that pH-REX CPHMDMSλD simulations provide a practical tool for predicting nucleic acid protonation equilibrium from first-principles, and offering structural and mechanistic insight into the study of pH-dependent properties of nucleic acids.
Collapse
Affiliation(s)
- Garrett B Goh
- Department of Chemistry, University of Michigan, 930 N. University, Ann Arbor, Michigan 48109, United States
| | | | | |
Collapse
|
49
|
Abstract
The role of pH-dependent protonation equilibrium in modulating RNA dynamics and function is one of the key unanswered questions in RNA biology. Molecular dynamics (MD) simulations can provide insight into the mechanistic roles of protonated nucleotides, but it is only capable of modeling fixed protonation states and requires prior knowledge of the key residue's protonation state. Recently, we developed a framework for constant pH molecular dynamics simulations (CPHMDMSλD) of nucleic acids, where the nucleotides' protonation states are modeled as dynamic variables that are coupled to the structural dynamics of the RNA. In the present study, we demonstrate the application of CPHMDMSλD to the lead-dependent ribozyme; establishing the validity of this approach for modeling complex RNA structures. We show that CPHMDMSλD accurately predicts the direction of the pKa shifts and reproduces experimentally-measured microscopic pKa values with an average unsigned error of 1.3 pKa units. The effects of coupled titration states in RNA structures are modeled, and the importance of conformation sampling is highlighted. The general accuracy of CPHMDMSλD simulations in reproducing pH-dependent observables reported in this work demonstrates that constant pH simulations provides a powerful tool to investigate pH-dependent processes in nucleic acids.
Collapse
Affiliation(s)
- Garrett B Goh
- Department of Chemistry, University of Michigan, 930 N. University, Ann Arbor, Michigan 48109, United States
| | | | | |
Collapse
|
50
|
Davydov II, Wohlgemuth I, Artamonova II, Urlaub H, Tonevitsky AG, Rodnina MV. Evolution of the protein stoichiometry in the L12 stalk of bacterial and organellar ribosomes. Nat Commun 2013; 4:1387. [DOI: 10.1038/ncomms2373] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 12/12/2012] [Indexed: 01/08/2023] Open
|