1
|
Han X, Xing L, Hong Y, Zhang X, Hao B, Lu JY, Huang M, Wang Z, Ma S, Zhan G, Li T, Hao X, Tao Y, Li G, Zhou S, Zheng Z, Shao W, Zeng Y, Ma D, Zhang W, Xie Z, Deng H, Yan J, Deng W, Shen X. Nuclear RNA homeostasis promotes systems-level coordination of cell fate and senescence. Cell Stem Cell 2024; 31:694-716.e11. [PMID: 38631356 DOI: 10.1016/j.stem.2024.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/01/2024] [Accepted: 03/26/2024] [Indexed: 04/19/2024]
Abstract
Understanding cellular coordination remains a challenge despite knowledge of individual pathways. The RNA exosome, targeting a wide range of RNA substrates, is often downregulated in cellular senescence. Utilizing an auxin-inducible system, we observed that RNA exosome depletion in embryonic stem cells significantly affects the transcriptome and proteome, causing pluripotency loss and pre-senescence onset. Mechanistically, exosome depletion triggers acute nuclear RNA aggregation, disrupting nuclear RNA-protein equilibrium. This disturbance limits nuclear protein availability and hinders polymerase initiation and engagement, reducing gene transcription. Concurrently, it promptly disrupts nucleolar transcription, ribosomal processes, and nuclear exporting, resulting in a translational shutdown. Prolonged exosome depletion induces nuclear structural changes resembling senescent cells, including aberrant chromatin compaction, chromocenter disassembly, and intensified heterochromatic foci. These effects suggest that the dynamic turnover of nuclear RNA orchestrates crosstalk between essential processes to optimize cellular function. Disruptions in nuclear RNA homeostasis result in systemic functional decline, altering the cell state and promoting senescence.
Collapse
Affiliation(s)
- Xue Han
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Linqing Xing
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Yantao Hong
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Xuechun Zhang
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Bo Hao
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - J Yuyang Lu
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Mengyuan Huang
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Zuhui Wang
- Biomedical Pioneering Innovation Center (BIOPIC), Beijing Advanced Innovation Center for Genomics (ICG), Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Shaoqian Ma
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Ge Zhan
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Tong Li
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Xiaowen Hao
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Yibing Tao
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Guanwen Li
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Shuqin Zhou
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Zheng Zheng
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Wen Shao
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Yitian Zeng
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Dacheng Ma
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division, Center for Synthetic and Systems Biology, Department of Automation, Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing 100084, China
| | - Wenhao Zhang
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zhen Xie
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division, Center for Synthetic and Systems Biology, Department of Automation, Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing 100084, China
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jiangwei Yan
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Wulan Deng
- Biomedical Pioneering Innovation Center (BIOPIC), Beijing Advanced Innovation Center for Genomics (ICG), Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Xiaohua Shen
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China; SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, Shanxi 030001, China.
| |
Collapse
|
2
|
Stamidis N, Żylicz JJ. RNA-mediated heterochromatin formation at repetitive elements in mammals. EMBO J 2023; 42:e111717. [PMID: 36847618 PMCID: PMC10106986 DOI: 10.15252/embj.2022111717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 12/12/2022] [Accepted: 02/07/2023] [Indexed: 03/01/2023] Open
Abstract
The failure to repress transcription of repetitive genomic elements can lead to catastrophic genome instability and is associated with various human diseases. As such, multiple parallel mechanisms cooperate to ensure repression and heterochromatinization of these elements, especially during germline development and early embryogenesis. A vital question in the field is how specificity in establishing heterochromatin at repetitive elements is achieved. Apart from trans-acting protein factors, recent evidence points to a role of different RNA species in targeting repressive histone marks and DNA methylation to these sites in mammals. Here, we review recent discoveries on this topic and predominantly focus on the role of RNA methylation, piRNAs, and other localized satellite RNAs.
Collapse
Affiliation(s)
- Nikolaos Stamidis
- Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW, University of Copenhagen, Copenhagen, Denmark
| | - Jan Jakub Żylicz
- Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Deng Q, Chen A, Qiu H, Zhou T. Analysis of a non-Markov transcription model with nuclear RNA export and RNA nuclear retention. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2022; 19:8426-8451. [PMID: 35801472 DOI: 10.3934/mbe.2022392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Transcription involves gene activation, nuclear RNA export (NRE) and RNA nuclear retention (RNR). All these processes are multistep and biochemical. A multistep reaction process can create memories between reaction events, leading to non-Markovian kinetics. This raises an unsolved issue: how does molecular memory affect stochastic transcription in the case that NRE and RNR are simultaneously considered? To address this issue, we analyze a non-Markov model, which considers multistep activation, multistep NRE and multistep RNR can interpret many experimental phenomena. In order to solve this model, we introduce an effective transition rate for each reaction. These effective transition rates, which explicitly decode the effect of molecular memory, can transform the original non-Markov issue into an equivalent Markov one. Based on this technique, we derive analytical results, showing that molecular memory can significantly affect the nuclear and cytoplasmic mRNA mean and noise. In addition to the results providing insights into the role of molecular memory in gene expression, our modeling and analysis provide a paradigm for studying more complex stochastic transcription processes.
Collapse
Affiliation(s)
- Qiqi Deng
- Guangdong Province Key Laboratory of Computational Science, School of Mathematics, Sun Yat-sen University, Guangzhou 510275, China
| | - Aimin Chen
- School of Mathematics and Statistics, Henan University, Kaifeng 475004, China
| | - Huahai Qiu
- School of Mathematical and Physical Sciences, Wuhan Textile University, Wuhan 430200, China
| | - Tianshou Zhou
- Guangdong Province Key Laboratory of Computational Science, School of Mathematics, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
4
|
Turtola M, Manav MC, Kumar A, Tudek A, Mroczek S, Krawczyk PS, Dziembowski A, Schmid M, Passmore LA, Casañal A, Jensen TH. Three-layered control of mRNA poly(A) tail synthesis in Saccharomyces cerevisiae. Genes Dev 2021; 35:1290-1303. [PMID: 34385261 PMCID: PMC8415320 DOI: 10.1101/gad.348634.121] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/15/2021] [Indexed: 12/13/2022]
Abstract
Biogenesis of most eukaryotic mRNAs involves the addition of an untemplated polyadenosine (pA) tail by the cleavage and polyadenylation machinery. The pA tail, and its exact length, impacts mRNA stability, nuclear export, and translation. To define how polyadenylation is controlled in S. cerevisiae, we have used an in vivo assay capable of assessing nuclear pA tail synthesis, analyzed tail length distributions by direct RNA sequencing, and reconstituted polyadenylation reactions with purified components. This revealed three control mechanisms for pA tail length. First, we found that the pA binding protein (PABP) Nab2p is the primary regulator of pA tail length. Second, when Nab2p is limiting, the nuclear pool of Pab1p, the second major PABP in yeast, controls the process. Third, when both PABPs are absent, the cleavage and polyadenylation factor (CPF) limits pA tail synthesis. Thus, Pab1p and CPF provide fail-safe mechanisms to a primary Nab2p-dependent pathway, thereby preventing uncontrolled polyadenylation and allowing mRNA export and translation.
Collapse
Affiliation(s)
- Matti Turtola
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - M Cemre Manav
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Ananthanarayanan Kumar
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Agnieszka Tudek
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Seweryn Mroczek
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland
- International Institute of Molecular and Cell Biology in Warsaw, 02-109 Warsaw, Poland
| | - Paweł S Krawczyk
- International Institute of Molecular and Cell Biology in Warsaw, 02-109 Warsaw, Poland
| | - Andrzej Dziembowski
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland
- International Institute of Molecular and Cell Biology in Warsaw, 02-109 Warsaw, Poland
| | - Manfred Schmid
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Lori A Passmore
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Ana Casañal
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Torben Heick Jensen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
5
|
Majewska K, Wróblewska-Ankiewicz P, Rudzka M, Hyjek-Składanowska M, Gołębiewski M, Smoliński DJ, Kołowerzo-Lubnau A. Different Patterns of mRNA Nuclear Retention during Meiotic Prophase in Larch Microsporocytes. Int J Mol Sci 2021; 22:8501. [PMID: 34445207 PMCID: PMC8395157 DOI: 10.3390/ijms22168501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/18/2021] [Accepted: 08/04/2021] [Indexed: 12/12/2022] Open
Abstract
Recent studies show a crucial role of post-transcriptional processes in the regulation of gene expression. Our research has shown that mRNA retention in the nucleus plays a significant role in such regulation. We studied larch microsporocytes during meiotic prophase, characterized by pulsatile transcriptional activity. After each pulse, the transcriptional activity is silenced, but the transcripts synthesized at this time are not exported immediately to the cytoplasm but are retained in the cell nucleus and especially in Cajal bodies, where non-fully-spliced transcripts with retained introns are accumulated. Analysis of the transcriptome of these cells and detailed analysis of the nuclear retention and transport dynamics of several mRNAs revealed two main patterns of nuclear accumulation and transport. The majority of studied transcripts followed the first one, consisting of a more extended retention period and slow release to the cytoplasm. We have shown this in detail for the pre-mRNA and mRNA encoding RNA pol II subunit 10. In this pre-mRNA, a second (retained) intron is posttranscriptionally spliced at a precisely defined time. Fully mature mRNA is then released into the cytoplasm, where the RNA pol II complexes are produced. These proteins are necessary for transcription in the next pulse to occur.mRNAs encoding translation factors and SERRATE followed the second pattern, in which the retention period was shorter and transcripts were rapidly transferred to the cytoplasm. The presence of such a mechanism in various cell types from a diverse range of organisms suggests that it is an evolutionarily conserved mechanism of gene regulation.
Collapse
Affiliation(s)
- Karolina Majewska
- Department of Cellular and Molecular Biology, Nicolaus Copernicus University, Lwowska 1, 87-100 Torun, Poland; (K.M.); (P.W.-A.); (M.R.); (M.H.-S.)
- Centre For Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, 87-100 Torun, Poland;
| | - Patrycja Wróblewska-Ankiewicz
- Department of Cellular and Molecular Biology, Nicolaus Copernicus University, Lwowska 1, 87-100 Torun, Poland; (K.M.); (P.W.-A.); (M.R.); (M.H.-S.)
- Centre For Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, 87-100 Torun, Poland;
| | - Magda Rudzka
- Department of Cellular and Molecular Biology, Nicolaus Copernicus University, Lwowska 1, 87-100 Torun, Poland; (K.M.); (P.W.-A.); (M.R.); (M.H.-S.)
- Centre For Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, 87-100 Torun, Poland;
| | - Malwina Hyjek-Składanowska
- Department of Cellular and Molecular Biology, Nicolaus Copernicus University, Lwowska 1, 87-100 Torun, Poland; (K.M.); (P.W.-A.); (M.R.); (M.H.-S.)
- Centre For Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, 87-100 Torun, Poland;
| | - Marcin Gołębiewski
- Centre For Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, 87-100 Torun, Poland;
- Department of Plant Physiology and Biotechnology, Nicolaus Copernicus University, Lwowska 1, 87-100 Torun, Poland
| | - Dariusz Jan Smoliński
- Department of Cellular and Molecular Biology, Nicolaus Copernicus University, Lwowska 1, 87-100 Torun, Poland; (K.M.); (P.W.-A.); (M.R.); (M.H.-S.)
- Centre For Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, 87-100 Torun, Poland;
| | - Agnieszka Kołowerzo-Lubnau
- Department of Cellular and Molecular Biology, Nicolaus Copernicus University, Lwowska 1, 87-100 Torun, Poland; (K.M.); (P.W.-A.); (M.R.); (M.H.-S.)
- Centre For Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, 87-100 Torun, Poland;
| |
Collapse
|
6
|
Abstract
To ensure efficient and accurate gene expression, pre-mRNA processing and mRNA export need to be balanced. However, how this balance is ensured remains largely unclear. Here, we found that SF3b, a component of U2 snRNP that participates in splicing and 3' processing of pre-mRNAs, interacts with the key mRNA export adaptor THO in vivo and in vitro. Depletion of SF3b reduces THO binding with the mRNA and causes nuclear mRNA retention. Consistently, introducing SF3b binding sites into the mRNA enhances THO recruitment and nuclear export in a dose-dependent manner. These data demonstrate a role of SF3b in promoting mRNA export. In support of this role, SF3b binds with mature mRNAs in the cells. Intriguingly, disruption of U2 snRNP by using a U2 antisense morpholino oligonucleotide does not inhibit, but promotes, the role of SF3b in mRNA export as a result of enhanced SF3b-THO interaction and THO recruitment to the mRNA. Together, our study uncovers a U2-snRNP-independent role of SF3b in mRNA export and suggests that SF3b contributes to balancing pre-mRNA processing and mRNA export.
Collapse
|
7
|
Zander G, Krebber H. Quick or quality? How mRNA escapes nuclear quality control during stress. RNA Biol 2017; 14:1642-1648. [PMID: 28708448 PMCID: PMC5731798 DOI: 10.1080/15476286.2017.1345835] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 06/19/2017] [Accepted: 06/20/2017] [Indexed: 10/19/2022] Open
Abstract
Understanding the mechanisms for mRNA production under normal conditions and in response to cytotoxic stresses has been subject of numerous studies for several decades. The shutdown of canonical mRNA transcription, export and translation is required to have enough free resources for the immediate production of heat shock proteins that act as chaperones to sustain cellular processes. In recent work we uncovered a simple mechanism, in which the export block of regular mRNAs and a fast export of heat shock mRNAs is achieved by deactivation of the nuclear mRNA quality control mediated by the guard proteins. In this point of view we combine long known data with recently gathered information that support this novel model, in which cells omit quality control of stress responsive transcripts to ensure survival.
Collapse
Affiliation(s)
- Gesa Zander
- Abteilung für Molekulare Genetik, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), Georg-August Universität Göttingen, Göttingen, Germany
| | - Heike Krebber
- Abteilung für Molekulare Genetik, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), Georg-August Universität Göttingen, Göttingen, Germany
| |
Collapse
|
8
|
Colombo CV, Trovesi C, Menin L, Longhese MP, Clerici M. The RNA binding protein Npl3 promotes resection of DNA double-strand breaks by regulating the levels of Exo1. Nucleic Acids Res 2017; 45:6530-6545. [PMID: 28472517 PMCID: PMC5499764 DOI: 10.1093/nar/gkx347] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 04/21/2017] [Indexed: 12/29/2022] Open
Abstract
Eukaryotic cells preserve genome integrity upon DNA damage by activating a signaling network that promotes DNA repair and controls cell cycle progression. One of the most severe DNA damage is the DNA double-strand break (DSB), whose 5΄ ends can be nucleolitically resected by multiple nucleases to create 3΄-ended single-stranded DNA tails that trigger DSB repair by homologous recombination. Here, we identify the Saccharomyces cerevisiae RNA binding protein Npl3 as a new player in DSB resection. Npl3 is related to both the metazoan serine-arginine-rich and the heterogeneous nuclear ribonucleo-proteins. NPL3 deletion impairs the generation of long ssDNA tails at the DSB ends, whereas it does not exacerbate the resection defect of exo1Δ cells. Furthermore, either the lack of Npl3 or the inactivation of its RNA-binding domains causes decrease of the exonuclease Exo1 protein levels as well as generation of unusual and extended EXO1 RNA species. These findings, together with the observation that EXO1 overexpression partially suppresses the resection defect of npl3Δ cells, indicate that Npl3 participates in DSB resection by promoting the proper biogenesis of EXO1 mRNA.
Collapse
Affiliation(s)
- Chiara Vittoria Colombo
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, 20126 Milano, Italy
| | - Camilla Trovesi
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, 20126 Milano, Italy
| | - Luca Menin
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, 20126 Milano, Italy
| | - Maria Pia Longhese
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, 20126 Milano, Italy
| | - Michela Clerici
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, 20126 Milano, Italy
| |
Collapse
|
9
|
Gudde AEEG, van Kessel IDG, André LM, Wieringa B, Wansink DG. Trinucleotide-repeat expanded and normal DMPK transcripts contain unusually long poly(A) tails despite differential nuclear residence. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1860:740-749. [PMID: 28435090 DOI: 10.1016/j.bbagrm.2017.04.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 03/26/2017] [Accepted: 04/14/2017] [Indexed: 12/29/2022]
Abstract
In yeast and higher eukaryotes nuclear retention of transcripts may serve in control over RNA decay, nucleocytoplasmic transport and premature cytoplasmic appearance of mRNAs. Hyperadenylation of RNA is known to be associated with nuclear retention, but the cause-consequence relationship between hyperadenylation and regulation of RNA nuclear export is still unclear. We compared polyadenylation status between normal and expanded DMPK transcripts in muscle cells and tissues derived from unaffected individuals and patients with myotonic dystrophy type 1 (DM1). DM1 is an autosomal dominant disorder caused by (CTG)n repeat expansion in the DMPK gene. DM1 etiology is characterized by an almost complete block of nuclear export of DMPK transcripts carrying a long (CUG)n repeat, including aberrant sequestration of RNA-binding proteins. We show here by use of cell fractionation, RNA size separation and analysis of poly(A) tail length that a considerable fraction of transcripts from the normal DMPK allele is also retained in the nucleus (~30%). They carry poly(A) tails with an unusually broad length distribution, ranging between a few dozen to >500 adenosine residues. Remarkably, expanded DMPK (CUG)n transcripts from the mutant allele, almost exclusively nuclear, carry equally long poly(A) tails. Our findings thus suggest that nuclear retention may be a common feature of regulation of DMPK RNA expression. The typical forced nuclear residence of expanded DMPK transcripts affects this regulation in tissues of DM1 patients, but not through hyperadenylation.
Collapse
Affiliation(s)
- Anke E E G Gudde
- Radboud University Medical Centre, Radboud Institute for Molecular Life Sciences, Department of Cell Biology, Nijmegen, The Netherlands
| | - Ingeborg D G van Kessel
- Radboud University Medical Centre, Radboud Institute for Molecular Life Sciences, Department of Cell Biology, Nijmegen, The Netherlands
| | - Laurène M André
- Radboud University Medical Centre, Radboud Institute for Molecular Life Sciences, Department of Cell Biology, Nijmegen, The Netherlands
| | - Bé Wieringa
- Radboud University Medical Centre, Radboud Institute for Molecular Life Sciences, Department of Cell Biology, Nijmegen, The Netherlands
| | - Derick G Wansink
- Radboud University Medical Centre, Radboud Institute for Molecular Life Sciences, Department of Cell Biology, Nijmegen, The Netherlands.
| |
Collapse
|
10
|
The Chromatin Remodeler ISW1 Is a Quality Control Factor that Surveys Nuclear mRNP Biogenesis. Cell 2017; 167:1201-1214.e15. [PMID: 27863241 DOI: 10.1016/j.cell.2016.10.048] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 09/12/2016] [Accepted: 10/27/2016] [Indexed: 02/07/2023]
Abstract
Chromatin dynamics play an essential role in regulating DNA transaction processes, but it is unclear whether transcription-associated chromatin modifications control the mRNA ribonucleoparticles (mRNPs) pipeline from synthesis to nuclear exit. Here, we identify the yeast ISW1 chromatin remodeling complex as an unanticipated mRNP nuclear export surveillance factor that retains export-incompetent transcripts near their transcription site. This tethering activity of ISW1 requires chromatin binding and is independent of nucleosome sliding activity or changes in RNA polymerase II processivity. Combination of in vivo UV-crosslinking and genome-wide RNA immunoprecipitation assays show that Isw1 and its cofactors interact directly with premature mRNPs. Our results highlight that the concerted action of Isw1 and the nuclear exosome ensures accurate surveillance mechanism that proofreads the efficiency of mRNA biogenesis.
Collapse
|
11
|
Björk P, Wieslander L. Integration of mRNP formation and export. Cell Mol Life Sci 2017; 74:2875-2897. [PMID: 28314893 PMCID: PMC5501912 DOI: 10.1007/s00018-017-2503-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 03/06/2017] [Accepted: 03/07/2017] [Indexed: 12/13/2022]
Abstract
Expression of protein-coding genes in eukaryotes relies on the coordinated action of many sophisticated molecular machineries. Transcription produces precursor mRNAs (pre-mRNAs) and the active gene provides an environment in which the pre-mRNAs are processed, folded, and assembled into RNA–protein (RNP) complexes. The dynamic pre-mRNPs incorporate the growing transcript, proteins, and the processing machineries, as well as the specific protein marks left after processing that are essential for export and the cytoplasmic fate of the mRNPs. After release from the gene, the mRNPs move by diffusion within the interchromatin compartment, making up pools of mRNPs. Here, splicing and polyadenylation can be completed and the mRNPs recruit the major export receptor NXF1. Export competent mRNPs interact with the nuclear pore complex, leading to export, concomitant with compositional and conformational changes of the mRNPs. We summarize the integrated nuclear processes involved in the formation and export of mRNPs.
Collapse
Affiliation(s)
- Petra Björk
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| | - Lars Wieslander
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| |
Collapse
|
12
|
Paul B, Montpetit B. Altered RNA processing and export lead to retention of mRNAs near transcription sites and nuclear pore complexes or within the nucleolus. Mol Biol Cell 2016; 27:2742-56. [PMID: 27385342 PMCID: PMC5007094 DOI: 10.1091/mbc.e16-04-0244] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 06/29/2016] [Indexed: 01/17/2023] Open
Abstract
In a screen of >1000 essential gene mutants in Saccharomyces cerevisiae, 26 mutants are found that directly or indirectly affect mRNA processing and/or mRNA export. Single-molecule FISH data show that the majority of these mutants retain mRNAs at discrete locations within the nucleus, which include the nucleolus. Many protein factors are required for mRNA biogenesis and nuclear export, which are central to the eukaryotic gene expression program. It is unclear, however, whether all factors have been identified. Here we report on a screen of >1000 essential gene mutants in Saccharomyces cerevisiae for defects in mRNA processing and export, identifying 26 mutants with defects in this process. Single-molecule FISH data showed that the majority of these mutants accumulated mRNA within specific regions of the nucleus, which included 1) mRNAs within the nucleolus when nucleocytoplasmic transport, rRNA biogenesis, or RNA processing and surveillance was disrupted, 2) the buildup of mRNAs near transcription sites in 3′-end processing and chromosome segregation mutants, and 3) transcripts being enriched near nuclear pore complexes when components of the mRNA export machinery were mutated. These data show that alterations to various nuclear processes lead to the retention of mRNAs at discrete locations within the nucleus.
Collapse
Affiliation(s)
- Biplab Paul
- Department of Cell Biology, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Ben Montpetit
- Department of Cell Biology, University of Alberta, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
13
|
The regulation and functions of the nuclear RNA exosome complex. Nat Rev Mol Cell Biol 2016; 17:227-39. [PMID: 26726035 DOI: 10.1038/nrm.2015.15] [Citation(s) in RCA: 299] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The RNA exosome complex is the most versatile RNA-degradation machine in eukaryotes. The exosome has a central role in several aspects of RNA biogenesis, including RNA maturation and surveillance. Moreover, it is emerging as an important player in regulating the expression levels of specific mRNAs in response to environmental cues and during cell differentiation and development. Although the mechanisms by which RNA is targeted to (or escapes from) the exosome are still not fully understood, general principles have begun to emerge, which we discuss in this Review. In addition, we introduce and discuss novel, previously unappreciated functions of the nuclear exosome, including in transcription regulation and in the maintenance of genome stability.
Collapse
|
14
|
Schmid M, Olszewski P, Pelechano V, Gupta I, Steinmetz LM, Jensen TH. The Nuclear PolyA-Binding Protein Nab2p Is Essential for mRNA Production. Cell Rep 2015; 12:128-139. [PMID: 26119729 DOI: 10.1016/j.celrep.2015.06.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 05/13/2015] [Accepted: 06/01/2015] [Indexed: 10/23/2022] Open
Abstract
Polyadenylation of mRNA is a key step in eukaryotic gene expression. However, despite the major impact of poly(A) tails on mRNA metabolism, the precise roles of poly(A)-binding proteins (PABPs) in nuclear mRNA biogenesis remain elusive. Here, we demonstrate that rapid nuclear depletion of the S. cerevisiae PABP Nab2p leads to a global loss of cellular mRNA, but not of RNA lacking poly(A) tails. Disappearance of mRNA is a nuclear event, but not due to decreased transcription. Instead, the absence of Nab2p results in robust nuclear mRNA decay by the ribonucleolytic RNA exosome in a polyadenylation-dependent process. We conclude that Nab2p is required to protect early mRNA and therefore constitutes a crucial nuclear mRNA biogenesis factor.
Collapse
Affiliation(s)
- Manfred Schmid
- Centre for mRNP Biogenesis and Metabolism, Department of Molecular Biology and Genetics, Aarhus University, C.F. Møllers Alle 3, Building 1130, 8000 Aarhus C., Denmark.
| | - Pawel Olszewski
- Centre for mRNP Biogenesis and Metabolism, Department of Molecular Biology and Genetics, Aarhus University, C.F. Møllers Alle 3, Building 1130, 8000 Aarhus C., Denmark
| | - Vicent Pelechano
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany
| | - Ishaan Gupta
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany
| | - Lars M Steinmetz
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany; Stanford Genome Technology Center, Stanford University, Palo Alto, CA 94304, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Torben Heick Jensen
- Centre for mRNP Biogenesis and Metabolism, Department of Molecular Biology and Genetics, Aarhus University, C.F. Møllers Alle 3, Building 1130, 8000 Aarhus C., Denmark.
| |
Collapse
|
15
|
Liu P, Yuan Z, Huang L, Zhou T. Roles of factorial noise in inducing bimodal gene expression. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:062706. [PMID: 26172735 DOI: 10.1103/physreve.91.062706] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Indexed: 06/04/2023]
Abstract
Some gene regulatory systems can exhibit bimodal distributions of mRNA or protein although the deterministic counterparts are monostable. This noise-induced bimodality is an interesting phenomenon and has important biological implications, but it is unclear how different sources of expression noise (each source creates so-called factorial noise that is defined as a component of the total noise) contribute separately to this stochastic bimodality. Here we consider a minimal model of gene regulation, which is monostable in the deterministic case. Although simple, this system contains factorial noise of two main kinds: promoter noise due to switching between gene states and transcriptional (or translational) noise due to synthesis and degradation of mRNA (or protein). To better trace the roles of factorial noise in inducing bimodality, we also analyze two limit models, continuous and adiabatic approximations, apart from the exact model. We show that in the case of slow gene switching, the continuous model where only promoter noise is considered can exhibit bimodality; in the case of fast switching, the adiabatic model where only transcriptional or translational noise is considered can also exhibit bimodality but the exact model cannot; and in other cases, both promoter noise and transcriptional or translational noise can cooperatively induce bimodality. Since slow gene switching and large protein copy numbers are characteristics of eukaryotic cells, whereas fast gene switching and small protein copy numbers are characteristics of prokaryotic cells, we infer that eukaryotic stochastic bimodality is induced mainly by promoter noise, whereas prokaryotic stochastic bimodality is induced primarily by transcriptional or translational noise.
Collapse
Affiliation(s)
- Peijiang Liu
- Guangdong Province Key Laboratory of Computational Science, School of Mathematics and Computational Science, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
| | - Zhanjiang Yuan
- Guangdong Province Key Laboratory of Computational Science, School of Mathematics and Computational Science, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
| | - Lifang Huang
- Guangdong Province Key Laboratory of Computational Science, School of Mathematics and Computational Science, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
| | - Tianshou Zhou
- Guangdong Province Key Laboratory of Computational Science, School of Mathematics and Computational Science, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
| |
Collapse
|
16
|
Bühlmann M, Walrad P, Rico E, Ivens A, Capewell P, Naguleswaran A, Roditi I, Matthews KR. NMD3 regulates both mRNA and rRNA nuclear export in African trypanosomes via an XPOI-linked pathway. Nucleic Acids Res 2015; 43:4491-504. [PMID: 25873624 PMCID: PMC4482084 DOI: 10.1093/nar/gkv330] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 03/30/2015] [Accepted: 03/31/2015] [Indexed: 02/03/2023] Open
Abstract
Trypanosomes mostly regulate gene expression through post-transcriptional mechanisms, particularly mRNA stability. However, much mRNA degradation is cytoplasmic such that mRNA nuclear export must represent an important level of regulation. Ribosomal RNAs must also be exported from the nucleus and the trypanosome orthologue of NMD3 has been confirmed to be involved in rRNA processing and export, matching its function in other organisms. Surprisingly, we found that TbNMD3 depletion also generates mRNA accumulation of procyclin-associated genes (PAGs), these being co-transcribed by RNA polymerase I with the procyclin surface antigen genes expressed on trypanosome insect forms. By whole transcriptome RNA-seq analysis of TbNMD3-depleted cells we confirm the regulation of the PAG transcripts by TbNMD3 and using reporter constructs reveal that PAG1 regulation is mediated by its 5'UTR. Dissection of the mechanism of regulation demonstrates that it is not dependent upon translational inhibition mediated by TbNMD3 depletion nor enhanced transcription. However, depletion of the nuclear export factors XPO1 or MEX67 recapitulates the effects of TbNMD3 depletion on PAG mRNAs and mRNAs accumulated in the nucleus of TbNMD3-depleted cells. These results invoke a novel RNA regulatory mechanism involving the NMD3-dependent nuclear export of mRNA cargos, suggesting a shared platform for mRNA and rRNA export.
Collapse
Affiliation(s)
- Melanie Bühlmann
- Centre for Immunity, Infection and Evolution, Institute for Immunology and Infection Research, School of Biological Sciences, Kings Buildings, University of Edinburgh, West Mains Road, Edinburgh EH9 3JT, UK
| | - Pegine Walrad
- Centre for Immunity, Infection and Evolution, Institute for Immunology and Infection Research, School of Biological Sciences, Kings Buildings, University of Edinburgh, West Mains Road, Edinburgh EH9 3JT, UK Centre for Immunology and Infection, Department of Biology, University of York, YO10 5DD, UK
| | - Eva Rico
- Centre for Immunity, Infection and Evolution, Institute for Immunology and Infection Research, School of Biological Sciences, Kings Buildings, University of Edinburgh, West Mains Road, Edinburgh EH9 3JT, UK
| | - Alasdair Ivens
- Centre for Immunity, Infection and Evolution, Institute for Immunology and Infection Research, School of Biological Sciences, Kings Buildings, University of Edinburgh, West Mains Road, Edinburgh EH9 3JT, UK
| | - Paul Capewell
- Centre for Immunity, Infection and Evolution, Institute for Immunology and Infection Research, School of Biological Sciences, Kings Buildings, University of Edinburgh, West Mains Road, Edinburgh EH9 3JT, UK
| | | | - Isabel Roditi
- Institute of Cell Biology, University of Bern, CH-3012 Bern, Switzerland
| | - Keith R Matthews
- Centre for Immunity, Infection and Evolution, Institute for Immunology and Infection Research, School of Biological Sciences, Kings Buildings, University of Edinburgh, West Mains Road, Edinburgh EH9 3JT, UK
| |
Collapse
|
17
|
The histone deacetylase Rpd3/Sin3/Ume6 complex represses an acetate-inducible isoform of VTH2 in fermenting budding yeast cells. FEBS Lett 2015; 589:924-32. [PMID: 25728275 DOI: 10.1016/j.febslet.2015.02.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 01/30/2015] [Accepted: 02/12/2015] [Indexed: 11/21/2022]
Abstract
The tripartite Rpd3/Sin3/Ume6 complex represses meiotic isoforms during mitosis. We asked if it also controls starvation-induced isoforms. We report that VTH1/VTH2 encode acetate-inducible isoforms with extended 5'-regions overlapping antisense long non-coding RNAs. Rpd3 and Ume6 repress the long isoform of VTH2 during fermentation. Cells metabolising glucose contain Vth2, while the protein is undetectable in acetate and during sporulation. VTH2 is a useful model locus to study mechanisms implicating promoter directionality, lncRNA transcription and post-transcriptional control of gene expression via 5'-UTRs. Since mammalian genes encode transcript isoforms and Rpd3 is conserved, our findings are relevant for gene expression in higher eukaryotes.
Collapse
|
18
|
Abstract
As an experimentally well-studied nuclear-retained RNA, CTN-RNA plays a significant role in many aspects of mouse cationic amino acid transporter 2 (mCAT2) gene expression, but relevant dynamical mechanisms have not been completely clarified. Here we first show that CTN-RNA nuclear retention can not only reduce pre-mCAT2 RNA noise but also mediate its coding partner noise. Then, by collecting experimental observations, we conjecture a heterodimer formed by two proteins, p54(nrb) and PSP1, named p54(nrb)-PSP1, by which CTN-RNA can positively regulate the expression of nuclear mCAT2 RNA. Therefore, we construct a sequestration model at the molecular level. By analyzing the dynamics of this model system, we demonstrate why most nuclear-retained CTN-RNAs stabilize at the periphery of paraspeckles, how CTN-RNA regulates its protein-coding partner, and how the mCAT2 gene can maintain a stable expression. In particular, we obtain results that can easily explain the experimental phenomena observed in two cases, namely, when cells are stressed and unstressed. Our entire analysis not only reveals that CTN-RNA nuclear retention may play an essential role in indirectly preventing diseases but also lays the foundation for further study of other members of the nuclear-regulatory RNA family with more complicated molecular mechanisms.
Collapse
Affiliation(s)
- Qianliang Wang
- School of Mathematics and Computational Science, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
| | | |
Collapse
|
19
|
An Rrp6-like protein positively regulates noncoding RNA levels and DNA methylation in Arabidopsis. Mol Cell 2014; 54:418-30. [PMID: 24726328 DOI: 10.1016/j.molcel.2014.03.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 01/02/2014] [Accepted: 02/28/2014] [Indexed: 01/11/2023]
Abstract
Rrp6-mediated nuclear RNA surveillance tunes eukaryotic transcriptomes through noncoding RNA degradation and mRNA quality control, including exosomal RNA decay and transcript retention triggered by defective RNA processing. It is unclear whether Rrp6 can positively regulate noncoding RNAs and whether RNA retention occurs in normal cells. Here we report that AtRRP6L1, an Arabidopsis Rrp6-like protein, controls RNA-directed DNA methylation through positive regulation of noncoding RNAs. Discovered in a forward genetic screen, AtRRP6L1 mutations decrease DNA methylation independently of exosomal RNA degradation. Accumulation of Pol V-transcribed scaffold RNAs requires AtRRP6L1 that binds to RNAs in vitro and in vivo. AtRRP6L1 helps retain Pol V-transcribed RNAs in chromatin to enable their scaffold function. In addition, AtRRP6L1 is required for genome-wide Pol IV-dependent siRNA production that may involve retention of Pol IV transcripts. Our results suggest that AtRRP6L1 functions in epigenetic regulation by helping with the retention of noncoding RNAs in normal cells.
Collapse
|
20
|
Quality control of mRNP biogenesis: networking at the transcription site. Semin Cell Dev Biol 2014; 32:37-46. [PMID: 24713468 DOI: 10.1016/j.semcdb.2014.03.033] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 03/28/2014] [Indexed: 11/20/2022]
Abstract
Eukaryotic cells carry out quality control (QC) over the processes of RNA biogenesis to inactivate or eliminate defective transcripts, and to avoid their production. In the case of protein-coding transcripts, the quality controls can sense defects in the assembly of mRNA-protein complexes, in the processing of the precursor mRNAs, and in the sequence of open reading frames. Different types of defect are monitored by different specialized mechanisms. Some of them involve dedicated factors whose function is to identify faulty molecules and target them for degradation. Others are the result of a more subtle balance in the kinetics of opposing activities in the mRNA biogenesis pathway. One way or another, all such mechanisms hinder the expression of the defective mRNAs through processes as diverse as rapid degradation, nuclear retention and transcriptional silencing. Three major degradation systems are responsible for the destruction of the defective transcripts: the exosome, the 5'-3' exoribonucleases, and the nonsense-mediated mRNA decay (NMD) machinery. This review summarizes recent findings on the cotranscriptional quality control of mRNA biogenesis, and speculates that a protein-protein interaction network integrates multiple mRNA degradation systems with the transcription machinery.
Collapse
|
21
|
Xu H, Lim M, Dwarakanath M, Hong Y. Vasa identifies germ cells and critical stages of oogenesis in the Asian seabass. Int J Biol Sci 2014; 10:225-35. [PMID: 24550690 PMCID: PMC3927134 DOI: 10.7150/ijbs.6797] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 10/15/2013] [Indexed: 11/05/2022] Open
Abstract
Germ cells produce sperm and eggs for reproduction and fertility. The Asian seabass (Lates calcarifer), a protandrous marine fish, undergoes male-female sex reversal and thus offers an excellent model to study the role of germ cells in sex differentiation and sex reversal. Here we report the cloning and expression of vasa as a first germ cell marker in this organism. A 2241-bp cDNA was cloned by PCR using degenerate primers of conserved sequences and gene-specific primers. This cDNA contains a polyadenylation signal and a full open reading frame for 645 amino acid residues, which was designated as Lcvasa for the seabass vasa, as its predicted protein is homologous to Vasa proteins. The Lcvasa RNA is maternally supplied and specific to gonads in adulthood. By chromogenic and fluorescent in situ hybridization we revealed germ cell-specific Lcvasa expression in both the testis and ovary. Importantly, Lcvasa shows dynamic patterns of temporospatial expression and subcellular distribution during gametogenesis. At different stages of oogenesis, for example, Lcvasa undergoes nuclear-cytoplasmic redistribution and becomes concentrated preferentially in the Balbiani body of stage-II~III oocytes. Thus, the vasa RNA identifies both female and male germ cells in the Asian seabass, and its expression and distribution delineate critical stages of gametogenesis.
Collapse
Affiliation(s)
- Hongyan Xu
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543
| | - Menghuat Lim
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543
| | - Manali Dwarakanath
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543
| | - Yunhan Hong
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543
| |
Collapse
|
22
|
Akef A, Zhang H, Masuda S, Palazzo AF. Trafficking of mRNAs containing ALREX-promoting elements through nuclear speckles. Nucleus 2013; 4:326-40. [PMID: 23934081 PMCID: PMC3810340 DOI: 10.4161/nucl.26052] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
In vertebrates, the majority of mRNAs that encode secreted, membrane-bound or mitochondrial proteins contain RNA elements that activate an alternative mRNA nuclear export (ALREX) pathway. Here we demonstrate that mRNAs containing ALREX-promoting elements are trafficked through nuclear speckles. Although ALREX-promoting elements enhance nuclear speckle localization, additional features within the mRNA largely drive this process. Depletion of two TREX-associated RNA helicases, UAP56 and its paralog URH49, or inhibition of the TREX-associated nuclear transport factor, TAP, not only inhibits ALREX, but also appears to trap these mRNAs in nuclear speckles. mRNAs that contain ALREX-promoting elements associate with UAP56 in vivo. Finally, we demonstrate that mRNAs lacking a poly(A)-tail are not efficiently exported by the ALREX pathway and show enhanced association with nuclear speckles. Our data suggest that within the speckle, ALREX-promoting elements, in conjunction with the poly(A)-tail, likely stimulate UAP56/URH49 and TAP dependent steps that lead to the eventual egress of the export-competent mRNP from these structures.
Collapse
Affiliation(s)
- Abdalla Akef
- Department of Biochemistry; University of Toronto; Toronto, ON Canada; Division of Integrated Life Science; Graduate School of Biostudies; Kyoto University; Kyoto, Japan
| | | | | | | |
Collapse
|
23
|
Affiliation(s)
- C A Niño
- Institut Jacques Monod, Paris Diderot University , Sorbonne Paris Cité, CNRS UMR7592, Equipe labellisée Ligue contre le cancer, 15 rue Hélène Brion, 75205 Paris Cedex 13, France
| | | | | | | |
Collapse
|
24
|
Palazzo AF, Mahadevan K, Tarnawsky SP. ALREX-elements and introns: two identity elements that promote mRNA nuclear export. WILEY INTERDISCIPLINARY REVIEWS-RNA 2013; 4:523-33. [PMID: 23913896 DOI: 10.1002/wrna.1176] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 04/24/2013] [Accepted: 04/26/2013] [Indexed: 11/09/2022]
Abstract
The mechanisms that dictate whether a particular mRNA is exported from the nucleus are still poorly defined. However, it has become increasingly clear that these mechanisms act to promote the expression of protein-coding mRNAs over the high levels of spurious transcription that is endemic to most eukaryotic genomes. For example, mRNA processing events that are associated with protein-coding transcripts, such as splicing, act as mRNA identity elements that promote nuclear export of these transcripts. Six years ago, we made the serendipitous discovery that regions within the open reading frame of an mRNA that encode short secretory or mitochondrial-targeting peptides can also act as an mRNA identity element which promotes an alternative mRNA nuclear export (ALREX) pathway. These regions are enriched in protein coding genes and have particular features that can be used to identify this class of protein-coding mRNA. In this article we review our current knowledge of how mRNA export evolved in response to particular events that occurred at the base of the eukaryotic tree. We will then focus on our current understanding of ALREX and compare its features to splicing-dependent export, the main mRNA export pathway in metazoans.
Collapse
|
25
|
Ma WK, Cloutier SC, Tran EJ. The DEAD-box protein Dbp2 functions with the RNA-binding protein Yra1 to promote mRNP assembly. J Mol Biol 2013; 425:3824-38. [PMID: 23721653 DOI: 10.1016/j.jmb.2013.05.016] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 05/01/2013] [Accepted: 05/18/2013] [Indexed: 11/25/2022]
Abstract
Eukaryotic gene expression involves numerous biochemical steps that are dependent on RNA structure and ribonucleoprotein (RNP) complex formation. The DEAD-box class of RNA helicases plays fundamental roles in formation of RNA and RNP structure in every aspect of RNA metabolism. In an effort to explore the diversity of biological roles for DEAD-box proteins, our laboratory recently demonstrated that the DEAD-box protein Dbp2 associates with actively transcribing genes and is required for normal gene expression in Saccharomyces cerevisiae. We now provide evidence that Dbp2 interacts genetically and physically with the mRNA export factor Yra1. In addition, we find that Dbp2 is required for in vivo assembly of mRNA-binding proteins Yra1, Nab2, and Mex67 onto poly(A)+ RNA. Strikingly, we also show that Dbp2 is an efficient RNA helicase in vitro and that Yra1 decreases the efficiency of ATP-dependent duplex unwinding. We provide a model whereby messenger ribonucleoprotein (mRNP) assembly requires Dbp2 unwinding activity and once the mRNP is properly assembled, inhibition by Yra1 prevents further rearrangements. Both Yra1 and Dbp2 are conserved in multicellular eukaryotes, suggesting that this constitutes a broadly conserved mechanism for stepwise assembly of mature mRNPs in the nucleus.
Collapse
Affiliation(s)
- Wai Kit Ma
- Department of Biochemistry, Purdue University, BCHM 305, 175 South University Street, West Lafayette, IN 47907-2063, USA; Purdue University Center for Cancer Research, Purdue University, Hansen Life Sciences Research Building, Room 141, 201 South University Street, West Lafayette, IN 47907-2064, USA
| | | | | |
Collapse
|
26
|
Chlebowski A, Lubas M, Jensen TH, Dziembowski A. RNA decay machines: the exosome. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:552-60. [PMID: 23352926 DOI: 10.1016/j.bbagrm.2013.01.006] [Citation(s) in RCA: 176] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Accepted: 01/03/2013] [Indexed: 10/27/2022]
Abstract
The multisubunit RNA exosome complex is a major ribonuclease of eukaryotic cells that participates in the processing, quality control and degradation of virtually all classes of RNA in Eukaryota. All this is achieved by about a dozen proteins with only three ribonuclease activities between them. At first glance, the versatility of the pathways involving the exosome and the sheer multitude of its substrates are astounding. However, after fifteen years of research we have some understanding of how exosome activity is controlled and applied inside the cell. The catalytic properties of the eukaryotic exosome are fairly well described and attention is now drawn to how the interplay between these activities impacts cell physiology. Also, it has become evident that exosome function relies on many auxiliary factors, which are intensely studied themselves. In this way, the focus of exosome research is slowly leaving the test tube and moving back into the cell. The exosome also has an interesting evolutionary history, which is evident within the eukaryotic lineage but only fully appreciated when considering similar protein complexes found in Bacteria and Archaea. Thus, while we keep this review focused on the most comprehensively described yeast and human exosomes, we shall point out similarities or dissimilarities to prokaryotic complexes and proteins where appropriate. The article is divided into three parts. In Part One we describe how the exosome is built and how it manifests in cells of different organisms. In Part Two we detail the enzymatic properties of the exosome, especially recent data obtained for holocomplexes. Finally, Part Three presents an overview of the RNA metabolism pathways that involve the exosome. This article is part of a Special Issue entitled: RNA Decay mechanisms.
Collapse
|
27
|
Schmid M, Jensen TH. Transcription-associated quality control of mRNP. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:158-68. [PMID: 22982197 DOI: 10.1016/j.bbagrm.2012.08.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 08/24/2012] [Accepted: 08/29/2012] [Indexed: 01/06/2023]
Abstract
Although a prime purpose of transcription is to produce RNA, a substantial amount of transcript is nevertheless turned over very early in its lifetime. During transcription RNAs are matured by nucleases from longer precursors and activities are also employed to exert quality control over the RNA synthesis process so as to discard, retain or transcriptionally silence unwanted molecules. In this review we discuss the somewhat paradoxical circumstance that the retention or turnover of RNA is often linked to its synthesis. This occurs via the association of chromatin, or the transcription elongation complex, with RNA degradation (co)factors. Although our main focus is on protein-coding genes, we also discuss mechanisms of transcription-connected turnover of non-protein-coding RNA from where important general principles are derived. This article is part of a Special Issue entitled: RNA polymerase II Transcript Elongation.
Collapse
Affiliation(s)
- Manfred Schmid
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C., Denmark
| | | |
Collapse
|