1
|
Handa S, Biswas T, Chakraborty J, Ghosh G, Paul BG, Ghosh P. RNA control of reverse transcription in a diversity-generating retroelement. Nature 2025; 638:1122-1129. [PMID: 39779855 PMCID: PMC11995886 DOI: 10.1038/s41586-024-08405-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 11/14/2024] [Indexed: 01/11/2025]
Abstract
Diversity-generating retroelements (DGRs) create massive protein sequence variation (up to 1030)1 in ecologically diverse microorganisms. A recent survey identified around 31,000 DGRs from more than 1,500 bacterial and archaeal genera, constituting more than 90 environment types2. DGRs are especially enriched in the human gut microbiome2,3 and nano-sized microorganisms that seem to comprise most microbial life and maintain DGRs despite reduced genomes4,5. DGRs are also implicated in the emergence of multicellularity6,7. Variation occurs during reverse transcription of a protein-encoding RNA template coupled to misincorporation at adenosines. In the prototypical Bordetella bacteriophage DGR, the template must be surrounded by upstream and downstream RNA segments for complementary DNA synthesis to be carried out by a complex of the DGR reverse transcriptase bRT and associated protein Avd. The function of the surrounding RNA was unknown. Here we show through cryogenic electron microscopy that this RNA envelops bRT and lies over the barrel-shaped Avd, forming an intimate ribonucleoprotein. An abundance of essential interactions in the ribonucleoprotein precisely position an RNA homoduplex in the bRT active site for initiation of reverse transcription. Our results explain how the surrounding RNA primes complementary DNA synthesis, promotes processivity, terminates polymerization and strictly limits mutagenesis to specific proteins through mechanisms that are probably conserved in DGRs belonging to distant taxa.
Collapse
Affiliation(s)
- Sumit Handa
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
- 10X Genomics, Pleasanton, CA, USA
| | - Tapan Biswas
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - Jeet Chakraborty
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - Gourisankar Ghosh
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - Blair G Paul
- Marine Biological Laboratory, Josephine Bay Paul Center, Woods Hole, MA, USA
| | - Partho Ghosh
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
2
|
Macadangdang BR, Wang Y, Woodward C, Revilla JI, Shaw BM, Sasaninia K, Makanani SK, Berruto C, Ahuja U, Miller JF. Targeted protein evolution in the gut microbiome by diversity-generating retroelements. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.15.621889. [PMID: 39605476 PMCID: PMC11601372 DOI: 10.1101/2024.11.15.621889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Diversity-generating retroelements (DGRs) accelerate evolution by rapidly diversifying variable proteins. The human gastrointestinal microbiota harbors the greatest density of DGRs known in nature, suggesting they play adaptive roles in this environment. We identified >1,100 unique DGRs among human-associated Bacteroides species and discovered a subset that diversify adhesive components of Type V pili and related proteins. We show that Bacteroides DGRs are horizontally transferred across species, that some are highly active while others are tightly controlled, and that they preferentially alter the functional characteristics of ligand-binding residues on adhesive organelles. Specific variable protein sequences are enriched when Bacteroides strains compete with other commensal bacteria in gnotobiotic mice. Analysis of >2,700 DGRs from diverse phyla in mother-infant pairs shows that Bacteroides DGRs are preferentially transferred to vaginally delivered infants where they actively diversify. Our observations provide a foundation for understanding the roles of stochastic, targeted genome plasticity in shaping host-associated microbial communities.
Collapse
Affiliation(s)
- Benjamin R. Macadangdang
- Division of Neonatology and Developmental Biology, Department of Pediatrics, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA, United States
- California NanoSystems Institute, Los Angeles, CA, United States
| | - Yanling Wang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California, United States
| | - Cora Woodward
- California NanoSystems Institute, Los Angeles, CA, United States
| | - Jessica I. Revilla
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Bennett M. Shaw
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Kayvan Sasaninia
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California, United States
| | - Sara K. Makanani
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California, United States
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States
| | - Chiara Berruto
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California, United States
| | - Umesh Ahuja
- California NanoSystems Institute, Los Angeles, CA, United States
| | - Jeff F. Miller
- California NanoSystems Institute, Los Angeles, CA, United States
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California, United States
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States
- Lead contact
| |
Collapse
|
3
|
Handa S, Biswas T, Chakraborty J, Ghosh G, Paul BG, Ghosh P. Structural Requirements for Reverse Transcription by a Diversity-generating Retroelement. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.23.563531. [PMID: 37961358 PMCID: PMC10634737 DOI: 10.1101/2023.10.23.563531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Diversity-generating retroelements (DGRs) create massive protein sequence variation in ecologically diverse microbes. Variation occurs during reverse transcription of a protein-encoding RNA template coupled to misincorporation at adenosines. In the prototypical Bordetella bacteriophage DGR, the template must be surrounded by upstream and downstream RNA segments for cDNA synthesis by the reverse transcriptase bRT and associated protein Avd. The function of the surrounding RNA was unknown. Cryo-EM revealed that this RNA enveloped bRT and lay over barrel-shaped Avd, forming an intimate ribonucleoprotein (RNP). An abundance of essential interactions between RNA structural elements and bRT-Avd precisely positioned an RNA homoduplex for initiation of cDNA synthesis by cis -priming. Our results explain how the surrounding RNA primes cDNA synthesis, promotes processivity, terminates polymerization, and strictly limits mutagenesis to select proteins through mechanisms that are likely conserved in DGRs from distant taxa.
Collapse
|
4
|
Doré H, Eisenberg AR, Junkins EN, Leventhal GE, Ganesh A, Cordero OX, Paul BG, Valentine DL, O’Malley MA, Wilbanks EG. Targeted hypermutation of putative antigen sensors in multicellular bacteria. Proc Natl Acad Sci U S A 2024; 121:e2316469121. [PMID: 38354254 PMCID: PMC10907252 DOI: 10.1073/pnas.2316469121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/10/2024] [Indexed: 02/16/2024] Open
Abstract
Diversity-generating retroelements (DGRs) are used by bacteria, archaea, and viruses as a targeted mutagenesis tool. Through error-prone reverse transcription, DGRs introduce random mutations at specific genomic loci, enabling rapid evolution of these targeted genes. However, the function and benefits of DGR-diversified proteins in cellular hosts remain elusive. We find that 82% of DGRs from one of the major monophyletic lineages of DGR reverse transcriptases are encoded by multicellular bacteria, which often have two or more DGR loci in their genomes. Using the multicellular purple sulfur bacterium Thiohalocapsa sp. PB-PSB1 as an example, we characterized nine distinct DGR loci capable of generating 10282 different combinations of target proteins. With environmental metagenomes from individual Thiohalocapsa aggregates, we show that most of PB-PSB1's DGR target genes are diversified across its biogeographic range, with spatial heterogeneity in the diversity of each locus. In Thiohalocapsa PB-PSB1 and other bacteria hosting this lineage of cellular DGRs, the diversified target genes are associated with NACHT-domain anti-phage defenses and putative ternary conflict systems previously shown to be enriched in multicellular bacteria. We propose that these DGR-diversified targets act as antigen sensors that confer a form of adaptive immunity to their multicellular consortia, though this remains to be experimentally tested. These findings could have implications for understanding the evolution of multicellularity, as the NACHT-domain anti-phage systems and ternary systems share both domain homology and conceptual similarities with the innate immune and programmed cell death pathways of plants and metazoans.
Collapse
Affiliation(s)
- H. Doré
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA93106
| | - A. R. Eisenberg
- Department of Chemical Engineering, University of California, Santa Barbara, CA93106
| | - E. N. Junkins
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA93106
| | - G. E. Leventhal
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Anakha Ganesh
- Bay Paul Center, Marine Biological Laboratory, Woods Hole, MA02543
| | - O. X. Cordero
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - B. G. Paul
- Bay Paul Center, Marine Biological Laboratory, Woods Hole, MA02543
| | - D. L. Valentine
- Department of Earth Science, University of California, Santa Barbara, CA93106
- Marine Science Institute, University of California, Santa Barbara, CA93106
| | - M. A. O’Malley
- Department of Chemical Engineering, University of California, Santa Barbara, CA93106
- Department of Bioengineering, University of California, Santa Barbara, CA93106
| | - E. G. Wilbanks
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA93106
- Department of Bioengineering, University of California, Santa Barbara, CA93106
| |
Collapse
|
5
|
Macadangdang BR, Makanani SK, Miller JF. Accelerated Evolution by Diversity-Generating Retroelements. Annu Rev Microbiol 2022; 76:389-411. [PMID: 35650669 DOI: 10.1146/annurev-micro-030322-040423] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Diversity-generating retroelements (DGRs) create vast amounts of targeted, functional diversity by facilitating the rapid evolution of ligand-binding protein domains. Thousands of DGRs have been identified in bacteria, archaea, and their respective viruses. They are broadly distributed throughout the microbial world, with enrichment observed in certain taxa and environments. The diversification machinery works through a novel mechanism termed mutagenic retrohoming, whereby nucleotide sequence information is copied from an invariant DNA template repeat (TR) into an RNA intermediate, selectively mutagenized at TR adenines during cDNA synthesis by a DGR-encoded reverse transcriptase, and transferred to a variable repeat (VR) region within a variable-protein gene (54). This unidirectional flow of information leaves TR-DNA sequences unmodified, allowing for repeated rounds of mutagenic retrohoming to optimize variable-protein function. DGR target genes are often modular and can encode one or more of a wide variety of discrete functional domains appended to a diversifiable ligand-binding motif. Bacterial variable proteins often localize to cell surfaces, although a subset appear to be cytoplasmic, while phage-encoded DGRs commonly diversify tail fiber-associated receptor-binding proteins. Here, we provide a comprehensive review of the mechanism and consequences of accelerated protein evolution by these unique and beneficial genetic elements. Expected final online publication date for the Annual Review of Microbiology, Volume 76 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Benjamin R Macadangdang
- Division of Neonatology and Developmental Biology, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, California, USA; .,California NanoSystems Institute, University of California, Los Angeles, California, USA
| | - Sara K Makanani
- California NanoSystems Institute, University of California, Los Angeles, California, USA.,Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, USA; .,Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, California, USA;
| | - Jeff F Miller
- California NanoSystems Institute, University of California, Los Angeles, California, USA.,Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, California, USA; .,Molecular Biology Institute, University of California, Los Angeles, California, USA
| |
Collapse
|
6
|
Paul BG, Eren AM. Eco-evolutionary significance of domesticated retroelements in microbial genomes. Mob DNA 2022; 13:6. [PMID: 35197094 PMCID: PMC8867640 DOI: 10.1186/s13100-022-00262-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/03/2022] [Indexed: 01/03/2023] Open
Abstract
Since the first discovery of reverse transcriptase in bacteria, and later in archaea, bacterial and archaeal retroelements have been defined by their common enzyme that coordinates diverse functions. Yet, evolutionary refinement has produced distinct retroelements across the tree of microbial life that are perhaps best described in terms of their programmed RNA-a compact sequence that preserves core information for a sophisticated mechanism. From this perspective, reverse transcriptase has been selected as the modular tool for carrying out nature's instructions in various RNA templates. Beneficial retroelements-those that can provide a fitness advantage to their host-evolved to their extant forms in a wide array of microorganisms and their viruses, spanning nearly all habitats. Within each specialized retroelement class, several universal features seem to be shared across diverse taxa, while specific functional and mechanistic insights are based on only a few model retroelement systems from clinical isolates. Currently, little is known about the diversity of cellular functions and ecological significance of retroelements across different biomes. With increasing availability of isolate, metagenome-assembled, and single-amplified genomes, the taxonomic and functional breadth of prokaryotic retroelements is coming into clearer view. This review explores the recently characterized classes of beneficial, yet accessory retroelements of bacteria and archaea. We describe how these specialized mechanisms exploit a form of fixed mobility, whereby the retroelements do not appear to proliferate selfishly throughout the genome. Moreover, we discuss computational approaches for systematic identification of retroelements from vast sequence repositories and highlight recent discoveries in terms of their apparent distribution and ecological significance in nature. Lastly, we present a new perspective on the eco-evolutionary significance of these genetic elements in marine bacteria and demonstrate approaches that enable the characterization of their environmental diversity through metagenomics.
Collapse
Affiliation(s)
- Blair G Paul
- Marine Biological Laboratory, Josephine Bay Paul Center, Woods Hole, MA, USA.
| | - A Murat Eren
- Marine Biological Laboratory, Josephine Bay Paul Center, Woods Hole, MA, USA.
- Department of Medicine, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
7
|
Does over a century of aerobic phage work provide a solid framework for the study of phages in the gut? Anaerobe 2021; 68:102319. [PMID: 33465423 DOI: 10.1016/j.anaerobe.2021.102319] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 01/09/2021] [Accepted: 01/11/2021] [Indexed: 12/13/2022]
Abstract
Bacterial viruses (bacteriophages, phages) of the gut have increasingly become a focus in microbiome studies, with an understanding that they are likely key players in health and disease. However, characterization of the virome remains largely based on bioinformatic approaches, with the impact of these viromes inferred based on a century of knowledge from aerobic phage work. Studying the phages infecting anaerobes is difficult, as they are often technically demanding to isolate and propagate. In this review, we primarily discuss the phages infecting three well-studied anaerobes in the gut: Bifidobacterium, Clostridia and Bacteroides, with a particular focus on the challenges in isolating and characterizing these phages. We contrast the lessons learned from these to other anaerobic work on phages infecting facultative anaerobes of the gut: Enterococcus and Lactobacillus. Phages from the gut do appear to adhere to the lessons learned from aerobic work, but the additional challenges of working on them has required ingenious new approaches to enable their study. This, in turn, has uncovered remarkable biology likely underpinning phage-host relationships in many stable environments.
Collapse
|
8
|
Handa S, Jiang Y, Tao S, Foreman R, Schinazi RF, Miller JF, Ghosh P. Template-assisted synthesis of adenine-mutagenized cDNA by a retroelement protein complex. Nucleic Acids Res 2019; 46:9711-9725. [PMID: 30007279 PMCID: PMC6182149 DOI: 10.1093/nar/gky620] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 06/27/2018] [Indexed: 12/28/2022] Open
Abstract
Diversity-generating retroelements (DGRs) create unparalleled levels of protein sequence variation through mutagenic retrohoming. Sequence information is transferred from an invariant template region (TR), through an RNA intermediate, to a protein-coding variable region. Selective infidelity at adenines during transfer is a hallmark of DGRs from disparate bacteria, archaea, and microbial viruses. We recapitulated selective infidelity in vitro for the prototypical Bordetella bacteriophage DGR. A complex of the DGR reverse transcriptase bRT and pentameric accessory variability determinant (Avd) protein along with DGR RNA were necessary and sufficient for synthesis of template-primed, covalently linked RNA–cDNA molecules, as observed in vivo. We identified RNA–cDNA molecules to be branched and most plausibly linked through 2′-5′ phosphodiester bonds. Adenine-mutagenesis was intrinsic to the bRT-Avd complex, which displayed unprecedented promiscuity while reverse transcribing adenines of either DGR or non-DGR RNA templates. In contrast, bRT-Avd processivity was strictly dependent on the template, occurring only for the DGR RNA. This restriction was mainly due to a noncoding segment downstream of TR, which specifically bound Avd and created a privileged site for processive polymerization. Restriction to DGR RNA may protect the host genome from damage. These results define the early steps in a novel pathway for massive sequence diversification.
Collapse
Affiliation(s)
- Sumit Handa
- Department of Chemistry & Biochemistry, University of California, San Diego, CA 92093, USA
| | - Yong Jiang
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Sijia Tao
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Robert Foreman
- Department of Chemistry & Biochemistry, University of California, San Diego, CA 92093, USA
| | - Raymond F Schinazi
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jeff F Miller
- Departments of Microbiology, Immunology, and Molecular Genetics, Molecular Biology Institute, and California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Partho Ghosh
- Department of Chemistry & Biochemistry, University of California, San Diego, CA 92093, USA
| |
Collapse
|
9
|
Yan F, Yu X, Duan Z, Lu J, Jia B, Qiao Y, Sun C, Wei C. Discovery and characterization of the evolution, variation and functions of diversity-generating retroelements using thousands of genomes and metagenomes. BMC Genomics 2019; 20:595. [PMID: 31324156 PMCID: PMC6642488 DOI: 10.1186/s12864-019-5951-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 07/02/2019] [Indexed: 12/31/2022] Open
Abstract
Background Diversity-generating retroelements (DGRs) are a unique family of retroelements that generate sequence diversity of DNA to benefit their hosts by introducing variations and accelerating the evolution of target proteins. They exist widely in bacteria, archaea, phage and plasmid. However, our understanding about DGRs in natural environments was still very limited. Results We developed an efficient computational algorithm to identify DGRs, and applied it to characterize DGRs in more than 80,000 sequenced bacterial genomes as well as more than 4,000 human metagenome datasets. In total, we identified 948 non-redundant DGRs, which expanded the number of known DGRs in bacterial genomes and human microbiomes by about 55%, and provided a much more comprehensive reference for the study of DGRs. Phylogenetic analysis was done for identified DGRs. The putative target genes of DGRs were searched, and the functions of these target genes were investigated with a comprehensive alignment against the nr database. Conclusions DGR system is a powerful and universal mechanism to generate diversity. DGR evolution is closely associated with the living environment and their cassette structures. Furthermore, it may impact a wide range of functional processes in addition to receptor-binding. These results significantly improved our understanding about DGRs. Electronic supplementary material The online version of this article (10.1186/s12864-019-5951-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fazhe Yan
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Xuelin Yu
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Zhongqu Duan
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Jinyuan Lu
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Ben Jia
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.,Shanghai Center for Bioinformation Technology, 1278 Keyuan Road, Pudong District, Shanghai, 201203, China
| | - Yuyang Qiao
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Chen Sun
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Chaochun Wei
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China. .,Shanghai Center for Bioinformation Technology, 1278 Keyuan Road, Pudong District, Shanghai, 201203, China.
| |
Collapse
|
10
|
Wu L, Gingery M, Abebe M, Arambula D, Czornyj E, Handa S, Khan H, Liu M, Pohlschroder M, Shaw KL, Du A, Guo H, Ghosh P, Miller JF, Zimmerly S. Diversity-generating retroelements: natural variation, classification and evolution inferred from a large-scale genomic survey. Nucleic Acids Res 2019; 46:11-24. [PMID: 29186518 PMCID: PMC5758913 DOI: 10.1093/nar/gkx1150] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 11/04/2017] [Indexed: 01/12/2023] Open
Abstract
Diversity-generating retroelements (DGRs) are novel genetic elements that use reverse transcription to generate vast numbers of sequence variants in specific target genes. Here, we present a detailed comparative bioinformatic analysis that depicts the landscape of DGR sequences in nature as represented by data in GenBank. Over 350 unique DGRs are identified, which together form a curated reference set of putatively functional DGRs. We classify target genes, variable repeats and DGR cassette architectures, and identify two new accessory genes. The great variability of target genes implies roles of DGRs in many undiscovered biological processes. There is much evidence for horizontal transfers of DGRs, and we identify lineages of DGRs that appear to have specialized properties. Because GenBank contains data from only 10% of described species, the compilation may not be wholly representative of DGRs present in nature. Indeed, many DGR subtypes are present only once in the set and DGRs of the candidate phylum radiation bacteria, and Diapherotrites, Parvarchaeota, Aenigmarchaeota, Nanoarchaeota, Nanohaloarchaea archaea, are exceptionally diverse in sequence, with little information available about functions of their target genes. Nonetheless, this study provides a detailed framework for classifying and studying DGRs as they are uncovered and studied in the future.
Collapse
Affiliation(s)
- Li Wu
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Mari Gingery
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Michael Abebe
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Diego Arambula
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Elizabeth Czornyj
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Sumit Handa
- Department of Chemistry and Biochemistry, University of California, San Diego, CA 92093, USA
| | - Hamza Khan
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Minghsun Liu
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | | | - Kharissa L Shaw
- Department of Chemistry and Biochemistry, University of California, San Diego, CA 92093, USA
| | - Amy Du
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Huatao Guo
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA.,Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO 65212, USA
| | - Partho Ghosh
- Department of Chemistry and Biochemistry, University of California, San Diego, CA 92093, USA
| | - Jeff F Miller
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Steven Zimmerly
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
11
|
Naorem SS, Han J, Wang S, Lee WR, Heng X, Miller JF, Guo H. DGR mutagenic transposition occurs via hypermutagenic reverse transcription primed by nicked template RNA. Proc Natl Acad Sci U S A 2017; 114:E10187-E10195. [PMID: 29109248 PMCID: PMC5703328 DOI: 10.1073/pnas.1715952114] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Diversity-generating retroelements (DGRs) are molecular evolution machines that facilitate microbial adaptation to environmental changes. Hypervariation occurs via a mutagenic retrotransposition process from a template repeat (TR) to a variable repeat (VR) that results in adenine-to-random nucleotide conversions. Here we show that reverse transcription of the Bordetella phage DGR is primed by an adenine residue in TR RNA and is dependent on the DGR-encoded reverse transcriptase (bRT) and accessory variability determinant (Avd ), but is VR-independent. We also find that the catalytic center of bRT plays an essential role in site-specific cleavage of TR RNA for cDNA priming. Adenine-specific mutagenesis occurs during reverse transcription and does not involve dUTP incorporation, indicating it results from bRT-catalyzed misincorporation of standard deoxyribonucleotides. In vivo assays show that this hybrid RNA-cDNA molecule is required for mutagenic transposition, revealing a unique mechanism of DNA hypervariation for microbial adaptation.
Collapse
Affiliation(s)
- Santa S Naorem
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO 65212
| | - Jin Han
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO 65212
| | - Shufang Wang
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO 65212
| | - William R Lee
- Department of Biochemistry, University of Missouri, Columbia, MO 65212
| | - Xiao Heng
- Department of Biochemistry, University of Missouri, Columbia, MO 65212
| | - Jeff F Miller
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095;
- The California NanoSystems Institute, University of California, Los Angeles, CA 90095
| | - Huatao Guo
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO 65212;
| |
Collapse
|
12
|
Retroelement-guided protein diversification abounds in vast lineages of Bacteria and Archaea. Nat Microbiol 2017; 2:17045. [PMID: 28368387 PMCID: PMC5436926 DOI: 10.1038/nmicrobiol.2017.45] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 03/03/2017] [Indexed: 11/08/2022]
Abstract
Major radiations of enigmatic bacteria and archaea with large inventories of uncharacterized proteins are a striking feature of the Tree of Life1,2,3,4,5. The processes that led to functional diversity in these lineages, which may contribute to a host-dependent lifestyle, are poorly understood. Here we show that diversity-generating retroelements (DGRs), which guide site-specific protein hypervariability6,7,8, are prominent features of genomically-reduced organisms from the bacterial candidate phyla radiation (CPR) and yet uncultivated phyla belonging to the DPANN archaeal superphylum. From reconstructed genomes we defined monophyletic bacterial and archaeal DGR lineages that expand known DGR range by 120% and reveal a history of horizontal retroelement transfer. Retroelement-guided diversification is further shown to be active in current CPR and DPANN populations, with an assortment of protein targets potentially involved in attachment, defense, and regulation. Based on observations of DGR abundance, function, and evolutionary history, we find that targeted protein diversification is a pronounced trait of CPR and DPANN phyla compared to other bacterial and archaeal phyla. This diversification mechanism may provide CPR and DPANN organisms a versatile tool that could be used for adaptation to a dynamic, host-dependent, existence.
Collapse
|
13
|
Nimkulrat S, Lee H, Doak TG, Ye Y. Genomic and Metagenomic Analysis of Diversity-Generating Retroelements Associated with Treponema denticola. Front Microbiol 2016; 7:852. [PMID: 27375574 PMCID: PMC4891356 DOI: 10.3389/fmicb.2016.00852] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 05/23/2016] [Indexed: 12/11/2022] Open
Abstract
Diversity-generating retroelements (DGRs) are genetic cassettes that can produce massive protein sequence variation in prokaryotes. Presumably DGRs confer selective advantages to their hosts (bacteria or viruses) by generating variants of target genes—typically resulting in target proteins with altered ligand-binding specificity—through a specialized error-prone reverse transcription process. The only extensively studied DGR system is from the Bordetella phage BPP-1, although DGRs are predicted to exist in other species. Using bioinformatics analysis, we discovered that the DGR system associated with the Treponema denticola species (a human oral-associated periopathogen) is dynamic (with gains/losses of the system found in the isolates) and diverse (with multiple types found in isolated genomes and the human microbiota). The T. denticola DGR is found in only nine of the 17 sequenced T. denticola strains. Analysis of the DGR-associated template regions and reverse transcriptase gene sequences revealed two types of DGR systems in T. denticola: the ATCC35405-type shared by seven isolates including ATCC35405; and the SP32-type shared by two isolates (SP32 and SP33), suggesting multiple DGR acquisitions. We detected additional variants of the T. denticola DGR systems in the human microbiomes, and found that the SP32-type DGR is more abundant than the ATCC35405-type in the healthy human oral microbiome, although the latter is found in more sequenced isolates. This is the first comprehensive study to characterize the DGRs associated with T. denticola in individual genomes as well as human microbiomes, demonstrating the importance of utilizing both individual genomes and metagenomes for characterizing the elements, and for analyzing their diversity and distribution in human populations.
Collapse
Affiliation(s)
- Sutichot Nimkulrat
- School of Informatics and Computing, Indiana University, Bloomington IN, USA
| | - Heewook Lee
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh PA, USA
| | - Thomas G Doak
- Department of Biology, Indiana University, BloomingtonIN, USA; National Center for Genome Analysis Support, Indiana University, BloomingtonIN, USA
| | - Yuzhen Ye
- School of Informatics and Computing, Indiana University, Bloomington IN, USA
| |
Collapse
|
14
|
Abstract
Reverse transcriptases (RTs) are usually thought of as eukaryotic enzymes, but they are also present in bacteria and likely originated in bacteria and migrated to eukaryotes. Only three types of bacterial retroelements have been substantially characterized: group II introns, diversity-generating retroelements, and retrons. Recent work, however, has identified a myriad of uncharacterized RTs and RT-related sequences in bacterial genomes, which exhibit great sequence diversity and a range of domain structures. Apart from group II introns, none of these putative RTs show evidence of active retromobility. Instead, available information suggests that they are involved in useful processes, sometimes related to phages or phage resistance. This article reviews our knowledge of both characterized and uncharacterized RTs in bacteria. The range of their sequences and genomic contexts promises the discovery of new biochemical reactions and biological phenomena.
Collapse
|
15
|
Abstract
Diversity-generating retroelements (DGRs) are DNA diversification machines found in diverse bacterial and bacteriophage genomes that accelerate the evolution of ligand-receptor interactions. Diversification results from a unidirectional transfer of sequence information from an invariant template repeat (TR) to a variable repeat (VR) located in a protein-encoding gene. Information transfer is coupled to site-specific mutagenesis in a process called mutagenic homing, which occurs through an RNA intermediate and is catalyzed by a unique, DGR-encoded reverse transcriptase that converts adenine residues in the TR into random nucleotides in the VR. In the prototype DGR found in the Bordetella bacteriophage BPP-1, the variable protein Mtd is responsible for phage receptor recognition. VR diversification enables progeny phage to switch tropism, accelerating their adaptation to changes in sequence or availability of host cell-surface molecules for infection. Since their discovery, hundreds of DGRs have been identified, and their functions are just beginning to be understood. VR-encoded residues of many DGR-diversified proteins are displayed in the context of a C-type lectin fold, although other scaffolds, including the immunoglobulin fold, may also be used. DGR homing is postulated to occur through a specialized target DNA-primed reverse transcription mechanism that allows repeated rounds of diversification and selection, and the ability to engineer DGRs to target heterologous genes suggests applications for bioengineering. This chapter provides a comprehensive review of our current understanding of this newly discovered family of beneficial retroelements.
Collapse
|
16
|
Kopf M, Hess WR. Regulatory RNAs in photosynthetic cyanobacteria. FEMS Microbiol Rev 2015; 39:301-15. [PMID: 25934122 PMCID: PMC6596454 DOI: 10.1093/femsre/fuv017] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 01/06/2015] [Accepted: 03/10/2015] [Indexed: 12/02/2022] Open
Abstract
Regulatory RNAs play versatile roles in bacteria in the coordination of gene expression during various physiological processes, especially during stress adaptation. Photosynthetic bacteria use sunlight as their major energy source. Therefore, they are particularly vulnerable to the damaging effects of excess light or UV irradiation. In addition, like all bacteria, photosynthetic bacteria must adapt to limiting nutrient concentrations and abiotic and biotic stress factors. Transcriptome analyses have identified hundreds of potential regulatory small RNAs (sRNAs) in model cyanobacteria such as Synechocystis sp. PCC 6803 or Anabaena sp. PCC 7120, and in environmentally relevant genera such as Trichodesmium, Synechococcus and Prochlorococcus. Some sRNAs have been shown to actually contain μORFs and encode short proteins. Examples include the 40-amino-acid product of the sml0013 gene, which encodes the NdhP subunit of the NDH1 complex. In contrast, the functional characterization of the non-coding sRNA PsrR1 revealed that the 131 nt long sRNA controls photosynthetic functions by targeting multiple mRNAs, providing a paradigm for sRNA functions in photosynthetic bacteria. We suggest that actuatons comprise a new class of genetic elements in which an sRNA gene is inserted upstream of a coding region to modify or enable transcription of that region.
Collapse
Affiliation(s)
- Matthias Kopf
- Faculty of Biology, Institute of Biology III, University of Freiburg, D-79104 Freiburg, Germany
| | - Wolfgang R Hess
- Faculty of Biology, Institute of Biology III, University of Freiburg, D-79104 Freiburg, Germany
| |
Collapse
|
17
|
Paul BG, Bagby SC, Czornyj E, Arambula D, Handa S, Sczyrba A, Ghosh P, Miller JF, Valentine DL. Targeted diversity generation by intraterrestrial archaea and archaeal viruses. Nat Commun 2015; 6:6585. [PMID: 25798780 PMCID: PMC4372165 DOI: 10.1038/ncomms7585] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 02/09/2015] [Indexed: 11/09/2022] Open
Abstract
In the evolutionary arms race between microbes, their parasites, and their neighbours, the capacity for rapid protein diversification is a potent weapon. Diversity-generating retroelements (DGRs) use mutagenic reverse transcription and retrohoming to generate myriad variants of a target gene. Originally discovered in pathogens, these retroelements have been identified in bacteria and their viruses, but never in archaea. Here we report the discovery of intact DGRs in two distinct intraterrestrial archaeal systems: a novel virus that appears to infect archaea in the marine subsurface, and, separately, two uncultivated nanoarchaea from the terrestrial subsurface. The viral DGR system targets putative tail fibre ligand-binding domains, potentially generating >1018 protein variants. The two single-cell nanoarchaeal genomes each possess ≥4 distinct DGRs. Against an expected background of low genome-wide mutation rates, these results demonstrate a previously unsuspected potential for rapid, targeted sequence diversification in intraterrestrial archaea and their viruses. Diversity-generating retroelements (DGRs) are genetic elements that introduce sequence variation within target genes in bacteria and their viruses. Here, Paul et al. report the discovery of DGRs in an archaeal virus and in two archaea from marine and terrestrial subsurface environments, respectively.
Collapse
Affiliation(s)
- Blair G Paul
- Marine Science Institute, University of California, Santa Barbara, California 93106, USA
| | - Sarah C Bagby
- Marine Science Institute, University of California, Santa Barbara, California 93106, USA
| | - Elizabeth Czornyj
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California 90095, USA
| | - Diego Arambula
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California 90095, USA
| | - Sumit Handa
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| | - Alexander Sczyrba
- 1] Center for Biotechnology and Faculty of Technology, Bielefeld University, 33615 Bielefeld, Germany [2] DOE Joint Genome Institute, Walnut Creek, California 94598, USA
| | - Partho Ghosh
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| | - Jeff F Miller
- 1] Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California 90095, USA [2] Molecular Biology Institute, University of California, Los Angeles, California 90095, USA [3] California NanoSystems Institute, University of California, Los Angeles, California 90095, USA
| | - David L Valentine
- 1] Marine Science Institute, University of California, Santa Barbara, California 93106, USA [2] Department of Earth Science, University of California Santa Barbara, Santa Barbara, California 93106 USA
| |
Collapse
|
18
|
Schillinger T, Zingler N. The low incidence of diversity-generating retroelements in sequenced genomes. Mob Genet Elements 2014; 2:287-291. [PMID: 23481467 PMCID: PMC3575424 DOI: 10.4161/mge.23244] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The insertion of a retrotransposable element is usually associated with adverse or, at best, neutral effects on the host. Diversity-generating retroelements (DGRs) are the first elements that seem to offer a direct selective advantage to their phage or prokaryote host by exact replacement of a short, defined region of a host gene with a hypermutated variant. In a previous study, we presented the software DiGReF for identification of DGRs in genome sequences, and compiled the first comprehensive set of diversity-generating retroelements in public databases. We identified 155 elements in more than 6000 prokaryotic and phage genomes, which was a surprisingly low number. In this commentary, we will discuss the low incidence of these elements and speculate about the biological role of bacterial DGRs.
Collapse
Affiliation(s)
- Thomas Schillinger
- Department of Molecular Genetics; University of Kaiserslautern; Kaiserslautern, Germany
| | | |
Collapse
|
19
|
The primary transcriptome of the marine diazotroph Trichodesmium erythraeum IMS101. Sci Rep 2014; 4:6187. [PMID: 25155278 PMCID: PMC4143802 DOI: 10.1038/srep06187] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 08/04/2014] [Indexed: 01/03/2023] Open
Abstract
Blooms of the dinitrogen-fixing marine cyanobacterium Trichodesmium considerably contribute to new nitrogen inputs into tropical oceans. Intriguingly, only 60% of the Trichodesmium erythraeum IMS101 genome sequence codes for protein, compared with ~85% in other sequenced cyanobacterial genomes. The extensive non-coding genome fraction suggests space for an unusually high number of unidentified, potentially regulatory non-protein-coding RNAs (ncRNAs). To identify the transcribed fraction of the genome, here we present a genome-wide map of transcriptional start sites (TSS) at single nucleotide resolution, revealing the activity of 6,080 promoters. We demonstrate that T. erythraeum has the highest number of actively splicing group II introns and the highest percentage of TSS yielding ncRNAs of any bacterium examined to date. We identified a highly transcribed retroelement that serves as template repeat for the targeted mutation of at least 12 different genes by mutagenic homing. Our findings explain the non-coding portion of the T. erythraeum genome by the transcription of an unusually high number of non-coding transcripts in addition to the known high incidence of transposable elements. We conclude that riboregulation and RNA maturation-dependent processes constitute a major part of the Trichodesmium regulatory apparatus.
Collapse
|
20
|
Abstract
Bacterial genomes are remarkably stable from one generation to the next but are plastic on an evolutionary time scale, substantially shaped by horizontal gene transfer, genome rearrangement, and the activities of mobile DNA elements. This implies the existence of a delicate balance between the maintenance of genome stability and the tolerance of genome instability. In this review, we describe the specialized genetic elements and the endogenous processes that contribute to genome instability. We then discuss the consequences of genome instability at the physiological level, where cells have harnessed instability to mediate phase and antigenic variation, and at the evolutionary level, where horizontal gene transfer has played an important role. Indeed, this ability to share DNA sequences has played a major part in the evolution of life on Earth. The evolutionary plasticity of bacterial genomes, coupled with the vast numbers of bacteria on the planet, substantially limits our ability to control disease.
Collapse
|
21
|
Zhang X, Guo H, Jin L, Czornyj E, Hodes A, Hui WH, Nieh AW, Miller JF, Zhou ZH. A new topology of the HK97-like fold revealed in Bordetella bacteriophage by cryoEM at 3.5 A resolution. eLife 2013; 2:e01299. [PMID: 24347545 PMCID: PMC3863775 DOI: 10.7554/elife.01299] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Bacteriophage BPP-1 infects and kills Bordetella species that cause whooping cough. Its diversity-generating retroelement (DGR) provides a naturally occurring phage-display system, but engineering efforts are hampered without atomic structures. Here, we report a cryo electron microscopy structure of the BPP-1 head at 3.5 Å resolution. Our atomic model shows two of the three protein folds representing major viral lineages: jellyroll for its cement protein (CP) and HK97-like ('Johnson') for its major capsid protein (MCP). Strikingly, the fold topology of MCP is permuted non-circularly from the Johnson fold topology previously seen in viral and cellular proteins. We illustrate that the new topology is likely the only feasible alternative of the old topology. β-sheet augmentation and electrostatic interactions contribute to the formation of non-covalent chainmail in BPP-1, unlike covalent inter-protein linkages of the HK97 chainmail. Despite these complex interactions, the termini of both CP and MCP are ideally positioned for DGR-based phage-display engineering. DOI: http://dx.doi.org/10.7554/eLife.01299.001.
Collapse
Affiliation(s)
- Xing Zhang
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Toussaint A. Transposable Mu-like phages in Firmicutes: new instances of divergence generating retroelements. Res Microbiol 2013; 164:281-7. [DOI: 10.1016/j.resmic.2013.01.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Accepted: 01/09/2013] [Indexed: 10/27/2022]
|
23
|
Surface display of a massively variable lipoprotein by a Legionella diversity-generating retroelement. Proc Natl Acad Sci U S A 2013; 110:8212-7. [PMID: 23633572 DOI: 10.1073/pnas.1301366110] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Diversity-generating retroelements (DGRs) are a unique family of retroelements that confer selective advantages to their hosts by facilitating localized DNA sequence evolution through a specialized error-prone reverse transcription process. We characterized a DGR in Legionella pneumophila, an opportunistic human pathogen that causes Legionnaires disease. The L. pneumophila DGR is found within a horizontally acquired genomic island, and it can theoretically generate 10(26) unique nucleotide sequences in its target gene, legionella determinent target A (ldtA), creating a repertoire of 10(19) distinct proteins. Expression of the L. pneumophila DGR resulted in transfer of DNA sequence information from a template repeat to a variable repeat (VR) accompanied by adenine-specific mutagenesis of progeny VRs at the 3'end of ldtA. ldtA encodes a twin-arginine translocated lipoprotein that is anchored in the outer leaflet of the outer membrane, with its C-terminal variable region surface exposed. Related DGRs were identified in L. pneumophila clinical isolates that encode unique target proteins with homologous VRs, demonstrating the adaptability of DGR components. This work characterizes a DGR that diversifies a bacterial protein and confirms the hypothesis that DGR-mediated mutagenic homing occurs through a conserved mechanism. Comparative bioinformatics predicts that surface display of massively variable proteins is a defining feature of a subset of bacterial DGRs.
Collapse
|
24
|
Voß B, Bolhuis H, Fewer DP, Kopf M, Möke F, Haas F, El-Shehawy R, Hayes P, Bergman B, Sivonen K, Dittmann E, Scanlan DJ, Hagemann M, Stal LJ, Hess WR. Insights into the physiology and ecology of the brackish-water-adapted Cyanobacterium Nodularia spumigena CCY9414 based on a genome-transcriptome analysis. PLoS One 2013; 8:e60224. [PMID: 23555932 PMCID: PMC3610870 DOI: 10.1371/journal.pone.0060224] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 02/23/2013] [Indexed: 11/18/2022] Open
Abstract
Nodularia spumigena is a filamentous diazotrophic cyanobacterium that dominates the annual late summer cyanobacterial blooms in the Baltic Sea. But N. spumigena also is common in brackish water bodies worldwide, suggesting special adaptation allowing it to thrive at moderate salinities. A draft genome analysis of N. spumigena sp. CCY9414 yielded a single scaffold of 5,462,271 nucleotides in length on which genes for 5,294 proteins were annotated. A subsequent strand-specific transcriptome analysis identified more than 6,000 putative transcriptional start sites (TSS). Orphan TSSs located in intergenic regions led us to predict 764 non-coding RNAs, among them 70 copies of a possible retrotransposon and several potential RNA regulators, some of which are also present in other N2-fixing cyanobacteria. Approximately 4% of the total coding capacity is devoted to the production of secondary metabolites, among them the potent hepatotoxin nodularin, the linear spumigin and the cyclic nodulapeptin. The transcriptional complexity associated with genes involved in nitrogen fixation and heterocyst differentiation is considerably smaller compared to other Nostocales. In contrast, sophisticated systems exist for the uptake and assimilation of iron and phosphorus compounds, for the synthesis of compatible solutes, and for the formation of gas vesicles, required for the active control of buoyancy. Hence, the annotation and interpretation of this sequence provides a vast array of clues into the genomic underpinnings of the physiology of this cyanobacterium and indicates in particular a competitive edge of N. spumigena in nutrient-limited brackish water ecosystems.
Collapse
Affiliation(s)
- Björn Voß
- Genetics and Experimental Bioinformatics Group, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Henk Bolhuis
- Department of Marine Microbiology, Royal Netherlands Institute of Sea Research, Yerseke, The Netherlands
| | - David P. Fewer
- Food and Environmental Sciences, Division of Microbiology, Viikki Biocenter, University of Helsinki, Helsinki, Finland
| | - Matthias Kopf
- Genetics and Experimental Bioinformatics Group, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Fred Möke
- Plant Physiology, Institute Biosciences, University of Rostock, Rostock, Germany
| | - Fabian Haas
- Genetics and Experimental Bioinformatics Group, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | | | - Paul Hayes
- Faculty of Science, University of Portsmouth, Portsmouth, United Kingdom
| | | | - Kaarina Sivonen
- Food and Environmental Sciences, Division of Microbiology, Viikki Biocenter, University of Helsinki, Helsinki, Finland
| | - Elke Dittmann
- Institute for Biochemistry and Biology, University of Potsdam, Golm, Germany
| | - Dave J. Scanlan
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Martin Hagemann
- Plant Physiology, Institute Biosciences, University of Rostock, Rostock, Germany
| | - Lucas J. Stal
- Department of Marine Microbiology, Royal Netherlands Institute of Sea Research, Yerseke, The Netherlands
- Department of Aquatic Microbiology, University of Amsterdam, Amsterdam, The Netherlands
| | - Wolfgang R. Hess
- Genetics and Experimental Bioinformatics Group, Faculty of Biology, University of Freiburg, Freiburg, Germany
- * E-mail:
| |
Collapse
|
25
|
Structure of the essential diversity-generating retroelement protein bAvd and its functionally important interaction with reverse transcriptase. Structure 2013; 21:266-76. [PMID: 23273427 PMCID: PMC3570691 DOI: 10.1016/j.str.2012.11.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 11/17/2012] [Accepted: 11/20/2012] [Indexed: 01/07/2023]
Abstract
Diversity-generating retroelements (DGRs) are the only known source of massive protein sequence variation in prokaryotes. These elements transfer coding information from a template region (TR) through an RNA intermediate to a protein-encoding variable region. This retrohoming process is accompanied by unique adenine-specific mutagenesis and, in the prototypical BPP-1 DGR, requires a reverse transcriptase (bRT) and an accessory variability determinant (bAvd) protein. To understand the role of bAvd, we determined its 2.69 Å resolution structure, which revealed a highly positively charged pentameric barrel. In accordance with its charge, bAvd bound both DNA and RNA, albeit without a discernable sequence preference. We found that the coding sequence of bAvd functioned as part of TR but identified means to mutate bAvd without affecting TR. This mutational analysis revealed a strict correspondence between retrohoming and interaction of bAvd with bRT, suggesting that the bRT-bAvd complex is important for DGR retrohoming.
Collapse
|
26
|
Koonin EV, Wolf YI. Evolution of microbes and viruses: a paradigm shift in evolutionary biology? Front Cell Infect Microbiol 2012; 2:119. [PMID: 22993722 PMCID: PMC3440604 DOI: 10.3389/fcimb.2012.00119] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 08/27/2012] [Indexed: 01/21/2023] Open
Abstract
When Charles Darwin formulated the central principles of evolutionary biology in the Origin of Species in 1859 and the architects of the Modern Synthesis integrated these principles with population genetics almost a century later, the principal if not the sole objects of evolutionary biology were multicellular eukaryotes, primarily animals and plants. Before the advent of efficient gene sequencing, all attempts to extend evolutionary studies to bacteria have been futile. Sequencing of the rRNA genes in thousands of microbes allowed the construction of the three- domain “ribosomal Tree of Life” that was widely thought to have resolved the evolutionary relationships between the cellular life forms. However, subsequent massive sequencing of numerous, complete microbial genomes revealed novel evolutionary phenomena, the most fundamental of these being: (1) pervasive horizontal gene transfer (HGT), in large part mediated by viruses and plasmids, that shapes the genomes of archaea and bacteria and call for a radical revision (if not abandonment) of the Tree of Life concept, (2) Lamarckian-type inheritance that appears to be critical for antivirus defense and other forms of adaptation in prokaryotes, and (3) evolution of evolvability, i.e., dedicated mechanisms for evolution such as vehicles for HGT and stress-induced mutagenesis systems. In the non-cellular part of the microbial world, phylogenomics and metagenomics of viruses and related selfish genetic elements revealed enormous genetic and molecular diversity and extremely high abundance of viruses that come across as the dominant biological entities on earth. Furthermore, the perennial arms race between viruses and their hosts is one of the defining factors of evolution. Thus, microbial phylogenomics adds new dimensions to the fundamental picture of evolution even as the principle of descent with modification discovered by Darwin and the laws of population genetics remain at the core of evolutionary biology.
Collapse
Affiliation(s)
- Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health Bethesda, MD, USA.
| | | |
Collapse
|
27
|
Schillinger T, Lisfi M, Chi J, Cullum J, Zingler N. Analysis of a comprehensive dataset of diversity generating retroelements generated by the program DiGReF. BMC Genomics 2012; 13:430. [PMID: 22928525 PMCID: PMC3521204 DOI: 10.1186/1471-2164-13-430] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 08/18/2012] [Indexed: 12/01/2022] Open
Abstract
Background Diversity Generating Retroelements (DGRs) are genetic cassettes that can introduce tremendous diversity into a short, defined region of the genome. They achieve hypermutation through replacement of the variable region with a strongly mutated cDNA copy generated by the element-encoded reverse transcriptase. In contrast to “selfish” retroelements such as group II introns and retrotransposons, DGRs impart an advantage to their host by increasing its adaptive potential. DGRs were discovered in a bacteriophage, but since then additional examples have been identified in some bacterial genomes. Results Here we present the program DiGReF that allowed us to comprehensively screen available databases for DGRs. We identified 155 DGRs which are found in all major classes of bacteria, though exhibiting sporadic distribution across species. Phylogenetic analysis and sequence comparison showed that DGRs move between genomes by associating with various mobile elements such as phages, transposons and plasmids. The DGR cassettes exhibit high flexibility in the arrangement of their components and easily acquire additional paralogous target genes. Surprisingly, the genomic data alone provide new insights into the molecular mechanism of DGRs. Most notably, our data suggest that the template RNA is transcribed separately from the rest of the element. Conclusions DiGReF is a valuable tool to detect DGRs in genome data. Its output allows comprehensive analysis of various aspects of DGR biology, thus deepening our understanding of the role DGRs play in prokaryotic genome plasticity, from the global down to the molecular level.
Collapse
Affiliation(s)
- Thomas Schillinger
- Department of Molecular Genetics, University of Kaiserslautern, Kaiserslautern, Germany
| | | | | | | | | |
Collapse
|
28
|
Abstract
Genetic variation is critical in microbial immune evasion and drug resistance, but variation has rarely been studied in complex heterogeneous communities such as the human microbiome. To begin to study natural variation, we analyzed DNA viruses present in the lower gastrointestinal tract of 12 human volunteers by determining 48 billion bases of viral DNA sequence. Viral genomes mostly showed low variation, but 51 loci of ∼100 bp showed extremely high variation, so that up to 96% of the viral genomes encoded unique amino acid sequences. Some hotspots of hypervariation were in genes homologous to the bacteriophage BPP-1 viral tail-fiber gene, which is known to be hypermutagenized by a unique reverse-transcriptase (RT)-based mechanism. Unexpectedly, other hypervariable loci in our data were in previously undescribed gene types, including genes encoding predicted Ig-superfamily proteins. Most of the hypervariable loci were linked to genes encoding RTs of a single clade, which we find is the most abundant clade among gut viruses but only a minor component of bacterial RT populations. Hypervariation was targeted to 5'-AAY-3' asparagine codons, which allows maximal chemical diversification of the encoded amino acids while avoiding formation of stop codons. These findings document widespread targeted hypervariation in the human gut virome, identify previously undescribed types of genes targeted for hypervariation, clarify association with RT gene clades, and motivate studies of hypervariation in the full human microbiome.
Collapse
|
29
|
Overstreet CM, Yuan TZ, Levin AM, Kong C, Coroneus JG, Weiss GA. Self-made phage libraries with heterologous inserts in the Mtd of Bordetella bronchiseptica. Protein Eng Des Sel 2012; 25:145-51. [PMID: 22286238 DOI: 10.1093/protein/gzr068] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Phage display libraries are widely used as tools for identifying, dissecting and optimizing ligands. Development of a simple method to access greater library diversities could expedite and expand the technique. This paper reports progress toward harnessing the naturally occurring diversity generating retroelement used by Bordetella bronchiseptica bacteriophage to alter its tail-fiber protein. Mutagenesis and testing identified four sites amenable to the insertion of <19-residue heterologous peptides within the variable region. Such sites allow auto-generation of peptide libraries surrounded by a scaffold with additional variations. The resultant self-made phage libraries were used successfully for selections targeting anti-FLAG antibody, immobilized metal affinity chromatography microtiter plates and HIV-1 gp41. The reported experiments demonstrate the utility of the major tropism determinant protein of B.bronchiseptica as a natural scaffold for diverse, phage-constructed libraries with heterologous self-made phage libraries.
Collapse
Affiliation(s)
- Cathie M Overstreet
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-4576, USA
| | | | | | | | | | | |
Collapse
|
30
|
Guo H, Tse LV, Nieh AW, Czornyj E, Williams S, Oukil S, Liu VB, Miller JF. Target site recognition by a diversity-generating retroelement. PLoS Genet 2011; 7:e1002414. [PMID: 22194701 PMCID: PMC3240598 DOI: 10.1371/journal.pgen.1002414] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 10/27/2011] [Indexed: 11/29/2022] Open
Abstract
Diversity-generating retroelements (DGRs) are in vivo sequence diversification machines that are widely distributed in bacterial, phage, and plasmid genomes. They function to introduce vast amounts of targeted diversity into protein-encoding DNA sequences via mutagenic homing. Adenine residues are converted to random nucleotides in a retrotransposition process from a donor template repeat (TR) to a recipient variable repeat (VR). Using the Bordetella bacteriophage BPP-1 element as a prototype, we have characterized requirements for DGR target site function. Although sequences upstream of VR are dispensable, a 24 bp sequence immediately downstream of VR, which contains short inverted repeats, is required for efficient retrohoming. The inverted repeats form a hairpin or cruciform structure and mutational analysis demonstrated that, while the structure of the stem is important, its sequence can vary. In contrast, the loop has a sequence-dependent function. Structure-specific nuclease digestion confirmed the existence of a DNA hairpin/cruciform, and marker coconversion assays demonstrated that it influences the efficiency, but not the site of cDNA integration. Comparisons with other phage DGRs suggested that similar structures are a conserved feature of target sequences. Using a kanamycin resistance determinant as a reporter, we found that transplantation of the IMH and hairpin/cruciform-forming region was sufficient to target the DGR diversification machinery to a heterologous gene. In addition to furthering our understanding of DGR retrohoming, our results suggest that DGRs may provide unique tools for directed protein evolution via in vivo DNA diversification. Diversity-generating retroelements function through a unique, reverse transcriptase–mediated “copy and replace” mechanism that enables repeated rounds of protein diversification, selection, and optimization. The ability of DGRs to introduce targeted diversity into protein-coding DNA sequences has the potential to dramatically accelerate the evolution of adaptive traits. The utility of these elements in nature is underscored by their widespread distribution throughout the bacterial domain. Here we define DNA sequences and structures that are necessary and sufficient to direct the diversification machinery to specified target sequences. In addition to providing mechanistic insights into conserved features of DGR activity, our results provide a blueprint for the use of DGRs for a broad range of protein engineering applications.
Collapse
Affiliation(s)
- Huatao Guo
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Longping V. Tse
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Angela W. Nieh
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Elizabeth Czornyj
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Steven Williams
- AvidBiotics Corporation, South San Francisco, California, United States of America
| | - Sabrina Oukil
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Vincent B. Liu
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Jeff F. Miller
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- The Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
31
|
Conservation of the C-type lectin fold for massive sequence variation in a Treponema diversity-generating retroelement. Proc Natl Acad Sci U S A 2011; 108:14649-53. [PMID: 21873231 DOI: 10.1073/pnas.1105613108] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Anticipatory ligand binding through massive protein sequence variation is rare in biological systems, having been observed only in the vertebrate adaptive immune response and in a phage diversity-generating retroelement (DGR). Earlier work has demonstrated that the prototypical DGR variable protein, major tropism determinant (Mtd), meets the demands of anticipatory ligand binding by novel means through the C-type lectin (CLec) fold. However, because of the low sequence identity among DGR variable proteins, it has remained unclear whether the CLec fold is a general solution for DGRs. We have addressed this problem by determining the structure of a second DGR variable protein, TvpA, from the pathogenic oral spirochete Treponema denticola. Despite its weak sequence identity to Mtd (∼16%), TvpA was found to also have a CLec fold, with predicted variable residues exposed in a ligand-binding site. However, this site in TvpA was markedly more variable than the one in Mtd, reflecting the unprecedented approximate 10(20) potential variability of TvpA. In addition, similarity between TvpA and Mtd with formylglycine-generating enzymes was detected. These results provide strong evidence for the conservation of the formylglycine-generating enzyme-type CLec fold among DGRs as a means of accommodating massive sequence variation.
Collapse
|