1
|
Lesgidou N, Koukiali A, Nikolakaki E, Giannakouros T, Vlassi M. PIM-1L Kinase Binds to and Inactivates SRPK1: A Biochemical and Molecular Dynamics Study. Proteins 2024. [PMID: 39462863 DOI: 10.1002/prot.26757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 10/29/2024]
Abstract
SR/RS dipeptide repeats vary in both length and position, and are phosphorylated by SR protein kinases (SRPKs). PIM-1L, the long isoform of PIM-1 kinase, the splicing of which has been implicated in acute myeloid leukemia, contains a domain that consists largely of repeating SR/RS and SH/HS dipeptides (SR/SH-rich). In order to extend our knowledge on the specificity and cellular functions of SRPK1, here we investigate whether PIM-1L could act as substrate of SRPK1 by a combination of biochemical and computational approaches. Our biochemical data showed that the SR/SH-rich domain of PIM-1L was able to associate with SRPK1, yet it could not act as a substrate but, instead, inactivated the kinase. In line with our biochemical data, molecular modeling followed by a microsecond-scale all-atom molecular dynamics (MD) simulation suggests that the SR/SH-rich domain acts as a pseudo-docking peptide that binds to the same acidic docking-groove used in other SRPK1 interactions and induces inactive SRPK1 conformations. Comparative community network analysis of the MD trajectories, unraveled the dynamic architecture of apo SRPK1 and notable alterations of allosteric communications upon PIM-1L peptide binding. This analysis also allowed us to identify key SRPK1 residues, including unique ones, with a pivotal role in mediating allosteric signal propagation within the kinase core. Interestingly, most of the identified amino acids correspond to cancer-associated amino acid changes, validating our results. In total, this work provides insights not only on the details of SRPK1 inhibition by the PIM-1L SR/SH-domain, but also contributes to an in-depth understanding of SRPK1 regulation.
Collapse
Affiliation(s)
- Nastazia Lesgidou
- Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", Athens, Greece
| | - Anastasia Koukiali
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University, Thessaloniki, Greece
| | - Eleni Nikolakaki
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University, Thessaloniki, Greece
| | - Thomas Giannakouros
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University, Thessaloniki, Greece
| | - Metaxia Vlassi
- Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", Athens, Greece
| |
Collapse
|
2
|
Cai G, Bao Y, Li Q, Hsu PH, Xia J, Ngo JCK. Design of a covalent protein-protein interaction inhibitor of SRPKs to suppress angiogenesis and invasion of cancer cells. Commun Chem 2024; 7:144. [PMID: 38937565 PMCID: PMC11211491 DOI: 10.1038/s42004-024-01230-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 06/19/2024] [Indexed: 06/29/2024] Open
Abstract
Serine-arginine (SR) proteins are splicing factors that play essential roles in both constitutive and alternative pre-mRNA splicing. Phosphorylation of their C-terminal RS domains by SR protein kinases (SRPKs) regulates their localization and diverse cellular activities. Dysregulation of phosphorylation has been implicated in many human diseases, including cancers. Here, we report the development of a covalent protein-protein interaction inhibitor, C-DBS, that targets a lysine residue within the SRPK-specific docking groove to block the interaction and phosphorylation of the prototypic SR protein SRSF1. C-DBS exhibits high specificity and conjugation efficiency both in vitro and in cellulo. This self-cell-penetrating inhibitor attenuates the phosphorylation of endogenous SR proteins and subsequently inhibits the angiogenesis, migration, and invasion of cancer cells. These findings provide a new foundation for the development of covalent SRPK inhibitors for combatting diseases such as cancer and viral infections and overcoming the resistance encountered by ATP-competitive inhibitors.
Collapse
Affiliation(s)
- Gongli Cai
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Yishu Bao
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Qingyun Li
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Pang-Hung Hsu
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jiang Xia
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Jacky Chi Ki Ngo
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China.
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China.
- Center of Novel Biomaterials, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China.
- Center for Protein Science and Crystallography, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China.
| |
Collapse
|
3
|
Yip RPH, Kwok DCY, Lai LTF, Ho SM, Wong ICK, Chan CP, Lau WCY, Ngo JCK. SRPK2 Mediates HBV Core Protein Phosphorylation and Capsid Assembly via Docking Interaction. PLoS Pathog 2024; 20:e1011978. [PMID: 38324561 PMCID: PMC10878513 DOI: 10.1371/journal.ppat.1011978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/20/2024] [Accepted: 01/17/2024] [Indexed: 02/09/2024] Open
Abstract
Members of the serine-arginine protein kinase (SRPK) family, SRPK1 and SRPK2, phosphorylate the hepatitis B core protein (Cp) and are crucial for pregenomic RNA encapsidation during viral nucleocapsid assembly. Among them, SRPK2 exhibits higher kinase activity toward Cp. In this study, we identified Cp sites that are phosphorylated by SRPK2 and demonstrated that the kinase utilizes an SRPK-specific docking groove to interact with and regulate the phosphorylation of the C-terminal arginine rich domain of Cp. We determined that direct interaction between the docking groove of SRPK2 and unphosphorylated Cp inhibited premature viral capsid assembly in vitro, whereas the phosphorylation of the viral protein reactivated the process. Pull-down assays together with the new cryo-electron microscopy structure of the HBV capsid in complex with SRPK2 revealed that the kinases decorate the surface of the viral capsid by interacting with the C-terminal domain of Cp, underscoring the importance of the docking interaction in regulating capsid assembly and pregenome packaging. Moreover, SRPK2-knockout in HepG2 cells suppressed Cp phosphorylation, indicating that SRPK2 is an important cellular kinase for HBV life cycle.
Collapse
Affiliation(s)
- Ryan Pak Hong Yip
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Doris Ching Ying Kwok
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Louis Tung Faat Lai
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Siu-Ming Ho
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Liver Research (The University of Hong Kong), Pokfulam, Hong Kong, Hong Kong SAR, China
| | - Ivan Chun Kit Wong
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Chi-Ping Chan
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Liver Research (The University of Hong Kong), Pokfulam, Hong Kong, Hong Kong SAR, China
| | - Wilson Chun Yu Lau
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
| | - Jacky Chi Ki Ngo
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
- Center for Novel Biomaterials, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
- Center for Protein Science and Crystallography, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
| |
Collapse
|
4
|
Hogg EKJ, Findlay GM. Functions of SRPK, CLK and DYRK kinases in stem cells, development, and human developmental disorders. FEBS Lett 2023; 597:2375-2415. [PMID: 37607329 PMCID: PMC10952393 DOI: 10.1002/1873-3468.14723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/08/2023] [Accepted: 07/18/2023] [Indexed: 08/24/2023]
Abstract
Human developmental disorders encompass a wide range of debilitating physical conditions and intellectual disabilities. Perturbation of protein kinase signalling underlies the development of some of these disorders. For example, disrupted SRPK signalling is associated with intellectual disabilities, and the gene dosage of DYRKs can dictate the pathology of disorders including Down's syndrome. Here, we review the emerging roles of the CMGC kinase families SRPK, CLK, DYRK, and sub-family HIPK during embryonic development and in developmental disorders. In particular, SRPK, CLK, and DYRK kinase families have key roles in developmental signalling and stem cell regulation, and can co-ordinate neuronal development and function. Genetic studies in model organisms reveal critical phenotypes including embryonic lethality, sterility, musculoskeletal errors, and most notably, altered neurological behaviours arising from defects of the neuroectoderm and altered neuronal signalling. Further unpicking the mechanisms of specific kinases using human stem cell models of neuronal differentiation and function will improve our understanding of human developmental disorders and may provide avenues for therapeutic strategies.
Collapse
Affiliation(s)
- Elizabeth K. J. Hogg
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life SciencesUniversity of DundeeUK
| | - Greg M. Findlay
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life SciencesUniversity of DundeeUK
| |
Collapse
|
5
|
Li D, Yu W, Lai M. Towards understandings of serine/arginine-rich splicing factors. Acta Pharm Sin B 2023; 13:3181-3207. [PMID: 37655328 PMCID: PMC10465970 DOI: 10.1016/j.apsb.2023.05.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/13/2023] [Accepted: 05/06/2023] [Indexed: 09/02/2023] Open
Abstract
Serine/arginine-rich splicing factors (SRSFs) refer to twelve RNA-binding proteins which regulate splice site recognition and spliceosome assembly during precursor messenger RNA splicing. SRSFs also participate in other RNA metabolic events, such as transcription, translation and nonsense-mediated decay, during their shuttling between nucleus and cytoplasm, making them indispensable for genome diversity and cellular activity. Of note, aberrant SRSF expression and/or mutations elicit fallacies in gene splicing, leading to the generation of pathogenic gene and protein isoforms, which highlights the therapeutic potential of targeting SRSF to treat diseases. In this review, we updated current understanding of SRSF structures and functions in RNA metabolism. Next, we analyzed SRSF-induced aberrant gene expression and their pathogenic outcomes in cancers and non-tumor diseases. The development of some well-characterized SRSF inhibitors was discussed in detail. We hope this review will contribute to future studies of SRSF functions and drug development targeting SRSFs.
Collapse
Affiliation(s)
- Dianyang Li
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Wenying Yu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Maode Lai
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- Department of Pathology, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Science (2019RU042), Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
| |
Collapse
|
6
|
Hong Y, Kim I, Moon H, Lee J, Lertpatipanpong P, Ryu CH, Jung YS, Seok J, Kim Y, Ryu J, Baek SJ. Novel thrombospondin-1 transcript exhibits distinctive expression and activity in thyroid tumorigenesis. Oncogene 2023:10.1038/s41388-023-02692-9. [PMID: 37055552 DOI: 10.1038/s41388-023-02692-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 04/15/2023]
Abstract
Thrombospondin 1 (TSP1) is known for its cell-specific functions in cancer progression, such as proliferation and migration. It contains 22 exons that may potentially produce several different transcripts. Here, we identified TSP1V as a novel TSP1-splicing variant produced by intron retention (IR) in human thyroid cancer cells and tissues. We observed that TSP1V functionally inhibited tumorigenesis contrary to TSP1 wild-type, as identified in vivo and in vitro. These activities of TSP1V are caused by inhibiting phospho-Smad and phospho-focal adhesion kinase. Reverse transcription polymerase chain reaction and minigene experiments revealed that some phytochemicals/non-steroidal anti-inflammatory drugs enhanced IR. We further found that RNA-binding motif protein 5 (RBM5) suppressed IR induced by sulindac sulfide treatment. Additionally, sulindac sulfide reduced phospho-RBM5 levels in a time-dependent manner. Furthermore, trans-chalcone demethylated TSP1V, thereby preventing methyl-CpG-binding protein 2 binding to TSP1V gene. In addition, TSP1V levels were significantly lower in patients with differentiated thyroid carcinoma than in those with benign thyroid nodule, indicating its potential application as a diagnostic biomarker in tumor progression.
Collapse
Affiliation(s)
- Yukyung Hong
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Korea
| | - Ilju Kim
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Korea
| | - Hyunjin Moon
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Korea
| | - Jaehak Lee
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Korea
| | - Pattawika Lertpatipanpong
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Korea
| | - Chang Hwan Ryu
- Department of Otolaryngology-Head and Neck Surgery, Center for Thyroid Cancer, Research Institute and Hospital, National Cancer Center, Goyang, Korea
| | - Yuh-Seog Jung
- Department of Otolaryngology-Head and Neck Surgery, Center for Thyroid Cancer, Research Institute and Hospital, National Cancer Center, Goyang, Korea
| | - Jungirl Seok
- Department of Otolaryngology-Head and Neck Surgery, Center for Thyroid Cancer, Research Institute and Hospital, National Cancer Center, Goyang, Korea
| | - Yonghwan Kim
- Department of Biological Sciences, Research Institute of Women's Health and Digital Humanity Center, Sookmyung Women's University, Seoul, 04310, Korea
| | - Junsun Ryu
- Department of Otolaryngology-Head and Neck Surgery, Center for Thyroid Cancer, Research Institute and Hospital, National Cancer Center, Goyang, Korea.
| | - Seung Joon Baek
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Korea.
| |
Collapse
|
7
|
Fargason T, De Silva NIU, Powell E, Zhang Z, Paul T, Shariq J, Zaharias S, Zhang J. Peptides that Mimic RS repeats modulate phase separation of SRSF1, revealing a reliance on combined stacking and electrostatic interactions. eLife 2023; 12:e84412. [PMID: 36862748 PMCID: PMC10023157 DOI: 10.7554/elife.84412] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 03/01/2023] [Indexed: 03/03/2023] Open
Abstract
Phase separation plays crucial roles in both sustaining cellular function and perpetuating disease states. Despite extensive studies, our understanding of this process is hindered by low solubility of phase-separating proteins. One example of this is found in SR and SR-related proteins. These proteins are characterized by domains rich in arginine and serine (RS domains), which are essential to alternative splicing and in vivo phase separation. However, they are also responsible for a low solubility that has made these proteins difficult to study for decades. Here, we solubilize the founding member of the SR family, SRSF1, by introducing a peptide mimicking RS repeats as a co-solute. We find that this RS-mimic peptide forms interactions similar to those of the protein's RS domain. Both interact with a combination of surface-exposed aromatic residues and acidic residues on SRSF1's RNA Recognition Motifs (RRMs) through electrostatic and cation-pi interactions. Analysis of RRM domains from human SR proteins indicates that these sites are conserved across the protein family. In addition to opening an avenue to previously unavailable proteins, our work provides insight into how SR proteins phase separate and participate in nuclear speckles.
Collapse
Affiliation(s)
- Talia Fargason
- Department of Chemistry, University of Alabama at BirminghamBirminghamUnited States
| | | | - Erin Powell
- Department of Chemistry, University of Alabama at BirminghamBirminghamUnited States
| | - Zihan Zhang
- Department of Chemistry, University of Alabama at BirminghamBirminghamUnited States
| | - Trenton Paul
- Department of Chemistry, University of Alabama at BirminghamBirminghamUnited States
| | - Jamal Shariq
- Department of Chemistry, University of Alabama at BirminghamBirminghamUnited States
| | - Steve Zaharias
- Department of Chemistry, University of Alabama at BirminghamBirminghamUnited States
| | - Jun Zhang
- Department of Chemistry, University of Alabama at BirminghamBirminghamUnited States
| |
Collapse
|
8
|
Aubol BE, Adams JA. SRPK1 regulates RNA binding in a pre-spliceosomal complex using a catalytic bypass mechanism. FEBS J 2022; 289:7428-7445. [PMID: 35730996 DOI: 10.1111/febs.16560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/10/2022] [Accepted: 06/21/2022] [Indexed: 01/14/2023]
Abstract
Serine-arginine protein kinase 1 (SRPK1) phosphorylates serine-arginine (SR) proteins in the cytoplasm, directing them to the nucleus for splicing function. SRPK1 has also been detected in the nucleus but its function here is still not fully understood. We now demonstrate that nuclear SRPK1 can regulate U1-70K, a protein component of the uridine-rich 1 small nuclear ribonucleoprotein (U1 snRNP) that binds SR proteins and facilitates 5' splice-site selection in precursor mRNA. We found that SRPK1 uses a large, disordered domain to bind U1-70K, regulating the interaction of an exonic splicing enhancer (ESE) to the associated SR protein. Surprisingly, the catalytic activity of SRPK1 is not required for this phenomenon. Instead, SRPK1 associates directly with the N-terminus of U1-70K and alters the regulatory function of the distal C-terminus, modifying interactions between the U1-70K:SR protein complex and the ESE. Disruption of SRPK1 binding to this complex affects the alternative splicing of genes modulated by the C-terminus of U1-70K. Such findings suggest that, in addition to operating as a traditional serine-modifying catalyst, SRPK1 can also bypass this intrinsic activity to regulate RNA contacts in an early pre-spliceosomal complex.
Collapse
Affiliation(s)
- Brandon E Aubol
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Joseph A Adams
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
9
|
Rodriguez Gallo MC, Li Q, Mehta D, Uhrig RG. Genome-scale analysis of Arabidopsis splicing-related protein kinase families reveals roles in abiotic stress adaptation. BMC PLANT BIOLOGY 2022; 22:496. [PMID: 36273172 PMCID: PMC9587599 DOI: 10.1186/s12870-022-03870-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 10/04/2022] [Indexed: 05/24/2023]
Abstract
Nearly 60 - 80 % of intron-containing plant genes undergo alternative splicing in response to either stress or plant developmental cues. RNA splicing is performed by a large ribonucleoprotein complex called the spliceosome in conjunction with associated subunits such as serine arginine (SR) proteins, all of which undergo extensive phosphorylation. In plants, there are three main protein kinase families suggested to phosphorylate core spliceosome subunits and related splicing factors based on orthology to human splicing-related kinases: the SERINE/ARGININE PROTEIN KINASES (SRPK), ARABIDOPSIS FUS3 COMPLEMENT (AFC), and Pre-mRNA PROCESSING FACTOR 4 (PRP4K) protein kinases. To better define the conservation and role(s) of these kinases in plants, we performed a genome-scale analysis of the three families across photosynthetic eukaryotes, followed by extensive transcriptomic and bioinformatic analysis of all Arabidopsis thaliana SRPK, AFC, and PRP4K protein kinases to elucidate their biological functions. Unexpectedly, this revealed the existence of SRPK and AFC phylogenetic groups with distinct promoter elements and patterns of transcriptional response to abiotic stress, while PRP4Ks possess no phylogenetic sub-divisions, suggestive of functional redundancy. We also reveal splicing-related kinase families are both diel and photoperiod regulated, implicating different orthologs as discrete time-of-day RNA splicing regulators. This foundational work establishes a number of new hypotheses regarding how reversible spliceosome phosphorylation contributes to both diel plant cell regulation and abiotic stress adaptation in plants.
Collapse
Affiliation(s)
- M C Rodriguez Gallo
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - Q Li
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - D Mehta
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - R G Uhrig
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada.
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
10
|
A critical update on the strategies towards small molecule inhibitors targeting Serine/arginine-rich (SR) proteins and Serine/arginine-rich proteins related kinases in alternative splicing. Bioorg Med Chem 2022; 70:116921. [PMID: 35863237 DOI: 10.1016/j.bmc.2022.116921] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/01/2022] [Accepted: 07/06/2022] [Indexed: 11/02/2022]
Abstract
>90% of genes in the human body undergo alternative splicing (AS) after transcription, which enriches protein species and regulates protein levels. However, there is growing evidence that various genetic isoforms resulting from dysregulated alternative splicing are prevalent in various types of cancers. Dysregulated alternative splicing leads to cancer generation and maintenance of cancer properties such as proliferation differentiation, apoptosis inhibition, invasion metastasis, and angiogenesis. Serine/arginine-rich proteins and SR protein-associated kinases mediate splice site recognition and splice complex assembly during variable splicing. Based on the impact of dysregulated alternative splicing on disease onset and progression, the search for small molecule inhibitors targeting alternative splicing is imminent. In this review, we discuss the structure and specific biological functions of SR proteins and describe the regulation of SR protein function by SR protein related kinases meticulously, which are closely related to the occurrence and development of various types of cancers. On this basis, we summarize the reported small molecule inhibitors targeting SR proteins and SR protein related kinases from the perspective of medicinal chemistry. We mainly categorize small molecule inhibitors from four aspects, including targeting SR proteins, targeting Serine/arginine-rich protein-specific kinases (SRPKs), targeting Cdc2-like kinases (CLKs) and targeting dual-specificity tyrosine-regulated kinases (DYRKs), in terms of structure, inhibition target, specific mechanism of action, biological activity, and applicable diseases. With this review, we are expected to provide a timely summary of recent advances in alternative splicing regulated by kinases and a preliminary introduction to relevant small molecule inhibitors.
Collapse
|
11
|
Kliche J, Ivarsson Y. Orchestrating serine/threonine phosphorylation and elucidating downstream effects by short linear motifs. Biochem J 2022; 479:1-22. [PMID: 34989786 PMCID: PMC8786283 DOI: 10.1042/bcj20200714] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 12/13/2022]
Abstract
Cellular function is based on protein-protein interactions. A large proportion of these interactions involves the binding of short linear motifs (SLiMs) by folded globular domains. These interactions are regulated by post-translational modifications, such as phosphorylation, that create and break motif binding sites or tune the affinity of the interactions. In addition, motif-based interactions are involved in targeting serine/threonine kinases and phosphatases to their substrate and contribute to the specificity of the enzymatic actions regulating which sites are phosphorylated. Here, we review how SLiM-based interactions assist in determining the specificity of serine/threonine kinases and phosphatases, and how phosphorylation, in turn, affects motif-based interactions. We provide examples of SLiM-based interactions that are turned on/off, or are tuned by serine/threonine phosphorylation and exemplify how this affects SLiM-based protein complex formation.
Collapse
Affiliation(s)
- Johanna Kliche
- Department of Chemistry – BMC, Uppsala University, Husargatan 3, Box 576 751 23 Uppsala, Sweden
| | - Ylva Ivarsson
- Department of Chemistry – BMC, Uppsala University, Husargatan 3, Box 576 751 23 Uppsala, Sweden
| |
Collapse
|
12
|
Li Q, Zeng C, Liu H, Yung KWY, Chen C, Xie Q, Zhang Y, Wan SWC, Mak BSW, Xia J, Xiong S, Ngo JCK. Protein-Protein Interaction Inhibitor of SRPKs Alters the Splicing Isoforms of VEGF and Inhibits Angiogenesis. iScience 2021; 24:102423. [PMID: 33997701 PMCID: PMC8102418 DOI: 10.1016/j.isci.2021.102423] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/13/2021] [Accepted: 04/09/2021] [Indexed: 12/14/2022] Open
Abstract
Serine-arginine (SR) protein kinases (SRPKs) regulate the functions of the SR-rich splicing factors by phosphorylating multiple serines within their C-terminal arginine-serine-rich domains. Dysregulation of these phosphorylation events has been implicated in many diseases, suggesting SRPKs are potential therapeutic targets. In particular, aberrant SRPK1 expression alters the balances of proangiogenic (VEGF165) and antiangiogenic (VEGF165b) splicing isoforms of the key angiogenesis factor, vascular endothelial growth factor (VEGF), through the phosphorylation of prototypic SR protein SRSF1. Here, we report a protein-protein interaction (PPI) inhibitor of SRPKs, docking blocker of SRPK1 (DBS1), that specifically blocks a conserved substrate docking groove unique to SRPKs. DBS1 is a cell-permeable inhibitor that effectively inhibits the binding and phosphorylation of SRSF1 and subsequently switches VEGF splicing from the proangiogenic to the antiangiogenic isoform. Our findings thus provide a new direction for the development of SRPK inhibitors through targeting a unique PPI site to combat angiogenic diseases.
Collapse
Affiliation(s)
- Qingyun Li
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
- Hong Kong Branch of National Engineering Research Center of Genetic Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Chuyue Zeng
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Haizhen Liu
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Kristen Wing Yu Yung
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Chun Chen
- Department of Cellular Biology, Jinan University, Guangzhou, China
| | - Qiuling Xie
- Department of Cellular Biology, Jinan University, Guangzhou, China
| | - Yu Zhang
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Stephanie Winn Chee Wan
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Bertha Sze Wing Mak
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Jiang Xia
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Sheng Xiong
- Department of Cellular Biology, Jinan University, Guangzhou, China
- Hong Kong Branch of National Engineering Research Center of Genetic Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Jacky Chi Ki Ngo
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
- Hong Kong Branch of National Engineering Research Center of Genetic Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| |
Collapse
|
13
|
Structure of SRSF1 RRM1 bound to RNA reveals an unexpected bimodal mode of interaction and explains its involvement in SMN1 exon7 splicing. Nat Commun 2021; 12:428. [PMID: 33462199 PMCID: PMC7813835 DOI: 10.1038/s41467-020-20481-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 11/30/2020] [Indexed: 12/27/2022] Open
Abstract
The human prototypical SR protein SRSF1 is an oncoprotein that contains two RRMs and plays a pivotal role in RNA metabolism. We determined the structure of the RRM1 bound to RNA and found that the domain binds preferentially to a CN motif (N is for any nucleotide). Based on this solution structure, we engineered a protein containing a single glutamate to asparagine mutation (E87N), which gains the ability to bind to uridines and thereby activates SMN exon7 inclusion, a strategy that is used to cure spinal muscular atrophy. Finally, we revealed that the flexible inter-RRM linker of SRSF1 allows RRM1 to bind RNA on both sides of RRM2 binding site. Besides revealing an unexpected bimodal mode of interaction of SRSF1 with RNA, which will be of interest to design new therapeutic strategies, this study brings a new perspective on the mode of action of SRSF1 in cells. SRSF1 is an oncoprotein that plays important roles in RNA metabolism. We reveal the structure of the human SRSF1 RRM1 bound to RNA, and propose a bimodal mode of interaction of the protein with RNA. A single mutation in RRM1 changed SRSF1 specificity for RNA and made it active on SMN2 exon7 splicing.
Collapse
|
14
|
Bustos F, Segarra-Fas A, Nardocci G, Cassidy A, Antico O, Davidson L, Brandenburg L, Macartney TJ, Toth R, Hastie CJ, Moran J, Gourlay R, Varghese J, Soares RF, Montecino M, Findlay GM. Functional Diversification of SRSF Protein Kinase to Control Ubiquitin-Dependent Neurodevelopmental Signaling. Dev Cell 2020; 55:629-647.e7. [PMID: 33080171 PMCID: PMC7725506 DOI: 10.1016/j.devcel.2020.09.025] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 08/17/2020] [Accepted: 09/25/2020] [Indexed: 02/06/2023]
Abstract
Conserved protein kinases with core cellular functions have been frequently redeployed during metazoan evolution to regulate specialized developmental processes. The Ser/Arg (SR)-rich splicing factor (SRSF) protein kinase (SRPK), which is implicated in splicing regulation, is one such conserved eukaryotic kinase. Surprisingly, we show that SRPK has acquired the capacity to control a neurodevelopmental ubiquitin signaling pathway. In mammalian embryonic stem cells and cultured neurons, SRPK phosphorylates Ser-Arg motifs in RNF12/RLIM, a key developmental E3 ubiquitin ligase that is mutated in an intellectual disability syndrome. Processive phosphorylation by SRPK stimulates RNF12-dependent ubiquitylation of nuclear transcription factor substrates, thereby acting to restrain a neural gene expression program that is aberrantly expressed in intellectual disability. SRPK family genes are also mutated in intellectual disability disorders, and patient-derived SRPK point mutations impair RNF12 phosphorylation. Our data reveal unappreciated functional diversification of SRPK to regulate ubiquitin signaling that ensures correct regulation of neurodevelopmental gene expression.
Collapse
Affiliation(s)
- Francisco Bustos
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, the University of Dundee, Dundee DD1 5EH, UK
| | - Anna Segarra-Fas
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, the University of Dundee, Dundee DD1 5EH, UK
| | - Gino Nardocci
- Institute of Biomedical Sciences and FONDAP Center for Genome Regulation, Universidad Andrés Bello, Santiago, Chile
| | - Andrew Cassidy
- Tayside Centre for Genomic Analysis, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| | - Odetta Antico
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, the University of Dundee, Dundee DD1 5EH, UK
| | - Lindsay Davidson
- School of Life Sciences, The University of Dundee, Dundee DD1 5EH, UK
| | - Lennart Brandenburg
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, the University of Dundee, Dundee DD1 5EH, UK
| | - Thomas J Macartney
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, the University of Dundee, Dundee DD1 5EH, UK
| | - Rachel Toth
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, the University of Dundee, Dundee DD1 5EH, UK
| | - C James Hastie
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, the University of Dundee, Dundee DD1 5EH, UK
| | - Jennifer Moran
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, the University of Dundee, Dundee DD1 5EH, UK
| | - Robert Gourlay
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, the University of Dundee, Dundee DD1 5EH, UK
| | - Joby Varghese
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, the University of Dundee, Dundee DD1 5EH, UK
| | - Renata F Soares
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, the University of Dundee, Dundee DD1 5EH, UK
| | - Martin Montecino
- Institute of Biomedical Sciences and FONDAP Center for Genome Regulation, Universidad Andrés Bello, Santiago, Chile
| | - Greg M Findlay
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, the University of Dundee, Dundee DD1 5EH, UK.
| |
Collapse
|
15
|
Chandra A, Ananda H, Singh N, Qamar I. Identification of a novel and potent small molecule inhibitor of SRPK1: mechanism of dual inhibition of SRPK1 for the inhibition of cancer progression. Aging (Albany NY) 2020; 13:163-180. [PMID: 33291073 PMCID: PMC7835025 DOI: 10.18632/aging.202301] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/19/2020] [Indexed: 01/05/2023]
Abstract
Protein kinases are the family of attractive enzyme targets for drug design with relevance to cancer biology. Serine arginine protein kinase 1 (SRPK1) is responsible for the phosphorylation of serine/arginine (SR)-rich proteins. Alternative Splicing Factor/Splicing Factor 2 (ASF/SF2) involved in mRNA editing. ASF/SF2 is over expressed in many cancers and plays crucial roles in the cell survival. Phosphorylation of ASF/SF2 is decisive for its functions in cancer. In search of potential anticancer therapeutic agents for attenuating phosphorylation of ASF/SF2, we have explored specific and potential inhibitors of SRPK1 from natural and drug like compounds databases using in-silico methods. Compound ZINC02154892 (C02) was found to be the most potent inhibitor for SRPK1. In-vitro molecular and cell biology studies have shown C02 as a potent and specific inhibitor of phosphorylation of ASF/SF2 and cell survival in leukemic cell line. Structural analysis of SRPK1 with compound C02 revealed a unique pattern of binding targeting ATP binding site along with inhibiting recruitment of ASF/SF2 by SRPK1. The possibilities of compound C02 to be used as a lead compound paving way for the development of potent and specific inhibitors of SRPK1 for designing of novel potential anticancer inhibitor is inferred from the current studies.
Collapse
Affiliation(s)
- Anshuman Chandra
- School of Biotechnology, Gautam Buddha University, Greater Noida, U.P. 201312, India
| | - Hanumappa Ananda
- Department of Clinical Embryology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Nagendra Singh
- School of Biotechnology, Gautam Buddha University, Greater Noida, U.P. 201312, India
| | - Imteyaz Qamar
- School of Biotechnology, Gautam Buddha University, Greater Noida, U.P. 201312, India
| |
Collapse
|
16
|
AMP-activated protein kinase regulates alternative pre-mRNA splicing by phosphorylation of SRSF1. Biochem J 2020; 477:2237-2248. [DOI: 10.1042/bcj20190894] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 05/21/2020] [Accepted: 05/26/2020] [Indexed: 01/23/2023]
Abstract
AMP-activated protein kinase (AMPK) regulates cellular energy homeostasis by inhibiting anabolic processes and activating catabolic processes. Recent studies have demonstrated that metformin, which is an AMPK activator, modifies alternative precursor mRNA (pre-mRNA) splicing. However, no direct substrate of AMPK for alternative pre-mRNA splicing has been reported. In the present study, we identified the splicing factor serine/arginine-rich splicing factor 1 (SRSF1) as a novel AMPK substrate. AMPK directly phosphorylated SRSF1 at Ser133 in an RNA recognition motif. Ser133 phosphorylation suppressed the interaction between SRSF1 and specific RNA sequences without altering the subcellular localization of SRSF1. Moreover, AMPK regulated the SRSF1-mediated alternative pre-mRNA splicing of Ron, which is a macrophage-stimulating protein receptor, by suppressing its interaction with exon 12 of Ron pre-mRNA. The findings of this study revealed that the AMPK-dependent phosphorylation of SRSF1 at Ser133 inhibited the ability of SRSF1 to bind RNA and regulated alternative pre-mRNA splicing.
Collapse
|
17
|
Aubol BE, Fattet L, Adams JA. A conserved sequence motif bridges two protein kinases for enhanced phosphorylation and nuclear function of a splicing factor. FEBS J 2020; 288:566-581. [DOI: 10.1111/febs.15351] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/06/2020] [Accepted: 04/28/2020] [Indexed: 11/30/2022]
Affiliation(s)
- Brandon E. Aubol
- Department of Pharmacology University of California San Diego La Jolla CA USA
| | - Laurent Fattet
- Department of Pharmacology University of California San Diego La Jolla CA USA
| | - Joseph A. Adams
- Department of Pharmacology University of California San Diego La Jolla CA USA
| |
Collapse
|
18
|
Chandra A, Goyal N, Qamar I, Singh N. Identification of hot spot residues on serine-arginine protein kinase-1 by molecular dynamics simulation studies. J Biomol Struct Dyn 2020; 39:1579-1587. [DOI: 10.1080/07391102.2020.1734487] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Anshuman Chandra
- School of Biotechnology, Gautam Buddha University, Greater Noida, Uttar Pradesh, India
| | - Nainee Goyal
- School of Biotechnology, Gautam Buddha University, Greater Noida, Uttar Pradesh, India
| | - Imteyaz Qamar
- School of Biotechnology, Gautam Buddha University, Greater Noida, Uttar Pradesh, India
| | - Nagendra Singh
- School of Biotechnology, Gautam Buddha University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
19
|
Tunnicliffe RB, Hu WK, Wu MY, Levy C, Mould AP, McKenzie EA, Sandri-Goldin RM, Golovanov AP. Molecular Mechanism of SR Protein Kinase 1 Inhibition by the Herpes Virus Protein ICP27. mBio 2019; 10:e02551-19. [PMID: 31641093 PMCID: PMC6805999 DOI: 10.1128/mbio.02551-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 09/30/2019] [Indexed: 12/11/2022] Open
Abstract
Serine-arginine (SR) protein kinase 1 (SRPK1) catalyzes the phosphorylation of SR proteins, which are a conserved family of splicing factors that contain a domain rich in arginine and serine repeats. SR proteins play important roles in constitutive pre-mRNA splicing and are also important regulators of alternative splicing. During herpes simplex virus infection, SRPK1 is inactivated and its cellular distribution is markedly altered by interaction with the viral protein ICP27, resulting in hypophosphorylation of SR proteins. Mutational analysis previously showed that the RGG box motif of ICP27 is required for interaction with SRPK1; however, the mechanism for the inhibition and the exact role of the RGG box was unknown. Here, we used solution nuclear magnetic resonance (NMR) spectroscopy and isothermal titration calorimetry (ITC) to demonstrate that the isolated peptide comprising the RGG box of ICP27 binds to SRPK1 with high affinity, competing with a native substrate, the SR repeat region of SR protein SRSF1. We determined the crystal structure of the complex between SRPK1 and an RGG box peptide, which revealed that the viral peptide binds to the substrate docking groove, mimicking the interactions of SR repeats. Site-directed mutagenesis within the RGG box further confirmed the importance of selected arginine residues for interaction, relocalization, and inhibition of SRPK1 in vivo Together these data reveal the molecular mechanism of the competitive inhibition of cellular SRPK1 by viral ICP27, which modulates SRPK1 activity.IMPORTANCE Serine arginine (SR) proteins are a family of mRNA regulatory proteins that can modulate spliceosome association with different splice sites and therefore regulate alternative splicing. Phosphorylation within SR proteins is necessary for splice-site recognition, and this is catalyzed by SR protein kinase 1 (SRPK1). The herpes simplex virus (HSV-1) protein ICP27 has been shown previously to interact with and downregulate SRPK1 activity in vivo; however, the molecular mechanism for this interaction and inhibition was unknown. Here, we demonstrate that the isolated peptide fragment of ICP27 containing RGG box binds to SRPK1 with high affinity, and competes with a native cellular substrate. Elucidation of the SRPK1-RGG box crystal structure further showed that a short palindromic RGRRRGR sequence binds in the substrate docking groove of SRPK1, mimicking the binding of SR repeats of substrates. These data reveal how the viral protein ICP27 inactivates SRPK1, promoting hypophosphorylation of proteins regulating splicing.
Collapse
Affiliation(s)
- Richard B Tunnicliffe
- Manchester Institute of Biotechnology and Department of Chemistry, Faculty of Science and Engineering, The University of Manchester, Manchester, United Kingdom
| | - William K Hu
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, California, USA
| | - Michele Y Wu
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, California, USA
| | - Colin Levy
- Manchester Institute of Biotechnology and Department of Chemistry, Faculty of Science and Engineering, The University of Manchester, Manchester, United Kingdom
| | - A Paul Mould
- Biomolecular Analysis Core Facility, Faculty of Biology, Medicine and Health, University of Manchester, United Kingdom
| | - Edward A McKenzie
- Manchester Institute of Biotechnology and Department of Chemistry, Faculty of Science and Engineering, The University of Manchester, Manchester, United Kingdom
| | - Rozanne M Sandri-Goldin
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, California, USA
| | - Alexander P Golovanov
- Manchester Institute of Biotechnology and Department of Chemistry, Faculty of Science and Engineering, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
20
|
Barbosa ÉDAA, Seraphim TV, Gandin CA, Teixeira LF, da Silva RAG, Righetto GL, Goncalves KDA, Vasconcellos RDS, Almeida MR, Silva Júnior A, Fietto JLR, Kobarg J, Gileadi C, Massirer KB, Borges JC, de Oliveira Neto M, Bressan GC. Insights into the full-length SRPK2 structure and its hydrodynamic behavior. Int J Biol Macromol 2019; 137:205-214. [PMID: 31229549 DOI: 10.1016/j.ijbiomac.2019.06.135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/04/2019] [Accepted: 06/19/2019] [Indexed: 11/30/2022]
Abstract
The serine/arginine-rich protein kinase 2 (SRPK2) has been reported as upregulated in several cancer types, with roles in hallmarks such as cell migration, growth, and apoptosis. These findings have indicated that SRPK2 is a promising emerging target in drug discovery initiatives. Although high-resolution models are available for SRPK2 (PDB 2X7G), they have been obtained with a heavily truncated recombinant protein version (~50% of the primary structure), due to the presence of long intrinsically unstructured regions. In the present work, we sought to characterize the structure of a full-length recombinant version of SRPK2 in solution. Low-resolution Small-Angle X-ray Scattering data were obtained for both versions of SRPK2. The truncated ΔNΔS-SRPK2 presented a propensity to dimerize at higher concentrations whereas the full-length SRPK2 was mainly found as dimers. The hydrodynamic behavior of the full-length SRPK2 was further investigated by analytical size exclusion chromatography and sedimentation velocity analytical ultracentrifugation experiments. SRPK2 behaved as a monomer-dimer equilibrium and both forms have an elongated shape in solution, pointing to a stretched-to-closed tendency among the conformational plasticity observed. Taken together, these findings allowed us to define unique structural features of the SRPK2 within SRPK family, characterized by its flexible regions outside the bipartite kinase domain.
Collapse
Affiliation(s)
| | | | - César Augusto Gandin
- Departamento de Física e Biofísica, Universidade Estadual Paulista, Botucatu, SP, Brazil
| | | | | | - Germanna L Righetto
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Kaliandra De Almeida Goncalves
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | | | - Márcia Rogéria Almeida
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | | | | | - Jörg Kobarg
- Instituto de Biologia, Departamento de Bioquímica e Biologia Tecidual e Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Carina Gileadi
- Structural Genomics Consortium, Universidade Estadual de Campinas, Cidade Universitária Zeferino Vaz, Av. Dr. André Tosello, 550, Barão Geraldo, Campinas, SP, Brazil; Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Katlin B Massirer
- Structural Genomics Consortium, Universidade Estadual de Campinas, Cidade Universitária Zeferino Vaz, Av. Dr. André Tosello, 550, Barão Geraldo, Campinas, SP, Brazil; Center for Molecular Biology and Genetic Engineering, CBMEG, Universidade Estadual de Campinas, Campinas, SPUniversidade Estadual de Campinas, Campinas, Brazil
| | - Julio César Borges
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP, Brazil
| | - Mario de Oliveira Neto
- Departamento de Física e Biofísica, Universidade Estadual Paulista, Botucatu, SP, Brazil
| | - Gustavo Costa Bressan
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, MG, Brazil.
| |
Collapse
|
21
|
Artarini A, Meyer M, Shin YJ, Huber K, Hilz N, Bracher F, Eros D, Orfi L, Keri G, Goedert S, Neuenschwander M, von Kries J, Domovich-Eisenberg Y, Dekel N, Szabadkai I, Lebendiker M, Horváth Z, Danieli T, Livnah O, Moncorgé O, Frise R, Barclay W, Meyer TF, Karlas A. Regulation of influenza A virus mRNA splicing by CLK1. Antiviral Res 2019; 168:187-196. [PMID: 31176694 DOI: 10.1016/j.antiviral.2019.06.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 06/04/2019] [Accepted: 06/06/2019] [Indexed: 10/26/2022]
Abstract
Influenza A virus carries eight negative single-stranded RNAs and uses spliced mRNAs to increase the number of proteins produced from them. Several genome-wide screens for essential host factors for influenza A virus replication revealed a necessity for splicing and splicing-related factors, including Cdc-like kinase 1 (CLK1). This CLK family kinase plays a role in alternative splicing regulation through phosphorylation of serine-arginine rich (SR) proteins. To examine the influence that modulation of splicing regulation has on influenza infection, we analyzed the effect of CLK1 knockdown and inhibition. CLK1 knockdown in A549 cells reduced influenza A/WSN/33 virus replication and increased the level of splicing of segment 7, which encodes the viral M1 and M2 proteins. CLK1-/- mice infected with influenza A/England/195/2009 (H1N1pdm09) virus supported lower levels of virus replication than wild-type mice. Screening of newly developed CLK inhibitors revealed several compounds that have an effect on the level of splicing of influenza A gene segment M in different models and decrease influenza A/WSN/33 virus replication in A549 cells. The promising inhibitor KH-CB19, an indole-based enaminonitrile with unique binding mode for CLK1, and its even more selective analogue NIH39 showed high specificity towards CLK1 and had a similar effect on influenza mRNA splicing regulation. Taken together, our findings indicate that targeting host factors that regulate splicing of influenza mRNAs may represent a novel therapeutic approach.
Collapse
Affiliation(s)
- Anita Artarini
- Max Planck Institute for Infection Biology, Department of Molecular Biology, Charitéplatz 1, 10117, Berlin, Germany
| | - Michael Meyer
- Steinbeis Innovation, Center for Systems Biomedicine, 14612, Falkensee, Germany
| | - Yu Jin Shin
- Max Planck Institute for Infection Biology, Department of Molecular Biology, Charitéplatz 1, 10117, Berlin, Germany
| | - Kilian Huber
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-University, Butenandtstrasse 5-13, 81377, Munich, Germany
| | - Nikolaus Hilz
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-University, Butenandtstrasse 5-13, 81377, Munich, Germany
| | - Franz Bracher
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-University, Butenandtstrasse 5-13, 81377, Munich, Germany
| | - Daniel Eros
- Vichem Chemie Research Ltd., Herman Ottó 15, H-1022, Budapest, Hungary
| | - Laszlo Orfi
- Vichem Chemie Research Ltd., Herman Ottó 15, H-1022, Budapest, Hungary; Department of Pharmaceutical Chemistry, Semmelweis University, Budapest, 1092, Hungary
| | - Gyorgy Keri
- Vichem Chemie Research Ltd., Herman Ottó 15, H-1022, Budapest, Hungary
| | - Sigrid Goedert
- Max Planck Institute for Infection Biology, Department of Molecular Biology, Charitéplatz 1, 10117, Berlin, Germany
| | - Martin Neuenschwander
- Leibniz Institute for Molecular Pharmacology, Robert-Roessle Str. 10, D-13125, Berlin, Germany
| | - Jens von Kries
- Leibniz Institute for Molecular Pharmacology, Robert-Roessle Str. 10, D-13125, Berlin, Germany
| | - Yael Domovich-Eisenberg
- The Wolfson Centre for Applied Structural Biology, The Hebrew University of Jerusalem, Edmond J. Safra Campus at Givat Ram, 91904, Jerusalem, Israel
| | - Noa Dekel
- The Wolfson Centre for Applied Structural Biology, The Hebrew University of Jerusalem, Edmond J. Safra Campus at Givat Ram, 91904, Jerusalem, Israel
| | - István Szabadkai
- Vichem Chemie Research Ltd., Herman Ottó 15, H-1022, Budapest, Hungary
| | - Mario Lebendiker
- The Wolfson Centre for Applied Structural Biology, The Hebrew University of Jerusalem, Edmond J. Safra Campus at Givat Ram, 91904, Jerusalem, Israel
| | - Zoltán Horváth
- Vichem Chemie Research Ltd., Herman Ottó 15, H-1022, Budapest, Hungary
| | - Tsafi Danieli
- The Wolfson Centre for Applied Structural Biology, The Hebrew University of Jerusalem, Edmond J. Safra Campus at Givat Ram, 91904, Jerusalem, Israel
| | - Oded Livnah
- The Wolfson Centre for Applied Structural Biology, The Hebrew University of Jerusalem, Edmond J. Safra Campus at Givat Ram, 91904, Jerusalem, Israel
| | - Olivier Moncorgé
- Imperial College London, Section of Virology, Faculty of Medicine, St. Mary's Campus, Norfolk Place, London, W2 1PG, UK
| | - Rebecca Frise
- Imperial College London, Section of Virology, Faculty of Medicine, St. Mary's Campus, Norfolk Place, London, W2 1PG, UK
| | - Wendy Barclay
- Imperial College London, Section of Virology, Faculty of Medicine, St. Mary's Campus, Norfolk Place, London, W2 1PG, UK
| | - Thomas F Meyer
- Max Planck Institute for Infection Biology, Department of Molecular Biology, Charitéplatz 1, 10117, Berlin, Germany.
| | - Alexander Karlas
- Max Planck Institute for Infection Biology, Department of Molecular Biology, Charitéplatz 1, 10117, Berlin, Germany.
| |
Collapse
|
22
|
George A, Aubol BE, Fattet L, Adams JA. Disordered protein interactions for an ordered cellular transition: Cdc2-like kinase 1 is transported to the nucleus via its Ser-Arg protein substrate. J Biol Chem 2019; 294:9631-9641. [PMID: 31064840 DOI: 10.1074/jbc.ra119.008463] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/26/2019] [Indexed: 01/22/2023] Open
Abstract
Serine-arginine (SR) proteins are essential splicing factors that promote numerous steps associated with mRNA processing and whose biological function is tightly regulated through multi-site phosphorylation. In the nucleus, the cdc2-like kinases (CLKs) phosphorylate SR proteins on their intrinsically disordered Arg-Ser (RS) domains, mobilizing them from storage speckles to the splicing machinery. The CLKs have disordered N termini that bind tightly to RS domains, enhancing SR protein phosphorylation. The N termini also promote nuclear localization of CLKs, but their transport mechanism is presently unknown. To explore cytoplasmic-nuclear transitions, several classical nuclear localization sequences in the N terminus of the CLK1 isoform were identified, but their mutation had no effect on subcellular localization. Rather, we found that CLK1 amplifies its presence in the nucleus by forming a stable complex with the SR protein substrate and appropriating its NLS for transport. These findings indicate that, along with their well-established roles in mRNA splicing, SR proteins use disordered protein-protein interactions to carry their kinase regulator from the cytoplasm to the nucleus.
Collapse
Affiliation(s)
- Athira George
- From the Department of Pharmacology, University of California San Diego, La Jolla, California 92093-0636
| | - Brandon E Aubol
- From the Department of Pharmacology, University of California San Diego, La Jolla, California 92093-0636
| | - Laurent Fattet
- From the Department of Pharmacology, University of California San Diego, La Jolla, California 92093-0636
| | - Joseph A Adams
- From the Department of Pharmacology, University of California San Diego, La Jolla, California 92093-0636
| |
Collapse
|
23
|
Chu X, Wang J. Position-, disorder-, and salt-dependent diffusion in binding-coupled-folding of intrinsically disordered proteins. Phys Chem Chem Phys 2019; 21:5634-5645. [PMID: 30793144 PMCID: PMC6589441 DOI: 10.1039/c8cp06803h] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Successful extensions of protein-folding energy landscape theory to intrinsically disordered proteins' (IDPs') binding-coupled-folding transition can enormously simplify this biomolecular process into diffusion along a limited number of reaction coordinates, and the dynamics subsequently is described by Kramers' rate theory. As the critical pre-factor, the diffusion coefficient D has direct implications on the binding kinetics. Here, we employ a structure-based model (SBM) to calculate D in the binding-folding of an IDP prototype. We identify a strong position-dependent D during binding by applying a reaction coordinate that directly measures the fluctuations in a Cartesian configuration space. Using the malleability of the SBM, we modulate the degree of conformational disorder in an isolated IDP and determine complex effects of intrinsic disorder on D varying for different binding stages. Here, D tends to increase with disorder during initial binding but shows a non-monotonic relationship with disorder in terms of a decrease-followed-by-increase in D during the late binding stage. The salt concentration, which correlates with electrostatic interactions via Debye-Hückel theory in our SBM, also modulates D in a stepwise way. The speeding up of diffusion by electrostatic interactions is observed during the formation of the encounter complex at the beginning of binding, while the last diffusive binding dynamics is hindered by non-native salt bridges. Because D describes the diffusive speed locally, which implicitly reflects the roughness of the energy landscape, we are eventually able to portray the binding energy landscape, including that from IDPs' binding, then to binding with partial folding, and finally to rigid docking, as well as that under different environmental salt concentrations. Our theoretical results provide key mechanistic insights into IDPs' binding-folding, which is internally conformation- and externally salt-controlled with respect to diffusion.
Collapse
Affiliation(s)
- Xiakun Chu
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY 11794, USA
| | - Jin Wang
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY 11794, USA
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| |
Collapse
|
24
|
Altered VEGF Splicing Isoform Balance in Tumor Endothelium Involves Activation of Splicing Factors Srpk1 and Srsf1 by the Wilms' Tumor Suppressor Wt1. Cells 2019; 8:cells8010041. [PMID: 30641926 PMCID: PMC6356959 DOI: 10.3390/cells8010041] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 12/27/2018] [Accepted: 01/08/2019] [Indexed: 12/12/2022] Open
Abstract
Angiogenesis is one hallmark of cancer. Vascular endothelial growth factor (VEGF) is a known inducer of angiogenesis. Many patients benefit from antiangiogenic therapies, which however have limitations. Although VEGF is overexpressed in most tumors, different VEGF isoforms with distinct angiogenic properties are produced through alternative splicing. In podocytes, the Wilms' tumor suppressor 1 (WT1) suppresses the Serine/arginine-rich protein-specific splicing factor kinase (SRPK1), and indirectly Serine/arginine-rich splicing factor 1 (Srsf1) activity, and alters VEGF splicing. We analyzed VEGF isoforms, Wt1, Srpk1, and Srsf1 in normal and tumor endothelium. Wt1, Srpk1, Srsf1, and the angiogenic VEGF164a isoform were highly expressed in tumor endothelium compared to normal lung endothelium. Nuclear expression of Srsf1 was detectable in the endothelium of various tumor types, but not in healthy tissues. Inducible conditional vessel-specific knockout of Wt1 reduced Wt1, Srpk1, and Srsf1 expression in endothelial cells and induced a shift towards the antiangiogenic VEGF120 isoform. Wt1(-KTS) directly binds and activates both the promoters of Srpk1 and Srsf1 in endothelial cells. In conclusion, Wt1 activates Srpk1 and Srsf1 and induces expression of angiogenic VEGF isoforms in tumor endothelium.
Collapse
|
25
|
Zhu M, Liu J, Su J, Meng B, Feng Y, Jia B, Peng T, Qi Z, Gao E. Two Mn II
, Cu II
complexes derived from 3,5-bis(1-imidazoly) pyridine: Synthesis, DNA binding, Molecular docking and cytotoxicity studies. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.4676] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Mingchang Zhu
- The key Laboratory of the Inorganic Molecule-Based Chemistry of Liaoning Province and Laboratory of Coordination Chemistry; Shenyang University of Chemical Technology; Shenyang 110142 China
| | - Jiaxing Liu
- The key Laboratory of the Inorganic Molecule-Based Chemistry of Liaoning Province and Laboratory of Coordination Chemistry; Shenyang University of Chemical Technology; Shenyang 110142 China
| | - Junqi Su
- The key Laboratory of the Inorganic Molecule-Based Chemistry of Liaoning Province and Laboratory of Coordination Chemistry; Shenyang University of Chemical Technology; Shenyang 110142 China
| | - Bo Meng
- The key Laboratory of the Inorganic Molecule-Based Chemistry of Liaoning Province and Laboratory of Coordination Chemistry; Shenyang University of Chemical Technology; Shenyang 110142 China
| | - Yunhui Feng
- The key Laboratory of the Inorganic Molecule-Based Chemistry of Liaoning Province and Laboratory of Coordination Chemistry; Shenyang University of Chemical Technology; Shenyang 110142 China
| | - Bing Jia
- The key Laboratory of the Inorganic Molecule-Based Chemistry of Liaoning Province and Laboratory of Coordination Chemistry; Shenyang University of Chemical Technology; Shenyang 110142 China
| | - Tingting Peng
- The key Laboratory of the Inorganic Molecule-Based Chemistry of Liaoning Province and Laboratory of Coordination Chemistry; Shenyang University of Chemical Technology; Shenyang 110142 China
| | - Zhenzhen Qi
- The key Laboratory of the Inorganic Molecule-Based Chemistry of Liaoning Province and Laboratory of Coordination Chemistry; Shenyang University of Chemical Technology; Shenyang 110142 China
| | - Enjun Gao
- The key Laboratory of the Inorganic Molecule-Based Chemistry of Liaoning Province and Laboratory of Coordination Chemistry; Shenyang University of Chemical Technology; Shenyang 110142 China
| |
Collapse
|
26
|
View from an mRNP: The Roles of SR Proteins in Assembly, Maturation and Turnover. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1203:83-112. [PMID: 31811631 DOI: 10.1007/978-3-030-31434-7_3] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Serine- and arginine-rich proteins (SR proteins) are a family of multitasking RNA-binding proteins (RBPs) that are key determinants of messenger ribonucleoprotein (mRNP) formation, identity and fate. Apart from their essential functions in pre-mRNA splicing, SR proteins display additional pre- and post-splicing activities and connect nuclear and cytoplasmic gene expression machineries. Through changes in their post-translational modifications (PTMs) and their subcellular localization, they provide functional specificity and adjustability to mRNPs. Transcriptome-wide UV crosslinking and immunoprecipitation (CLIP-Seq) studies revealed that individual SR proteins are present in distinct mRNPs and act in specific pairs to regulate different gene expression programmes. Adopting an mRNP-centric viewpoint, we discuss the roles of SR proteins in the assembly, maturation, quality control and turnover of mRNPs and describe the mechanisms by which they integrate external signals, coordinate their multiple tasks and couple subsequent mRNA processing steps.
Collapse
|
27
|
Long Y, Sou WH, Yung KWY, Liu H, Wan SWC, Li Q, Zeng C, Law COK, Chan GHC, Lau TCK, Ngo JCK. Distinct mechanisms govern the phosphorylation of different SR protein splicing factors. J Biol Chem 2018; 294:1312-1327. [PMID: 30478176 DOI: 10.1074/jbc.ra118.003392] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 11/17/2018] [Indexed: 01/30/2023] Open
Abstract
Serine-arginine (SR) proteins are essential splicing factors containing a canonical RNA recognition motif (RRM), sometimes followed by a pseudo-RRM, and a C-terminal arginine/serine-rich (RS) domain that undergoes multisite phosphorylation. Phosphorylation regulates the localization and activity of SR proteins, and thus may provide insight into their differential biological roles. The phosphorylation mechanism of the prototypic SRSF1 by serine-arginine protein kinase 1 (SRPK1) has been well-studied, but little is known about the phosphorylation of other SR protein members. In the present study, interaction and kinetic assays unveiled how SRSF1 and the single RRM-containing SRSF3 are phosphorylated by SRPK2, another member of the SRPK family. We showed that a conserved SRPK-specific substrate-docking groove in SRPK2 impacts the binding and phosphorylation of both SR proteins, and the localization of SRSF3. We identified a nonconserved residue within the groove that affects the kinase processivity. We demonstrated that, in contrast to SRSF1, for which SRPK-mediated phosphorylation is confined to the N-terminal region of the RS domain, SRSF3 phosphorylation sites are spread throughout its entire RS domain in vitro Despite this, SRSF3 appears to be hypophosphorylated in cells at steady state. Our results suggest that the absence of a pseudo-RRM renders the single RRM-containing SRSF3 more susceptible to dephosphorylation by phosphatase. These findings suggest that the single RRM- and two RRM-containing SR proteins represent two subclasses of phosphoproteins in which phosphorylation statuses are maintained by unique mechanisms, and pose new directions to explore the distinct roles of SR proteins in vivo.
Collapse
Affiliation(s)
- Yunxin Long
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Weng Hong Sou
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Kristen Wing Yu Yung
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Haizhen Liu
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Stephanie Winn Chee Wan
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Qingyun Li
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Chuyue Zeng
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Carmen Oi Kwan Law
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Gordon Ho Ching Chan
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Terrence Chi Kong Lau
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Jacky Chi Ki Ngo
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| |
Collapse
|
28
|
Wang G, Sun P, Gong Z, Gu L, Lou Y, Fang W, Zhang L, Su L, Yang T, Wang B, Zhou J, Xu JR, Wang Z, Zheng W. Srk1 kinase, a SR protein-specific kinase, is important for sexual reproduction, plant infection and pre-mRNA processing in Fusarium graminearum. Environ Microbiol 2018; 20:3261-3277. [DOI: 10.1111/1462-2920.14299] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 05/24/2018] [Accepted: 05/26/2018] [Indexed: 11/28/2022]
Affiliation(s)
- Guanghui Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops; College of Plant Protection, Fujian Agriculture and Forestry University; Fuzhou China
- Institute of Oceanography; Minjiang University; Fuzhou China
| | - Peng Sun
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops; College of Plant Protection, Fujian Agriculture and Forestry University; Fuzhou China
| | - Ziwen Gong
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops; College of Plant Protection, Fujian Agriculture and Forestry University; Fuzhou China
| | - Lianfeng Gu
- Basic Forestry and Proteomics Center (BFPC), Haixia Institute of Science and Technology; Fujian Agriculture and Forestry University; Fuzhou China
| | - Yi Lou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops; College of Plant Protection, Fujian Agriculture and Forestry University; Fuzhou China
| | - Wenqin Fang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops; College of Plant Protection, Fujian Agriculture and Forestry University; Fuzhou China
| | - Lianhu Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops; College of Plant Protection, Fujian Agriculture and Forestry University; Fuzhou China
| | - Li Su
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops; College of Plant Protection, Fujian Agriculture and Forestry University; Fuzhou China
| | - Tao Yang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops; College of Plant Protection, Fujian Agriculture and Forestry University; Fuzhou China
| | - Baohua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops; College of Plant Protection, Fujian Agriculture and Forestry University; Fuzhou China
| | - Jie Zhou
- Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins; College of Life Sciences, Fujian Agriculture and Forestry University; Fuzhou China
| | - Jin-Rong Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas; College of Plant Protection, Northwest A&F University; Yangling Shaanxi China
| | - Zonghua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops; College of Plant Protection, Fujian Agriculture and Forestry University; Fuzhou China
- Institute of Oceanography; Minjiang University; Fuzhou China
| | - Wenhui Zheng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops; College of Plant Protection, Fujian Agriculture and Forestry University; Fuzhou China
| |
Collapse
|
29
|
Mobilization of a splicing factor through a nuclear kinase-kinase complex. Biochem J 2018; 475:677-690. [PMID: 29335301 DOI: 10.1042/bcj20170672] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 01/09/2018] [Accepted: 01/12/2018] [Indexed: 12/17/2022]
Abstract
The splicing of mRNA is dependent on serine-arginine (SR) proteins that are mobilized from membrane-free, nuclear speckles to the nucleoplasm by the Cdc2-like kinases (CLKs). This movement is critical for SR protein-dependent assembly of the macromolecular spliceosome. Although CLK1 facilitates such trafficking through the phosphorylation of serine-proline dipeptides in the prototype SR protein SRSF1, an unrelated enzyme known as SR protein kinase 1 (SRPK1) performs the same function but does not efficiently modify these dipeptides in SRSF1. We now show that the ability of SRPK1 to mobilize SRSF1 from speckles to the nucleoplasm is dependent on active CLK1. Diffusion from speckles is promoted by the formation of an SRPK1-CLK1 complex that facilitates dissociation of SRSF1 from CLK1 and enhances the phosphorylation of several serine-proline dipeptides in this SR protein. Down-regulation of either kinase blocks EGF-stimulated mobilization of nuclear SRSF1. These findings establish a signaling pathway that connects SRPKs to SR protein activation through the associated CLK family of kinases.
Collapse
|
30
|
Han J, Tang S, Li Y, Bao W, Wan H, Lu C, Zhou J, Li Y, Cheong L, Su X. In silico analysis and in vivo tests of the tuna dark muscle hydrolysate anti-oxidation effect. RSC Adv 2018; 8:14109-14119. [PMID: 35539313 PMCID: PMC9079911 DOI: 10.1039/c8ra00889b] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/06/2018] [Indexed: 11/21/2022] Open
Abstract
Hydrolysate is a mixture of various peptides with specific functions. However, functional identification of hydrolysate with high throughput is still a difficult task. Furthermore, using in vivo tests via animal or cell experiments is time and labor-intensive. In this study, the peptides component of hydrolysate derived from the tuna dark muscle was measured via MALDI-TOF/TOF-MS, and the functions of the KEFT (Lys-Glu-Phe-Thr), EEASA (Glu-Glu-Ala-Ser-Ala) and RYDD (Arg-Tyr-Asp-Asp) peptides, which were found with the highest proportion, were predicted via Discovery Studio 2016 software. All three peptides were predicted to bind to the Keap1 protein with the highest fit-value and to affect the activity of Keap1, which is involved in anti-oxidation pathways. Subsequently, mice experiments showed that administration of tuna dark muscle hydrolysate increased the levels of superoxide dismutase and glutathione peroxidase in the serum and liver (P < 0.05) and decreased the malondialdehyde level (P < 0.05) as well as transcription of Keap1 (P > 0.05), which are consistent with the in silico analysis results using Discovery Studio 2016 software. The combination of in silico analysis and in vivo tests provided an alternative strategy for identifying hydrolysate function and provided insight into high-value utilization of protein hydrolysate. In silico prediction and in vivo confirmation of anti-oxidation effect.![]()
Collapse
Affiliation(s)
- Jiaojiao Han
- School of Marine Science
- Ningbo University
- Ningbo
- China
| | - Shasha Tang
- School of Marine Science
- Ningbo University
- Ningbo
- China
| | - Yanyan Li
- College of Agriculture and Life Sciences
- Cornell University
- Ithaca
- USA
| | - Wei Bao
- School of Marine Science
- Ningbo University
- Ningbo
- China
| | - Haitao Wan
- School of Marine Science
- Ningbo University
- Ningbo
- China
| | - Chenyang Lu
- School of Marine Science
- Ningbo University
- Ningbo
- China
| | - Jun Zhou
- School of Marine Science
- Ningbo University
- Ningbo
- China
| | - Ye Li
- School of Marine Science
- Ningbo University
- Ningbo
- China
| | | | - Xiurong Su
- School of Marine Science
- Ningbo University
- Ningbo
- China
| |
Collapse
|
31
|
Aubol BE, Hailey KL, Fattet L, Jennings PA, Adams JA. Redirecting SR Protein Nuclear Trafficking through an Allosteric Platform. J Mol Biol 2017; 429:2178-2191. [PMID: 28576472 DOI: 10.1016/j.jmb.2017.05.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 05/22/2017] [Accepted: 05/25/2017] [Indexed: 12/20/2022]
Abstract
Although phosphorylation directs serine-arginine (SR) proteins from nuclear storage speckles to the nucleoplasm for splicing function, dephosphorylation paradoxically induces similar movement, raising the question of how such chemical modifications are balanced in these essential splicing factors. In this new study, we investigated the interaction of protein phosphatase 1 (PP1) with the SR protein splicing factor (SRSF1) to understand the foundation of these opposing effects in the nucleus. We found that RNA recognition motif 1 (RRM1) in SRSF1 binds PP1 and represses its catalytic function through an allosteric mechanism. Disruption of RRM1-PP1 interactions reduces the phosphorylation status of the RS domain in vitro and in cells, redirecting SRSF1 in the nucleus. The data imply that an allosteric SR protein-phosphatase platform balances phosphorylation levels in a "goldilocks" region for the proper subnuclear storage of an SR protein splicing factor.
Collapse
Affiliation(s)
- Brandon E Aubol
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093-0636, USA
| | - Kendra L Hailey
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, CA 92093-0636, USA
| | - Laurent Fattet
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093-0636, USA
| | - Patricia A Jennings
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, CA 92093-0636, USA
| | - Joseph A Adams
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093-0636, USA.
| |
Collapse
|
32
|
Czubaty A, Piekiełko-Witkowska A. Protein kinases that phosphorylate splicing factors: Roles in cancer development, progression and possible therapeutic options. Int J Biochem Cell Biol 2017; 91:102-115. [PMID: 28552434 DOI: 10.1016/j.biocel.2017.05.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/16/2017] [Accepted: 05/18/2017] [Indexed: 11/30/2022]
Abstract
Disturbed alternative splicing is a common feature of human tumors. Splicing factors that control alternative splicing are phosphorylated by multiple kinases, including these that specifically add phosphoryl groups to serine-arginine rich proteins (e.g. SR-protein kinases, cdc2-like kinases, topoisomerase 1), and protein kinases that govern key cellular signaling pathways (i.e. AKT). Phosphorylation of splicing factors regulates their subcellular localization and interactions with target transcripts and protein partners, and thus significantly contributes the final result of splicing reactions. In this review we aim to summarize the current knowledge on the role of splicing kinases in cancer. Published studies and recently released data of The Cancer Genome Atlas demonstrate that expressions and activities of splicing kinases are commonly disturbed in cancers. Aberrant functioning of splicing kinases results in changed alternative splicing of tumor suppressors (e.g. p53) and regulators of cell signaling (e.g. MAPKs), apoptosis (e.g. MCL), and angiogenesis (VEGF). Splicing kinases act in complicated regulatory networks in which they mutually affect each other's activity to provide tight control of cellular signaling. Dysregulation of these regulatory networks contributes to oncogenic transformation, uncontrolled proliferation, enhanced migration and invasion. Furthermore, the activities of splicing kinases significantly contribute to cellular responses to genotoxic stress. In conclusion, published data provide strong evidence that splicing kinases emerge as important regulators of key processes governing malignant transformation, progression, and response to therapeutic treatments, suggesting their potential as clinically relevant targets.
Collapse
Affiliation(s)
- Alicja Czubaty
- Department of Molecular Biology, Faculty of Biology, University of Warsaw, ul. Miecznikowa 1, 02-096 Warsaw, Poland
| | - Agnieszka Piekiełko-Witkowska
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, ul. Marymoncka 99/103, 01-813 Warsaw, Poland.
| |
Collapse
|
33
|
Ariyachet C, Beißel C, Li X, Lorrey S, Mackenzie O, Martin PM, O'Brien K, Pholcharee T, Sim S, Krebber H, McBride AE. Post-translational modification directs nuclear and hyphal tip localization of Candida albicans mRNA-binding protein Slr1. Mol Microbiol 2017; 104:499-519. [PMID: 28187496 PMCID: PMC5405739 DOI: 10.1111/mmi.13643] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2017] [Indexed: 12/21/2022]
Abstract
The morphological transition of the opportunistic fungal pathogen Candida albicans from budding to hyphal growth has been implicated in its ability to cause disease in animal models. Absence of SR‐like RNA‐binding protein Slr1 slows hyphal formation and decreases virulence in a systemic candidiasis model, suggesting a role for post‐transcriptional regulation in these processes. SR (serine–arginine)‐rich proteins influence multiple steps in mRNA metabolism and their localization and function are frequently controlled by modification. We now demonstrate that Slr1 binds to polyadenylated RNA and that its intracellular localization is modulated by phosphorylation and methylation. Wildtype Slr1‐GFP is predominantly nuclear, but also co‐fractionates with translating ribosomes. The non‐phosphorylatable slr1‐6SA‐GFP protein, in which six serines in SR/RS clusters are substituted with alanines, primarily localizes to the cytoplasm in budding cells. Intriguingly, hyphal cells display a slr1‐6SA‐GFP focus at the tip near the Spitzenkörper, a vesicular structure involved in molecular trafficking to the tip. The presence of slr1‐6SA‐GFP hyphal tip foci is reduced in the absence of the mRNA‐transport protein She3, suggesting that unphosphorylated Slr1 associates with mRNA–protein complexes transported to the tip. The impact of SLR1 deletion on hyphal formation and function thus may be partially due to a role in hyphal mRNA transport.
Collapse
Affiliation(s)
| | - Christian Beißel
- Abteilung für Molekulare Genetik, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften, Georg-August Universität Göttingen, Göttingen, Germany
| | - Xiang Li
- Biology Department, Bowdoin College, Brunswick, ME, 04011, USA
| | - Selena Lorrey
- Biology Department, Bowdoin College, Brunswick, ME, 04011, USA
| | | | | | | | | | - Sue Sim
- Biology Department, Bowdoin College, Brunswick, ME, 04011, USA
| | - Heike Krebber
- Abteilung für Molekulare Genetik, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften, Georg-August Universität Göttingen, Göttingen, Germany
| | - Anne E McBride
- Biology Department, Bowdoin College, Brunswick, ME, 04011, USA
| |
Collapse
|
34
|
Aubol BE, Wu G, Keshwani MM, Movassat M, Fattet L, Hertel KJ, Fu XD, Adams JA. Release of SR Proteins from CLK1 by SRPK1: A Symbiotic Kinase System for Phosphorylation Control of Pre-mRNA Splicing. Mol Cell 2016; 63:218-228. [PMID: 27397683 DOI: 10.1016/j.molcel.2016.05.034] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 04/26/2016] [Accepted: 05/25/2016] [Indexed: 11/26/2022]
Abstract
Phosphorylation has been generally thought to activate the SR family of splicing factors for efficient splice-site recognition, but this idea is incompatible with an early observation that overexpression of an SR protein kinase, such as the CDC2-like kinase 1 (CLK1), weakens splice-site selection. Here, we report that CLK1 binds SR proteins but lacks the mechanism to release phosphorylated SR proteins, thus functionally inactivating the splicing factors. Interestingly, CLK1 overcomes this dilemma through a symbiotic relationship with the serine-arginine protein kinase 1 (SRPK1). We show that SRPK1 interacts with an RS-like domain in the N terminus of CLK1 to facilitate the release of phosphorylated SR proteins, which then promotes efficient splice-site recognition and subsequent spliceosome assembly. These findings reveal an unprecedented signaling mechanism by which two protein kinases fulfill separate catalytic features that are normally encoded in single kinases to institute phosphorylation control of pre-mRNA splicing in the nucleus.
Collapse
Affiliation(s)
- Brandon E Aubol
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Guowei Wu
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Malik M Keshwani
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Maliheh Movassat
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA 92697, USA
| | - Laurent Fattet
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Klemens J Hertel
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA 92697, USA
| | - Xiang-Dong Fu
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Joseph A Adams
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
35
|
Voukkalis N, Koutroumani M, Zarkadas C, Nikolakaki E, Vlassi M, Giannakouros T. SRPK1 and Akt Protein Kinases Phosphorylate the RS Domain of Lamin B Receptor with Distinct Specificity: A Combined Biochemical and In Silico Approach. PLoS One 2016; 11:e0154198. [PMID: 27105349 PMCID: PMC4841541 DOI: 10.1371/journal.pone.0154198] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 04/10/2016] [Indexed: 02/03/2023] Open
Abstract
Activated Akt has been previously implicated in acting on RS domain-containing proteins. However, it has been questioned whether its action is direct or it is mediated by co-existing SR kinase activity. To address this issue we studied in detail the phosphorylation of Lamin B Receptor (LBR) by Akt. Using synthetic peptides and a set of recombinant proteins expressing mutants of the LBR RS domain we now demonstrate that while all serines of the RS domain represent more or less equal phosphoacceptor sites for SRPK1, Ser80 and Ser82 are mainly targeted by Akt. 3D-modeling combined with molecular dynamics (MD) simulations show that amongst short, overlapping LBR RS-containing peptides complying with the minimum Akt recognition consensus sequence, only those bearing phosphosites either at Ser80 or Ser82 are able to fit into the active site of Akt, at least as effectively as its known substrate, GSK3-β. Combined our results provide evidence that Akt kinases directly phosphorylate an RS domain-containing protein and that both the residues N-terminal the phosphosite and at position +1 are essential for Akt specificity, with the latter substrate position being compatible with the arginine residue of RS-repeats.
Collapse
Affiliation(s)
- Nikolaos Voukkalis
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University, Thessaloniki, Greece
| | - Maria Koutroumani
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University, Thessaloniki, Greece
| | - Christoforos Zarkadas
- Institute of Biosciences & Applications, National Centre for Scientific Research "Demokritos", Athens, Greece
| | - Eleni Nikolakaki
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University, Thessaloniki, Greece
| | - Metaxia Vlassi
- Institute of Biosciences & Applications, National Centre for Scientific Research "Demokritos", Athens, Greece
| | - Thomas Giannakouros
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University, Thessaloniki, Greece
| |
Collapse
|
36
|
Directional Phosphorylation and Nuclear Transport of the Splicing Factor SRSF1 Is Regulated by an RNA Recognition Motif. J Mol Biol 2016; 428:2430-2445. [PMID: 27091468 DOI: 10.1016/j.jmb.2016.04.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/30/2016] [Accepted: 04/07/2016] [Indexed: 01/21/2023]
Abstract
Multisite phosphorylation is required for the biological function of serine-arginine (SR) proteins, a family of essential regulators of mRNA splicing. These modifications are catalyzed by serine-arginine protein kinases (SRPKs) that phosphorylate numerous serines in arginine-serine-rich (RS) domains of SR proteins using a directional, C-to-N-terminal mechanism. The present studies explore how SRPKs govern this highly biased phosphorylation reaction and investigate biological roles of the observed directional phosphorylation mechanism. Using NMR spectroscopy with two separately expressed domains of SRSF1, we showed that several residues in the RNA-binding motif 2 interact with the N-terminal region of the RS domain (RS1). These contacts provide a structural framework that balances the activities of SRPK1 and the protein phosphatase PP1, thereby regulating the phosphoryl content of the RS domain. Disruption of the implicated intramolecular RNA-binding motif 2-RS domain interaction impairs both the directional phosphorylation mechanism and the nuclear translocation of SRSF1 demonstrating that the intrinsic phosphorylation bias is obligatory for SR protein biological function.
Collapse
|
37
|
de Oliveira PSL, Ferraz FAN, Pena DA, Pramio DT, Morais FA, Schechtman D. Revisiting protein kinase-substrate interactions: Toward therapeutic development. Sci Signal 2016; 9:re3. [PMID: 27016527 DOI: 10.1126/scisignal.aad4016] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Despite the efforts of pharmaceutical companies to develop specific kinase modulators, few drugs targeting kinases have been completely successful in the clinic. This is primarily due to the conserved nature of kinases, especially in the catalytic domains. Consequently, many currently available inhibitors lack sufficient selectivity for effective clinical application. Kinases phosphorylate their substrates to modulate their activity. One of the important steps in the catalytic reaction of protein phosphorylation is the correct positioning of the target residue within the catalytic site. This positioning is mediated by several regions in the substrate binding site, which is typically a shallow crevice that has critical subpockets that anchor and orient the substrate. The structural characterization of this protein-protein interaction can aid in the elucidation of the roles of distinct kinases in different cellular processes, the identification of substrates, and the development of specific inhibitors. Because the region of the substrate that is recognized by the kinase can be part of a linear consensus motif or a nonlinear motif, advances in technology beyond simple linear sequence scanning for consensus motifs were needed. Cost-effective bioinformatics tools are already frequently used to predict kinase-substrate interactions for linear consensus motifs, and new tools based on the structural data of these interactions improve the accuracy of these predictions and enable the identification of phosphorylation sites within nonlinear motifs. In this Review, we revisit kinase-substrate interactions and discuss the various approaches that can be used to identify them and analyze their binding structures for targeted drug development.
Collapse
Affiliation(s)
- Paulo Sérgio L de Oliveira
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas 13083-970, Brazil
| | - Felipe Augusto N Ferraz
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas 13083-970, Brazil
| | - Darlene A Pena
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo 05508000, Brazil
| | - Dimitrius T Pramio
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo 05508000, Brazil
| | - Felipe A Morais
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo 05508000, Brazil
| | - Deborah Schechtman
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo 05508000, Brazil.
| |
Collapse
|
38
|
EGF-receptor specificity for phosphotyrosine-primed substrates provides signal integration with Src. Nat Struct Mol Biol 2015; 22:983-90. [PMID: 26551075 PMCID: PMC4824005 DOI: 10.1038/nsmb.3117] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 09/30/2015] [Indexed: 01/07/2023]
Abstract
Aberrant activation of the EGF receptor (EGFR) contributes to many human cancers by activating the Ras-MAPK pathway and other pathways. EGFR signaling is augmented by Src-family kinases, but the mechanism is poorly understood. Here, we show that human EGFR preferentially phosphorylates peptide substrates that are primed by a prior phosphorylation. Using peptides based on the sequence of the adaptor protein Shc1, we show that Src mediates the priming phosphorylation, thus promoting subsequent phosphorylation by EGFR. Importantly, the doubly phosphorylated Shc1 peptide binds more tightly than singly phosphorylated peptide to the Ras activator Grb2; this binding is a key step in activating the Ras-MAPK pathway. Finally, a crystal structure of EGFR in complex with a primed Shc1 peptide reveals the structural basis for EGFR substrate specificity. These results provide a molecular explanation for the integration of Src and EGFR signaling with downstream effectors such as Ras.
Collapse
|
39
|
Nuclear protein kinase CLK1 uses a non-traditional docking mechanism to select physiological substrates. Biochem J 2015; 472:329-38. [PMID: 26443864 DOI: 10.1042/bj20150903] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 10/06/2015] [Indexed: 01/22/2023]
Abstract
Phosphorylation-dependent cell communication requires enzymes that specifically recognize key proteins in a sea of similar, competing substrates. The protein kinases achieve this goal by utilizing docking grooves in the kinase domain or heterologous protein adaptors to reduce 'off pathway' targeting. We now provide evidence that the nuclear protein kinase CLK1 (cell division cycle2-like kinase 1) important for splicing regulation departs from these classic paradigms by using a novel self-association mechanism. The disordered N-terminus of CLK1 induces oligomerization, a necessary event for targeting its physiological substrates the SR protein (splicing factor containing a C-terminal RS domain) family of splicing factors. Increasing the CLK1 concentration enhances phosphorylation of the splicing regulator SRSF1 (SR protein splicing factor 1) compared with the general substrate myelin basic protein (MBP). In contrast, removal of the N-terminus or dilution of CLK1 induces monomer formation and reverses this specificity. CLK1 self-association also occurs in the nucleus, is induced by the N-terminus and is important for localization of the kinase in sub-nuclear compartments known as speckles. These findings present a new picture of substrate recognition for a protein kinase in which an intrinsically disordered domain is used to capture physiological targets with similar disordered domains in a large oligomeric complex while discriminating against non-physiological targets.
Collapse
|
40
|
Potential Antileukemia Effect and Structural Analyses of SRPK Inhibition by N-(2-(Piperidin-1-yl)-5-(Trifluoromethyl)Phenyl)Isonicotinamide (SRPIN340). PLoS One 2015; 10:e0134882. [PMID: 26244849 PMCID: PMC4526641 DOI: 10.1371/journal.pone.0134882] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 07/14/2015] [Indexed: 12/20/2022] Open
Abstract
Dysregulation of pre-mRNA splicing machinery activity has been related to the biogenesis of several diseases. The serine/arginine-rich protein kinase family (SRPKs) plays a critical role in regulating pre-mRNA splicing events through the extensive phosphorylation of splicing factors from the family of serine/arginine-rich proteins (SR proteins). Previous investigations have described the overexpression of SRPK1 and SRPK2 in leukemia and other cancer types, suggesting that they would be useful targets for developing novel antitumor strategies. Herein, we evaluated the effect of selective pharmacological SRPK inhibition by N-(2-(piperidin-1-yl)-5-(trifluoromethyl)phenyl)isonicotinamide (SRPIN340) on the viability of lymphoid and myeloid leukemia cell lines. Along with significant cytotoxic activity, the effect of treatments in regulating the phosphorylation of the SR protein family and in altering the expression of MAP2K1, MAP2K2, VEGF and FAS genes were also assessed. Furthermore, we found that pharmacological inhibition of SRPKs can trigger early and late events of apoptosis. Finally, intrinsic tryptophan fluorescence emission, molecular docking and molecular dynamics were analyzed to gain structural information on the SRPK/SRPIN340 complex. These data suggest that SRPK pharmacological inhibition should be considered as an alternative therapeutic strategy for fighting leukemias. Moreover, the obtained SRPK-ligand interaction data provide useful structural information to guide further medicinal chemistry efforts towards the development of novel drug candidates.
Collapse
|
41
|
Lipp JJ, Marvin MC, Shokat KM, Guthrie C. SR protein kinases promote splicing of nonconsensus introns. Nat Struct Mol Biol 2015; 22:611-7. [PMID: 26167880 DOI: 10.1038/nsmb.3057] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 06/04/2015] [Indexed: 01/01/2023]
Abstract
Phosphorylation of the spliceosome is essential for RNA splicing, yet how and to what extent kinase signaling affects splicing have not been defined on a genome-wide basis. Using a chemical genetic approach, we show in Schizosaccharomyces pombe that the SR protein kinase Dsk1 is required for efficient splicing of introns with suboptimal splice sites. Systematic substrate mapping in fission yeast and human cells revealed that SRPKs target evolutionarily conserved spliceosomal proteins, including the branchpoint-binding protein Bpb1 (SF1 in humans), by using an RXXSP consensus motif for substrate recognition. Phosphorylation of SF1 increases SF1 binding to introns with nonconsensus splice sites in vitro, and mutation of such sites to consensus relieves the requirement for Dsk1 and phosphorylated Bpb1 in vivo. Modulation of splicing efficiency through kinase signaling pathways may allow tuning of gene expression in response to environmental and developmental cues.
Collapse
Affiliation(s)
- Jesse J Lipp
- Department of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, California, USA
| | - Michael C Marvin
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California, USA
| | - Kevan M Shokat
- Department of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, California, USA
| | - Christine Guthrie
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
42
|
Corkery DP, Holly AC, Lahsaee S, Dellaire G. Connecting the speckles: Splicing kinases and their role in tumorigenesis and treatment response. Nucleus 2015; 6:279-88. [PMID: 26098145 PMCID: PMC4615201 DOI: 10.1080/19491034.2015.1062194] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Alternative pre-mRNA splicing in higher eukaryotes enhances transcriptome complexity and proteome diversity. Its regulation is mediated by a complex RNA-protein network that is essential for the maintenance of cellular and tissue homeostasis. Disruptions to this regulatory network underlie a host of human diseases and contribute to cancer development and progression. The splicing kinases are an important family of pre-mRNA splicing regulators, , which includes the CDC-like kinases (CLKs), the SRSF protein kinases (SRPKs) and pre-mRNA splicing 4 kinase (PRP4K/PRPF4B). These splicing kinases regulate pre-mRNA splicing via phosphorylation of spliceosomal components and serine-arginine (SR) proteins, affecting both their nuclear localization within nuclear speckle domains as well as their nucleo-cytoplasmic shuttling. Here we summarize the emerging evidence that splicing kinases are dysregulated in cancer and play important roles in both tumorigenesis as well as therapeutic response to radiation and chemotherapy.
Collapse
Affiliation(s)
- Dale P Corkery
- a Department of Biochemistry & Molecular Biology ; Dalhousie University ; Halifax , Nova Scotia , Canada
| | | | | | | |
Collapse
|
43
|
Jakubauskiene E, Vilys L, Makino Y, Poellinger L, Kanopka A. Increased Serine-Arginine (SR) Protein Phosphorylation Changes Pre-mRNA Splicing in Hypoxia. J Biol Chem 2015; 290:18079-18089. [PMID: 26023237 DOI: 10.1074/jbc.m115.639690] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Indexed: 11/06/2022] Open
Abstract
The removal of introns from mRNA precursors (pre-mRNAs) is an essential step in eukaryotic gene expression. The splicing machinery heavily contributes to biological complexity and especially to the ability of cells to adapt to altered cellular conditions. Inhibitory PAS domain protein (IPAS), a dominant negative regulator of hypoxia-inducible gene expression, is generated from hypoxia inducible transcription factor-3α (HIF-3α) pre-mRNA by an alternative splicing mechanism. Inactivation of the IPAS transcript in mice leads to the neo-vascularization of the cornea, suggesting that IPAS is an important regulator of anti-angiogenesis in this tissue. For the first time we demonstrate that serine-arginine (SR) proteins are involved in oxygen tension-dependent changes in pre-mRNA splicing. SR proteins isolated from hypoxic cells differentially interact with RNA (compared with proteins isolated from cells cultured under normoxic conditions). They possess the differential ability to activate hypoxia-dependent splice sites, and they are more phosphorylated than those isolated from normoxic HeLa cells. We also show that expression of SR protein kinases (CLK1, SRPK1, SRPK2) in hypoxic cells is elevated at mRNA and protein levels. Increased expression of CLK1 kinase is regulated by HIFs. Reduction of CLK1 cellular expression levels reduces hypoxia-dependent full-length carbonic anhydrase IX (CAIX) mRNA and CAIX protein formation and changes hypoxia-dependent cysteine-rich angiogenic inducer 61 (Cyr61) mRNA isoform formation profiles.
Collapse
Affiliation(s)
- Egle Jakubauskiene
- Department of Immunology and Cell Biology, Vilnius University, Institute of Biotechnology, 02241 Vilnius, Lithuania
| | - Laurynas Vilys
- Department of Immunology and Cell Biology, Vilnius University, Institute of Biotechnology, 02241 Vilnius, Lithuania
| | - Yuichi Makino
- Division of Metabolism and Biosystemic Science, Department of Medicine, Asahikawa Medical College, 078-8510 Asahikawa, Hokkaido, Japan
| | - Lorenz Poellinger
- Department of Cell and Molecular Biology, Medical Nobel Institute, Karolinska Institute, SE-17177 Stockholm, Sweden; Cancer Science Institute, National University of Singapore, 117599 Singapore
| | - Arvydas Kanopka
- Department of Immunology and Cell Biology, Vilnius University, Institute of Biotechnology, 02241 Vilnius, Lithuania.
| |
Collapse
|
44
|
Jamros MA, Aubol BE, Keshwani MM, Zhang Z, Stamm S, Adams JA. Intra-domain Cross-talk Regulates Serine-arginine Protein Kinase 1-dependent Phosphorylation and Splicing Function of Transformer 2β1. J Biol Chem 2015; 290:17269-81. [PMID: 26013829 DOI: 10.1074/jbc.m115.656579] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Indexed: 01/26/2023] Open
Abstract
Transformer 2β1 (Tra2β1) is a splicing effector protein composed of a core RNA recognition motif flanked by two arginine-serine-rich (RS) domains, RS1 and RS2. Although Tra2β1-dependent splicing is regulated by phosphorylation, very little is known about how protein kinases phosphorylate these two RS domains. We now show that the serine-arginine protein kinase-1 (SRPK1) is a regulator of Tra2β1 and promotes exon inclusion in the survival motor neuron gene 2 (SMN2). To understand how SRPK1 phosphorylates this splicing factor, we performed mass spectrometric and kinetic experiments. We found that SRPK1 specifically phosphorylates 21 serines in RS1, a process facilitated by a docking groove in the kinase domain. Although SRPK1 readily phosphorylates RS2 in a splice variant lacking the N-terminal RS domain (Tra2β3), RS1 blocks phosphorylation of these serines in the full-length Tra2β1. Thus, RS2 serves two new functions. First, RS2 positively regulates binding of the central RNA recognition motif to an exonic splicing enhancer sequence, a phenomenon reversed by SRPK1 phosphorylation on RS1. Second, RS2 enhances ligand exchange in the SRPK1 active site allowing highly efficient Tra2β1 phosphorylation. These studies demonstrate that SRPK1 is a regulator of Tra2β1 splicing function and that the individual RS domains engage in considerable cross-talk, assuming novel functions with regard to RNA binding, splicing, and SRPK1 catalysis.
Collapse
Affiliation(s)
- Michael A Jamros
- From the Department of Pharmacology, University of California at San Diego, La Jolla, California 92093-0636 and
| | - Brandon E Aubol
- From the Department of Pharmacology, University of California at San Diego, La Jolla, California 92093-0636 and
| | - Malik M Keshwani
- From the Department of Pharmacology, University of California at San Diego, La Jolla, California 92093-0636 and
| | - Zhaiyi Zhang
- the Molecular and Cellular Biochemistry Department, University of Kentucky, Lexington, Kentucky 40536
| | - Stefan Stamm
- the Molecular and Cellular Biochemistry Department, University of Kentucky, Lexington, Kentucky 40536
| | - Joseph A Adams
- From the Department of Pharmacology, University of California at San Diego, La Jolla, California 92093-0636 and
| |
Collapse
|
45
|
Abstract
Ribonucleoprotein complexes involved in pre-mRNA splicing and mRNA decay are often regulated by phosphorylation of RNA-binding proteins. Cells use phosphorylation-dependent signaling pathways to turn on and off gene expression. Not much is known about how phosphorylation-dependent signals transmitted by exogenous factors or cell cycle checkpoints regulate RNA-mediated gene expression at the atomic level. Several human diseases are linked to an altered phosphorylation state of an RNA binding protein. Understanding the structural response to the phosphorylation "signal" and its effect on ribonucleoprotein assembly provides mechanistic understanding, as well as new information for the design of novel drugs. In this review, I highlight recent structural studies that reveal the mechanisms by which phosphorylation can regulate protein-protein and protein-RNA interactions in ribonucleoprotein complexes.
Collapse
Affiliation(s)
- Roopa Thapar
- BioSciences
at Rice, Biochemistry
and Cell Biology, Rice University, Houston, Texas 77251-1892, United States
| |
Collapse
|
46
|
Ban T, Zhu JK, Melcher K, Xu HE. Structural mechanisms of RNA recognition: sequence-specific and non-specific RNA-binding proteins and the Cas9-RNA-DNA complex. Cell Mol Life Sci 2015; 72:1045-58. [PMID: 25432705 PMCID: PMC11113803 DOI: 10.1007/s00018-014-1779-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 10/28/2014] [Accepted: 11/10/2014] [Indexed: 10/24/2022]
Abstract
RNA-binding proteins play crucial roles in RNA processing and function as regulators of gene expression. Recent studies have defined the structural basis for RNA recognition by diverse RNA-binding motifs. While many RNA-binding proteins recognize RNA sequence non-specifically by associating with 5' or 3' RNA ends, sequence-specific recognition by RNA-binding proteins is typically achieved by combining multiple modular domains to form complex binding surfaces. In this review, we present examples of structures from different classes of RNA-binding proteins, identify the mechanisms utilized by them to target specific RNAs, and describe structural principles of how protein-protein interactions affect RNA recognition specificity. We also highlight the structural mechanism of sequence-dependent and -independent interactions in the Cas9-RNA-DNA complex.
Collapse
Affiliation(s)
- Ting Ban
- Roche Innovation Center Shanghai, 720 Cailun Road, Shanghai, 201203, People's Republic of China,
| | | | | | | |
Collapse
|
47
|
Abstract
SR proteins are essential splicing factors that are regulated through multisite phosphorylation of their RS (arginine/serine-rich) domains by two major families of protein kinases. The SRPKs (SR-specific protein kinases) efficiently phosphorylate the arginine/serine dipeptides in the RS domain using a conserved docking groove in the kinase domain. In contrast, CLKs (Cdc2-like kinases) lack a docking groove and phosphorylate both arginine/serine and serine-proline dipeptides, modifications that generate a hyperphosphorylated state important for unique SR protein-dependent splicing activities. All CLKs contain long flexible N-terminal extensions (140-300 residues) that resemble the RS domains present in their substrate SR proteins. We showed that the N-terminus in CLK1 contacts both the kinase domain and the RS domain of the SR protein SRSF1 (SR protein splicing factor 1). This interaction not only is essential for facilitating hyperphosphorylation, but also induces co-operative binding of SRSF1 to RNA. The N-terminus of CLK1 enhances the total phosphoryl contents of a panel of physiological substrates including SRSF1, SRSF2, SRSF5 and Tra2β1 (transformer 2β1) by 2-3-fold. These findings suggest that CLK1-dependent hyperphosphorylation is the result of a general mechanism in which the N-terminus acts as a bridge connecting the kinase domain and the RS domain of the SR protein.
Collapse
|
48
|
Aubol BE, Adams JA. Recruiting a silent partner for activation of the protein kinase SRPK1. Biochemistry 2014; 53:4625-34. [PMID: 24984036 PMCID: PMC4108178 DOI: 10.1021/bi500483m] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The SRPK family of protein kinases regulates mRNA splicing by phosphorylating an essential group of factors known as SR proteins, so named for a C-terminal domain enriched in arginine-serine dipeptide repeats (RS domains). SRPKs phosphorylate RS domains at numerous sites altering SR protein subcellular localization and splicing function. The RS domains in these splicing factors differ considerably in overall length and dipeptide layout. Despite their importance, little is known about how these diverse RS domains interact with SRPKs and regulate SR protein phosphorylation. We now show that sequences distal to the SRPK1 consensus region in the RS domain of the prototype SR protein SRSF1 are not passive as originally thought but rather play active roles in accelerating phosphorylation rates. Located in the C-terminal end of the RS domain, this nonconsensus region up-regulates rate-limiting ADP release through the nucleotide release factor, a structural module in SRPK1 composed of two noncontiguous sequence elements outside the kinase core domain. The data show that the RS domain in SRSF1 is multifunctional and that sequences once thought to be catalytically silent can be recruited to enhance the efficiency of SR protein phosphorylation.
Collapse
Affiliation(s)
- Brandon E Aubol
- Department of Pharmacology, University of California, San Diego , La Jolla, California 92093-0636, United States
| | | |
Collapse
|
49
|
van der Lee R, Buljan M, Lang B, Weatheritt RJ, Daughdrill GW, Dunker AK, Fuxreiter M, Gough J, Gsponer J, Jones D, Kim PM, Kriwacki R, Oldfield CJ, Pappu RV, Tompa P, Uversky VN, Wright P, Babu MM. Classification of intrinsically disordered regions and proteins. Chem Rev 2014; 114:6589-631. [PMID: 24773235 PMCID: PMC4095912 DOI: 10.1021/cr400525m] [Citation(s) in RCA: 1462] [Impact Index Per Article: 146.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Indexed: 12/11/2022]
Affiliation(s)
- Robin van der Lee
- MRC
Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
- Centre
for Molecular and Biomolecular Informatics, Radboud University Medical Centre, 6500 HB Nijmegen, The
Netherlands
| | - Marija Buljan
- MRC
Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Benjamin Lang
- MRC
Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Robert J. Weatheritt
- MRC
Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Gary W. Daughdrill
- Department
of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, 3720 Spectrum Boulevard, Suite 321, Tampa, Florida 33612, United States
| | - A. Keith Dunker
- Department
of Biochemistry and Molecular Biology, Indiana
University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Monika Fuxreiter
- MTA-DE
Momentum Laboratory of Protein Dynamics, Department of Biochemistry
and Molecular Biology, University of Debrecen, H-4032 Debrecen, Nagyerdei krt 98, Hungary
| | - Julian Gough
- Department
of Computer Science, University of Bristol, The Merchant Venturers Building, Bristol BS8 1UB, United Kingdom
| | - Joerg Gsponer
- Department
of Biochemistry and Molecular Biology, Centre for High-Throughput
Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - David
T. Jones
- Bioinformatics
Group, Department of Computer Science, University
College London, London, WC1E 6BT, United Kingdom
| | - Philip M. Kim
- Terrence Donnelly Centre for Cellular and Biomolecular Research, Department of Molecular
Genetics, and Department of Computer Science, University
of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Richard
W. Kriwacki
- Department
of Structural Biology, St. Jude Children’s
Research Hospital, Memphis, Tennessee 38105, United States
| | - Christopher J. Oldfield
- Department
of Biochemistry and Molecular Biology, Indiana
University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Rohit V. Pappu
- Department
of Biomedical Engineering and Center for Biological Systems Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Peter Tompa
- VIB Department
of Structural Biology, Vrije Universiteit
Brussel, Brussels, Belgium
- Institute
of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Vladimir N. Uversky
- Department
of Molecular Medicine and USF Health Byrd Alzheimer’s Research
Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
- Institute for Biological Instrumentation,
Russian Academy of Sciences, Pushchino,
Moscow Region, Russia
| | - Peter
E. Wright
- Department
of Integrative Structural and Computational Biology and Skaggs Institute
of Chemical Biology, The Scripps Research
Institute, 10550 North
Torrey Pines Road, La Jolla, California 92037, United States
| | - M. Madan Babu
- MRC
Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| |
Collapse
|
50
|
Primary structural features of SR-like protein acinusS govern the phosphorylation mechanism by SRPK2. Biochem J 2014; 459:181-91. [PMID: 24444330 DOI: 10.1042/bj20131091] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
SRPKs (serine/arginine protein kinases) are highly specific kinases that recognize and phosphorylate RS (Arg-Ser) dipeptide repeats. It has been shown previously that SRPK1 phosphorylates the RS domain of SRSF1 (serine/arginine splicing factor 1) at multiple sites using a directional and processive mechanism. Such ability to processively phosphorylate substrates is proposed to be an inherent characteristic of SRPKs. SRPK2 is highly related to SRPK1 in sequence and in vitro properties, yet it has been shown to have distinct substrate specificity and physiological function in vivo. To study the molecular basis for substrate specificity of SRPK2, we investigated the roles of the non-kinase regions and a conserved docking groove of SRPK2 in the recognition and phosphorylation of different substrates: SRSF1 and acinusS. Our results reveal that a conserved electronegative docking groove in SRPK2, but not its non-kinase regions, is responsible for substrate binding regardless of their identities. Although SRPK2 phosphorylates SRSF1 in a processive manner as predicted, an electronegative region on acinusS restricts SRPK2 phosphorylation to a single specific site despite the presence of multiple RS dipeptides. These results suggest that primary structural elements on the substrates serve as key regulatory roles in determining the phosphorylation mechanism of SRPK2.
Collapse
|