1
|
Fletcher EE, Jones ML, Yeeles JTP. Competition for the nascent leading strand shapes the requirements for PCNA loading in the replisome. EMBO J 2025; 44:2298-2322. [PMID: 40021844 PMCID: PMC12000384 DOI: 10.1038/s44318-025-00386-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/24/2025] [Accepted: 02/04/2025] [Indexed: 03/03/2025] Open
Abstract
During DNA replication, the DNA polymerases Pol δ and Pol ε utilise the ring-shaped sliding clamp PCNA to enhance their processivity. PCNA loading onto DNA is accomplished by the clamp loaders RFC and Ctf18-RFC, which function primarily on the lagging and the leading strand, respectively. RFC activity is essential for lagging-strand replication by Pol δ, but it is unclear why Ctf18-RFC is required for leading-strand PCNA loading and why RFC cannot fulfil this function. Here, we show that RFC cannot load PCNA once Pol ε has been incorporated into the budding yeast replisome and commenced leading-strand synthesis, and this state is maintained during replisome progression. By contrast, we find that Ctf18-RFC is uniquely equipped to load PCNA onto the leading strand and show that this activity requires a direct interaction between Ctf18 and the CMG (Cdc45-MCM-GINS) helicase. Our work uncovers a mechanistic basis for why replisomes require a dedicated leading-strand clamp loader.
Collapse
|
2
|
Palm G, Costa A. How similar are the molecular mechanisms of yeast and metazoan genome replication initiation? Biochem Soc Trans 2025; 53:BST20220917. [PMID: 40052964 DOI: 10.1042/bst20220917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 02/03/2025] [Accepted: 02/12/2025] [Indexed: 05/13/2025]
Abstract
DNA replication start sites are licensed for replication when two hexameric ring-shaped motors of the replicative helicase are loaded as an inactive double hexamer around duplex DNA. Activation requires untwisting of the double helix and ejection of one DNA strand from the central channel of each helicase ring. The process of replication initiation is best understood in yeast, thanks to reconstitution with purified yeast proteins, which allowed systematic structural analysis of the replication initiation process. Orthologs of most yeast replication factors have been identified in higher eukaryotes; however, reconstitution of metazoan replication initiation is still in its infancy, with double hexamer loading but not activation having been achieved. Nonetheless, artificial intelligence-driven structure prediction and cryo-EM studies on native complexes, combined with cell-based and cell-free approaches, are starting to provide insights into metazoan replication initiation mechanisms. Here, we describe the emerging picture.
Collapse
Affiliation(s)
- Giacomo Palm
- Macromolecular Machines Laboratory, The Francis Crick Institute, London NW1 1AT, U.K
| | - Alessandro Costa
- Macromolecular Machines Laboratory, The Francis Crick Institute, London NW1 1AT, U.K
| |
Collapse
|
3
|
Butryn A, Greiwe JF, Costa A. Unidirectional MCM translocation away from ORC drives origin licensing. Nat Commun 2025; 16:782. [PMID: 39824870 PMCID: PMC11748629 DOI: 10.1038/s41467-025-56143-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 01/09/2025] [Indexed: 01/20/2025] Open
Abstract
The MCM motor of the eukaryotic replicative helicase is loaded as a double hexamer onto DNA by the Origin Recognition Complex (ORC), Cdc6, and Cdt1. ATP binding supports formation of the ORC-Cdc6-Cdt1-MCM (OCCM) helicase-recruitment complex where ORC-Cdc6 and one MCM hexamer form two juxtaposed rings around duplex DNA. ATP hydrolysis by MCM completes MCM loading but the mechanism is unknown. Here, we used cryo-EM to characterise helicase loading with ATPase-dead Arginine Finger variants of the six MCM subunits. We report the structure of two MCM complexes with different DNA grips, stalled as they mature to loaded MCM. The Mcm2 Arginine Finger-variant stabilises DNA binding by Mcm2 away from ORC/Cdc6. The Arginine Finger-variant of the neighbouring Mcm5 subunit stabilises DNA engagement by Mcm5 downstream of the Mcm2 binding site. Cdc6 and Orc1 progressively disengage from ORC as MCM translocates along DNA. We observe that duplex DNA translocation by MCM involves a set of leading-strand contacts by the pre-sensor 1 ATPase hairpins and lagging-strand contacts by the helix-2-insert hairpins. Mutating any of the MCM residues involved impairs high-salt resistant DNA binding in vitro and double-hexamer formation assessed by electron microscopy. Thus, ATPase-powered duplex DNA translocation away from ORC underlies MCM loading.
Collapse
Affiliation(s)
- Agata Butryn
- Macromolecular Machines Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Julia F Greiwe
- Macromolecular Machines Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
- Astex Pharmaceuticals, 436 Cambridge Science Park Milton Rd, Milton, Cambridge, CB4 0QA, UK
| | - Alessandro Costa
- Macromolecular Machines Laboratory, The Francis Crick Institute, London, NW1 1AT, UK.
| |
Collapse
|
4
|
Wells JN, Edwardes LV, Leber V, Allyjaun S, Peach M, Tomkins J, Kefala-Stavridi A, Faull SV, Aramayo R, Pestana CM, Ranjha L, Speck C. Reconstitution of human DNA licensing and the structural and functional analysis of key intermediates. Nat Commun 2025; 16:478. [PMID: 39779677 PMCID: PMC11711466 DOI: 10.1038/s41467-024-55772-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 12/20/2024] [Indexed: 01/18/2025] Open
Abstract
Human DNA licensing initiates replication fork assembly and DNA replication. This reaction promotes the loading of the hMCM2-7 complex on DNA, which represents the core of the replicative helicase that unwinds DNA during S-phase. Here, we report the reconstitution of human DNA licensing using purified proteins. We showed that the in vitro reaction is specific and results in the assembly of high-salt resistant hMCM2-7 double-hexamers. With ATPγS, an hORC1-5-hCDC6-hCDT1-hMCM2-7 (hOCCM) assembles independent of hORC6, but hORC6 enhances double-hexamer formation. We determined the hOCCM structure, which showed that hORC-hCDC6 recruits hMCM2-7 via five hMCM winged-helix domains. The structure highlights how hORC1 activates the hCDC6 ATPase and uncovered an unexpected role for hCDC6 ATPase in complex disassembly. We identified that hCDC6 binding to hORC1-5 stabilises hORC2-DNA interactions and supports hMCM3-dependent recruitment of hMCM2-7. Finally, the structure allowed us to locate cancer-associated mutations at the hCDC6-hMCM3 interface, which showed specific helicase loading defects.
Collapse
Affiliation(s)
- Jennifer N Wells
- DNA Replication Group, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
- MRC Laboratory of Medical Sciences (LMS), London, UK
| | - Lucy V Edwardes
- DNA Replication Group, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
- MRC Laboratory of Medical Sciences (LMS), London, UK
| | - Vera Leber
- DNA Replication Group, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
- MRC Laboratory of Medical Sciences (LMS), London, UK
| | - Shenaz Allyjaun
- DNA Replication Group, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
- MRC Laboratory of Medical Sciences (LMS), London, UK
| | - Matthew Peach
- DNA Replication Group, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
- MRC Laboratory of Medical Sciences (LMS), London, UK
| | - Joshua Tomkins
- DNA Replication Group, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
- MRC Laboratory of Medical Sciences (LMS), London, UK
| | - Antonia Kefala-Stavridi
- DNA Replication Group, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
- MRC Laboratory of Medical Sciences (LMS), London, UK
| | - Sarah V Faull
- DNA Replication Group, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
- MRC Laboratory of Medical Sciences (LMS), London, UK
| | - Ricardo Aramayo
- DNA Replication Group, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
- MRC Laboratory of Medical Sciences (LMS), London, UK
| | - Carolina M Pestana
- DNA Replication Group, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
- MRC Laboratory of Medical Sciences (LMS), London, UK
| | - Lepakshi Ranjha
- DNA Replication Group, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
- MRC Laboratory of Medical Sciences (LMS), London, UK
| | - Christian Speck
- DNA Replication Group, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK.
- MRC Laboratory of Medical Sciences (LMS), London, UK.
| |
Collapse
|
5
|
Faull SV, Barbon M, Mossler A, Yuan Z, Bai L, Reuter LM, Riera A, Winkler C, Magdalou I, Peach M, Li H, Speck C. MCM2-7 ring closure involves the Mcm5 C-terminus and triggers Mcm4 ATP hydrolysis. Nat Commun 2025; 16:14. [PMID: 39747125 PMCID: PMC11695723 DOI: 10.1038/s41467-024-55479-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 12/12/2024] [Indexed: 01/04/2025] Open
Abstract
The eukaryotic helicase MCM2-7, is loaded by ORC, Cdc6 and Cdt1 as a double-hexamer onto replication origins. The insertion of DNA into the helicase leads to partial MCM2-7 ring closure, while ATP hydrolysis is essential for consecutive steps in pre-replicative complex (pre-RC) assembly. Currently it is unknown how MCM2-7 ring closure and ATP-hydrolysis are controlled. A cryo-EM structure of an ORC-Cdc6-Cdt1-MCM2-7 intermediate shows a remodelled, fully-closed Mcm2/Mcm5 interface. The Mcm5 C-terminus (C5) contacts Orc3 and specifically recognises this closed ring. Interestingly, we found that normal helicase loading triggers Mcm4 ATP-hydrolysis, which in turn leads to reorganisation of the MCM2-7 complex and Cdt1 release. However, defective MCM2-7 ring closure, due to mutations at the Mcm2/Mcm5 interface, leads to MCM2-7 ring splitting and complex disassembly. As such we identify Mcm4 as the key ATPase in regulating pre-RC formation. Crucially, a stable Mcm2/Mcm5 interface is essential for productive ATP-hydrolysis-dependent remodelling of the helicase.
Collapse
Affiliation(s)
- Sarah V Faull
- DNA Replication Group, Institute of Clinical Science, Imperial College London, London, UK
| | - Marta Barbon
- DNA Replication Group, Institute of Clinical Science, Imperial College London, London, UK
- MRC London Institute of Medical Sciences, London, UK
| | - Audrey Mossler
- DNA Replication Group, Institute of Clinical Science, Imperial College London, London, UK
| | - Zuanning Yuan
- Structural Biology Program, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Lin Bai
- Structural Biology Program, Van Andel Research Institute, Grand Rapids, MI, USA
- Department of Biophysics, School of Basic Medical Sciences, Peking University, Beijing, China
| | - L Maximilian Reuter
- DNA Replication Group, Institute of Clinical Science, Imperial College London, London, UK
- Institute of Molecular Biology (IMB) gGmbH, Mainz, Germany
| | - Alberto Riera
- DNA Replication Group, Institute of Clinical Science, Imperial College London, London, UK
| | - Christian Winkler
- DNA Replication Group, Institute of Clinical Science, Imperial College London, London, UK
| | - Indiana Magdalou
- DNA Replication Group, Institute of Clinical Science, Imperial College London, London, UK
| | - Matthew Peach
- DNA Replication Group, Institute of Clinical Science, Imperial College London, London, UK
| | - Huilin Li
- Structural Biology Program, Van Andel Research Institute, Grand Rapids, MI, USA.
| | - Christian Speck
- DNA Replication Group, Institute of Clinical Science, Imperial College London, London, UK.
- MRC London Institute of Medical Sciences, London, UK.
| |
Collapse
|
6
|
Malysa A, Zhang XM, Bepler G. Minichromosome Maintenance Proteins: From DNA Replication to the DNA Damage Response. Cells 2024; 14:12. [PMID: 39791713 PMCID: PMC11719910 DOI: 10.3390/cells14010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/11/2024] [Accepted: 12/18/2024] [Indexed: 01/12/2025] Open
Abstract
The DNA replication machinery is highly conserved from bacteria to eukaryotic cells. Faithful DNA replication is vital for cells to transmit accurate genetic information to the next generation. However, both internal and external DNA damages threaten the intricate DNA replication process, leading to the activation of the DNA damage response (DDR) system. Dysfunctional DNA replication and DDR are a source of genomic instability, causing heritable mutations that drive cancer evolutions. The family of minichromosome maintenance (MCM) proteins plays an important role not only in DNA replication but also in DDR. Here, we will review the current strides of MCM proteins in these integrated processes as well as the acetylation/deacetylation of MCM proteins and the value of MCMs as biomarkers in cancer.
Collapse
Affiliation(s)
| | | | - Gerold Bepler
- Karmanos Cancer Institute, Department of Oncology, School of Medicine, Wayne State University, 4100 John R Street, Detroit, MI 48201, USA; (A.M.); (X.M.Z.)
| |
Collapse
|
7
|
Weissmann F, Greiwe JF, Pühringer T, Eastwood EL, Couves EC, Miller TCR, Diffley JFX, Costa A. MCM double hexamer loading visualized with human proteins. Nature 2024; 636:499-508. [PMID: 39604733 PMCID: PMC11634765 DOI: 10.1038/s41586-024-08263-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 10/22/2024] [Indexed: 11/29/2024]
Abstract
Eukaryotic DNA replication begins with the loading of the MCM replicative DNA helicase as a head-to-head double hexamer at origins of DNA replication1-3. Our current understanding of how the double hexamer is assembled by the origin recognition complex (ORC), CDC6 and CDT1 comes mostly from budding yeast. Here we characterize human double hexamer (hDH) loading using biochemical reconstitution and cryo-electron microscopy with purified proteins. We show that the human double hexamer engages DNA differently from the yeast double hexamer (yDH), and generates approximately five base pairs of underwound DNA at the interface between hexamers, as seen in hDH isolated from cells4. We identify several differences from the yeast double hexamer in the order of factor recruitment and dependencies during hDH assembly. Unlike in yeast5-8, the ORC6 subunit of the ORC is not essential for initial MCM recruitment or hDH loading, but contributes to an alternative hDH assembly pathway that requires an intrinsically disordered region in ORC1, which may work through a MCM-ORC intermediate. Our work presents a detailed view of how double hexamers are assembled in an organism that uses sequence-independent replication origins, provides further evidence for diversity in eukaryotic double hexamer assembly mechanisms9, and represents a first step towards reconstitution of DNA replication initiation with purified human proteins.
Collapse
Affiliation(s)
- Florian Weissmann
- Chromosome Replication Laboratory, The Francis Crick Institute, London, UK
| | - Julia F Greiwe
- Macromolecular Machines Laboratory, The Francis Crick Institute, London, UK
| | - Thomas Pühringer
- Macromolecular Machines Laboratory, The Francis Crick Institute, London, UK
| | - Evelyn L Eastwood
- Chromosome Replication Laboratory, The Francis Crick Institute, London, UK
| | - Emma C Couves
- Macromolecular Machines Laboratory, The Francis Crick Institute, London, UK
| | - Thomas C R Miller
- Macromolecular Machines Laboratory, The Francis Crick Institute, London, UK
- DNRF Center for Chromosome Stability, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - John F X Diffley
- Chromosome Replication Laboratory, The Francis Crick Institute, London, UK.
| | - Alessandro Costa
- Macromolecular Machines Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
8
|
Yang R, Hunker O, Wise M, Bleichert F. Multiple mechanisms for licensing human replication origins. Nature 2024; 636:488-498. [PMID: 39604729 PMCID: PMC11910750 DOI: 10.1038/s41586-024-08237-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 10/16/2024] [Indexed: 11/29/2024]
Abstract
Loading of replicative helicases is obligatory for the assembly of DNA replication machineries. The eukaryotic MCM2-7 replicative helicase motor is deposited onto DNA by the origin recognition complex (ORC) and co-loader proteins as a head-to-head double hexamer to license replication origins. Although extensively studied in budding yeast1-4, the mechanisms of origin licensing in multicellular eukaryotes remain poorly defined. Here we use biochemical reconstitution and electron microscopy to reconstruct the human MCM loading pathway. We find that unlike in yeast, the ORC6 subunit of the ORC is not essential for-but enhances-human MCM loading. Electron microscopy analyses identify several intermediates en route to MCM double hexamer formation in the presence and absence of ORC6, including a DNA-loaded, closed-ring MCM single hexamer intermediate that can mature into a head-to-head double hexamer through multiple mechanisms. ORC6 and ORC3 facilitate the recruitment of the ORC to the dimerization interface of the first hexamer into MCM-ORC (MO) complexes that are distinct from the yeast MO complex5,6 and may orient the ORC for second MCM hexamer loading. Additionally, MCM double hexamer formation can proceed through dimerization of independently loaded MCM single hexamers, promoted by a propensity of human MCM2-7 hexamers to self-dimerize. This flexibility in human MCM loading may provide resilience against cellular replication stress, and the reconstitution system will enable studies addressing outstanding questions regarding DNA replication initiation and replication-coupled events in the future.
Collapse
Affiliation(s)
- Ran Yang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Olivia Hunker
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Marleigh Wise
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Franziska Bleichert
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.
| |
Collapse
|
9
|
Xiang S, Craig KC, Luo X, Welch DL, Ferreira RB, Lawrence HR, Lawrence NJ, Reed DR, Alexandrow MG. Identification of ATP-Competitive Human CMG Helicase Inhibitors for Cancer Intervention that Disrupt CMG-Replisome Function. Mol Cancer Ther 2024; 23:1568-1585. [PMID: 38982858 PMCID: PMC11532780 DOI: 10.1158/1535-7163.mct-23-0904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/25/2024] [Accepted: 07/03/2024] [Indexed: 07/11/2024]
Abstract
The human CMG helicase (Cdc45-MCM-GINS) is a novel target for anticancer therapy. Tumor-specific weaknesses in the CMG are caused by oncogene-driven changes that adversely affect CMG function, and CMG activity is required for recovery from replicative stresses such as chemotherapy. Herein, we developed an orthogonal biochemical screening approach and identified CMG inhibitors (CMGi) that inhibit ATPase and helicase activities in an ATP-competitive manner at low micromolar concentrations. Structure-activity information, in silico docking, and testing with synthetic chemical compounds indicate that CMGi require specific chemical elements and occupy ATP-binding sites and channels within minichromosome maintenance (MCM) subunits leading to the ATP clefts, which are likely used for ATP/ADP ingress or egress. CMGi are therefore MCM complex inhibitors (MCMi). Biologic testing shows that CMGi/MCMi inhibit cell growth and DNA replication using multiple molecular mechanisms distinct from other chemotherapy agents. CMGi/MCMi block helicase assembly steps that require ATP binding/hydrolysis by the MCM complex, specifically MCM ring assembly on DNA and GINS recruitment to DNA-loaded MCM hexamers. During the S-phase, inhibition of MCM ATP binding/hydrolysis by CMGi/MCMi causes a "reverse allosteric" dissociation of Cdc45/GINS from the CMG that destabilizes replisome components Ctf4, Mcm10, and DNA polymerase-α, -δ, and -ε, resulting in DNA damage. CMGi/MCMi display selective toxicity toward multiple solid tumor cell types with K-Ras mutations, targeting the CMG and inducing DNA damage, Parp cleavage, and loss of viability. This new class of CMGi/MCMi provides a basis for small chemical development of CMG helicase-targeted anticancer compounds with distinct mechanisms of action.
Collapse
Affiliation(s)
- Shengyan Xiang
- Cancer Biology and Evolution Program, Moffitt Cancer Center and Research Institute, Tampa, Florida
- Molecular Oncology Department, Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Kendall C. Craig
- Molecular Oncology Department, Moffitt Cancer Center and Research Institute, Tampa, Florida
- Drug Discovery Department, Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Xingju Luo
- Cancer Biology and Evolution Program, Moffitt Cancer Center and Research Institute, Tampa, Florida
- Molecular Oncology Department, Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Darcy L. Welch
- Cancer Biology and Evolution Program, Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Individualized Cancer Management, Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Renan B. Ferreira
- Drug Discovery Department, Moffitt Cancer Center and Research Institute, Tampa, Florida
- Chemical Biology Core Facility, Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Harshani R. Lawrence
- Drug Discovery Department, Moffitt Cancer Center and Research Institute, Tampa, Florida
- Chemical Biology Core Facility, Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Nicholas J. Lawrence
- Drug Discovery Department, Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Damon R. Reed
- Cancer Biology and Evolution Program, Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Individualized Cancer Management, Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Mark G. Alexandrow
- Cancer Biology and Evolution Program, Moffitt Cancer Center and Research Institute, Tampa, Florida
- Molecular Oncology Department, Moffitt Cancer Center and Research Institute, Tampa, Florida
| |
Collapse
|
10
|
Tye BK. Four decades of Eukaryotic DNA replication: From yeast genetics to high-resolution cryo-EM structures of the replisome. Proc Natl Acad Sci U S A 2024; 121:e2415231121. [PMID: 39365830 PMCID: PMC11494305 DOI: 10.1073/pnas.2415231121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 08/22/2024] [Indexed: 10/06/2024] Open
Abstract
I had my eyes set on DNA replication research when I took my first molecular biology course in graduate school. My election to the National Academy of Sciences came just when I was retiring from active research. It gives me an opportunity to reflect on my personal journey in eukaryotic DNA replication research, which started as a thought experiment and culminated in witnessing the determination of the cryoelectron microscopic structure of the yeast replisome in the act of transferring histone-encoded epigenetic information at the replication fork. I would like to dedicate this inaugural article to my talented trainees and valuable collaborators in gratitude for the joy they gave me in this journey. I also want to thank my mentors who instilled in me the purpose of science. I hope junior scientists will not be disheartened by the marathon nature of research, but mindful enough to integrate and pause for other equally fun and meaningful activities of life into the marathon.
Collapse
Affiliation(s)
- Bik-Kwoon Tye
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY14853
| |
Collapse
|
11
|
Westhorpe R, Roske JJ, Yeeles JTP. Mechanisms controlling replication fork stalling and collapse at topoisomerase 1 cleavage complexes. Mol Cell 2024; 84:3469-3481.e7. [PMID: 39236719 PMCID: PMC7617106 DOI: 10.1016/j.molcel.2024.08.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/14/2024] [Accepted: 08/02/2024] [Indexed: 09/07/2024]
Abstract
Topoisomerase 1 cleavage complexes (Top1-ccs) comprise a DNA-protein crosslink and a single-stranded DNA break that can significantly impact the DNA replication machinery (replisome). Consequently, inhibitors that trap Top1-ccs are used extensively in research and clinical settings to generate DNA replication stress, yet how the replisome responds upon collision with a Top1-cc remains obscure. By reconstituting collisions between budding yeast replisomes, assembled from purified proteins, and site-specific Top1-ccs, we have uncovered mechanisms underlying replication fork stalling and collapse. We find that stalled replication forks are surprisingly stable and that their stability is influenced by the template strand that Top1 is crosslinked to, the fork protection complex proteins Tof1-Csm3 (human TIMELESS-TIPIN), and the convergence of replication forks. Moreover, nascent-strand mapping and cryoelectron microscopy (cryo-EM) of stalled forks establishes replisome remodeling as a key factor in the initial response to Top1-ccs. These findings have important implications for the use of Top1 inhibitors in research and in the clinic.
Collapse
Affiliation(s)
- Rose Westhorpe
- Protein and Nucleic Acid Chemistry Division, Medical Research Council, Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Johann J Roske
- Protein and Nucleic Acid Chemistry Division, Medical Research Council, Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Joseph T P Yeeles
- Protein and Nucleic Acid Chemistry Division, Medical Research Council, Laboratory of Molecular Biology, Cambridge CB2 0QH, UK.
| |
Collapse
|
12
|
Olson O, Pelliciari S, Heron ED, Deegan TD. A common mechanism for recruiting the Rrm3 and RTEL1 accessory helicases to the eukaryotic replisome. EMBO J 2024; 43:3846-3875. [PMID: 39039288 PMCID: PMC11405395 DOI: 10.1038/s44318-024-00168-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/24/2024] Open
Abstract
The eukaryotic replisome is assembled around the CMG (CDC45-MCM-GINS) replicative helicase, which encircles the leading-strand DNA template at replication forks. When CMG stalls during DNA replication termination, or at barriers such as DNA-protein crosslinks on the leading strand template, a second helicase is deployed on the lagging strand template to support replisome progression. How these 'accessory' helicases are targeted to the replisome to mediate barrier bypass and replication termination remains unknown. Here, by combining AlphaFold structural modelling with experimental validation, we show that the budding yeast Rrm3 accessory helicase contains two Short Linear Interaction Motifs (SLIMs) in its disordered N-terminus, which interact with CMG and the leading-strand DNA polymerase Polε on one side of the replisome. This flexible tether positions Rrm3 adjacent to the lagging strand template on which it translocates, and is critical for replication termination in vitro and Rrm3 function in vivo. The primary accessory helicase in metazoa, RTEL1, is evolutionarily unrelated to Rrm3, but binds to CMG and Polε in an analogous manner, revealing a conserved docking mechanism for accessory helicases in the eukaryotic replisome.
Collapse
Affiliation(s)
- Ottavia Olson
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK
| | - Simone Pelliciari
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK
| | - Emma D Heron
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK
| | - Tom D Deegan
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK.
| |
Collapse
|
13
|
Yang R, Hunker O, Wise M, Bleichert F. Multiple pathways for licensing human replication origins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.10.588796. [PMID: 38645015 PMCID: PMC11030351 DOI: 10.1101/2024.04.10.588796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The loading of replicative helicases constitutes an obligatory step in the assembly of DNA replication machineries. In eukaryotes, the MCM2-7 replicative helicase motor is deposited onto DNA by the origin recognition complex (ORC) and co-loader proteins as a head-to-head MCM double hexamer to license replication origins. Although extensively studied in the budding yeast model system, the mechanisms of origin licensing in higher eukaryotes remain poorly defined. Here, we use biochemical reconstitution and electron microscopy (EM) to reconstruct the human MCM loading pathway. Unexpectedly, we find that, unlike in yeast, ORC's Orc6 subunit is not essential for human MCM loading but can enhance loading efficiency. EM analyses identify several intermediates en route to MCM double hexamer formation in the presence and absence of Orc6, including an abundant DNA-loaded, closed-ring single MCM hexamer intermediate that can mature into a head-to-head double hexamer through different pathways. In an Orc6-facilitated pathway, ORC and a second MCM2-7 hexamer are recruited to the dimerization interface of the first hexamer through an MCM-ORC intermediate that is architecturally distinct from an analogous intermediate in yeast. In an alternative, Orc6-independent pathway, MCM double hexamer formation proceeds through dimerization of two independently loaded single MCM2-7 hexamers, promoted by a propensity of human MCM2-7 hexamers to dimerize without the help of other loading factors. This redundancy in human MCM loading pathways likely provides resilience against replication stress under cellular conditions by ensuring that enough origins are licensed for efficient DNA replication. Additionally, the biochemical reconstitution of human origin licensing paves the way to address many outstanding questions regarding DNA replication initiation and replication-coupled events in higher eukaryotes in the future.
Collapse
Affiliation(s)
| | | | - Marleigh Wise
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Franziska Bleichert
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| |
Collapse
|
14
|
Jones ML, Aria V, Baris Y, Yeeles JTP. How Pol α-primase is targeted to replisomes to prime eukaryotic DNA replication. Mol Cell 2023; 83:2911-2924.e16. [PMID: 37506699 PMCID: PMC10501992 DOI: 10.1016/j.molcel.2023.06.035] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/16/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023]
Abstract
During eukaryotic DNA replication, Pol α-primase generates primers at replication origins to start leading-strand synthesis and every few hundred nucleotides during discontinuous lagging-strand replication. How Pol α-primase is targeted to replication forks to prime DNA synthesis is not fully understood. Here, by determining cryoelectron microscopy (cryo-EM) structures of budding yeast and human replisomes containing Pol α-primase, we reveal a conserved mechanism for the coordination of priming by the replisome. Pol α-primase binds directly to the leading edge of the CMG (CDC45-MCM-GINS) replicative helicase via a complex interaction network. The non-catalytic PRIM2/Pri2 subunit forms two interfaces with CMG that are critical for in vitro DNA replication and yeast cell growth. These interactions position the primase catalytic subunit PRIM1/Pri1 directly above the exit channel for lagging-strand template single-stranded DNA (ssDNA), revealing why priming occurs efficiently only on the lagging-strand template and elucidating a mechanism for Pol α-primase to overcome competition from RPA to initiate primer synthesis.
Collapse
Affiliation(s)
- Morgan L Jones
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Valentina Aria
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Yasemin Baris
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | | |
Collapse
|
15
|
Xiang S, Luo X, Welch D, Reed DR, Alexandrow MG. Identification of Selective ATP-Competitive CMG Helicase Inhibitors for Cancer Intervention that Disrupt CMG-Replisome Function. RESEARCH SQUARE 2023:rs.3.rs-3182731. [PMID: 37609279 PMCID: PMC10441460 DOI: 10.21203/rs.3.rs-3182731/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
The human CMG helicase (Cdc45-MCM-GINS) is a novel target for anti-cancer therapy due to tumor-specific weaknesses in CMG function induced by oncogenic changes and the need for CMG function during recovery from replicative stresses such as chemotherapy. Here, we developed an orthogonal biochemical screening approach and identified selective CMG inhibitors (CMGi) that inhibit ATPase and helicase activities in an ATP-competitive manner at low micromolar concentrations. Structure-activity information and in silico docking indicate that CMGi occupy ATP binding sites and channels within MCM subunits leading to the ATP clefts, which are likely used for ATP/ADP ingress or egress. CMGi inhibit cell growth and DNA replication using multiple molecular mechanisms. CMGi block helicase assembly steps that require ATP binding/hydrolysis by the MCM complex, specifically MCM ring assembly on DNA and GINS recruitment to DNA-loaded MCM hexamers. During S-phase, inhibition of MCM ATP binding/hydrolysis by CMGi causes a 'reverse allosteric' dissociation of Cdc45/GINS from the CMG that destabilizes the replisome and disrupts interactions with Ctf4, Mcm10, and DNA polymerase-α, -δ, -ε, resulting in DNA damage. These novel CMGi are selectively toxic toward tumor cells and define a new class of CMG helicase-targeted anti-cancer compounds with distinct mechanisms of action.
Collapse
Affiliation(s)
- Shengyan Xiang
- Cancer Biology and Evolution Program, Moffitt Cancer Center and Research Institute, Tampa, FL 33612
- Molecular Oncology Department, Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Xingju Luo
- Cancer Biology and Evolution Program, Moffitt Cancer Center and Research Institute, Tampa, FL 33612
- Molecular Oncology Department, Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Darcy Welch
- Cancer Biology and Evolution Program, Moffitt Cancer Center and Research Institute, Tampa, FL 33612
- Department of Individualized Cancer Management, Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Damon R. Reed
- Cancer Biology and Evolution Program, Moffitt Cancer Center and Research Institute, Tampa, FL 33612
- Department of Individualized Cancer Management, Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Mark G. Alexandrow
- Cancer Biology and Evolution Program, Moffitt Cancer Center and Research Institute, Tampa, FL 33612
- Molecular Oncology Department, Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| |
Collapse
|
16
|
Zhang A, Friedman LJ, Gelles J, Bell SP. Changing protein-DNA interactions promote ORC binding site exchange during replication origin licensing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.16.545300. [PMID: 37398123 PMCID: PMC10312730 DOI: 10.1101/2023.06.16.545300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
During origin licensing, the eukaryotic replicative helicase Mcm2-7 forms head-to-head double hexamers to prime origins for bidirectional replication. Recent single-molecule and structural studies revealed that one molecule of the helicase loader ORC can sequentially load two Mcm2-7 hexamers to ensure proper head-to-head helicase alignment. To perform this task, ORC must release from its initial high-affinity DNA binding site and "flip" to bind a weaker, inverted DNA site. However, the mechanism of this binding-site switch remains unclear. In this study, we used single-molecule Förster resonance energy transfer (sm-FRET) to study the changing interactions between DNA and ORC or Mcm2-7. We found that the loss of DNA bending that occurs during DNA deposition into the Mcm2-7 central channel increases the rate of ORC dissociation from DNA. Further studies revealed temporally-controlled DNA sliding of helicase-loading intermediates, and that the first sliding complex includes ORC, Mcm2-7, and Cdt1. We demonstrate that sequential events of DNA unbending, Cdc6 release, and sliding lead to a stepwise decrease in ORC stability on DNA, facilitating ORC dissociation from its strong binding site during site switching. In addition, the controlled sliding we observed provides insight into how ORC accesses secondary DNA binding sites at different locations relative to the initial binding site. Our study highlights the importance of dynamic protein-DNA interactions in the loading of two oppositely-oriented Mcm2-7 helicases to ensure bidirectional DNA replication. Significance Statement Bidirectional DNA replication, in which two replication forks travel in opposite directions from each origin of replication, is required for complete genome duplication. To prepare for this event, two copies of the Mcm2-7 replicative helicase are loaded at each origin in opposite orientations. Using single-molecule assays, we studied the sequence of changing protein-DNA interactions involved in this process. These stepwise changes gradually reduce the DNA-binding strength of ORC, the primary DNA binding protein involved in this event. This reduced affinity promotes ORC dissociation and rebinding in the opposite orientation on the DNA, facilitating the sequential assembly of two Mcm2-7 molecules in opposite orientations. Our findings identify a coordinated series of events that drive proper DNA replication initiation.
Collapse
Affiliation(s)
- Annie Zhang
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Larry J. Friedman
- Department of Biochemistry, Brandeis University, Waltham, MA 02454, USA
| | - Jeff Gelles
- Department of Biochemistry, Brandeis University, Waltham, MA 02454, USA
| | - Stephen P Bell
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
17
|
Chacin E, Reusswig KU, Furtmeier J, Bansal P, Karl LA, Pfander B, Straub T, Korber P, Kurat CF. Establishment and function of chromatin organization at replication origins. Nature 2023; 616:836-842. [PMID: 37020028 DOI: 10.1038/s41586-023-05926-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/03/2023] [Indexed: 04/07/2023]
Abstract
The origin recognition complex (ORC) is essential for initiation of eukaryotic chromosome replication as it loads the replicative helicase-the minichromosome maintenance (MCM) complex-at replication origins1. Replication origins display a stereotypic nucleosome organization with nucleosome depletion at ORC-binding sites and flanking arrays of regularly spaced nucleosomes2-4. However, how this nucleosome organization is established and whether this organization is required for replication remain unknown. Here, using genome-scale biochemical reconstitution with approximately 300 replication origins, we screened 17 purified chromatin factors from budding yeast and found that the ORC established nucleosome depletion over replication origins and flanking nucleosome arrays by orchestrating the chromatin remodellers INO80, ISW1a, ISW2 and Chd1. The functional importance of the nucleosome-organizing activity of the ORC was demonstrated by orc1 mutations that maintained classical MCM-loader activity but abrogated the array-generation activity of ORC. These mutations impaired replication through chromatin in vitro and were lethal in vivo. Our results establish that ORC, in addition to its canonical role as the MCM loader, has a second crucial function as a master regulator of nucleosome organization at the replication origin, a crucial prerequisite for efficient chromosome replication.
Collapse
Affiliation(s)
- Erika Chacin
- Biomedical Center Munich (BMC), Division of Molecular Biology, Faculty of Medicine, Ludwig-Maximilians-Universität in Munich, Martinsried, Germany
| | - Karl-Uwe Reusswig
- Max Planck Institute of Biochemistry, DNA Replication and Genome Integrity, Martinsried, Germany
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jessica Furtmeier
- Biomedical Center Munich (BMC), Division of Molecular Biology, Faculty of Medicine, Ludwig-Maximilians-Universität in Munich, Martinsried, Germany
| | - Priyanka Bansal
- Biomedical Center Munich (BMC), Division of Molecular Biology, Faculty of Medicine, Ludwig-Maximilians-Universität in Munich, Martinsried, Germany
| | - Leonhard A Karl
- Max Planck Institute of Biochemistry, DNA Replication and Genome Integrity, Martinsried, Germany
| | - Boris Pfander
- Max Planck Institute of Biochemistry, DNA Replication and Genome Integrity, Martinsried, Germany
- Genome Maintenance Mechanisms in Health and Disease, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
- Institute of Genome Stability in Aging and Disease, CECAD, University of Cologne, Medical Faculty, Cologne, Germany
| | - Tobias Straub
- Core Facility Bioinformatics, BMC, Faculty of Medicine, Ludwig-Maximilians-Universität in Munich, Martinsried, Germany
| | - Philipp Korber
- Biomedical Center Munich (BMC), Division of Molecular Biology, Faculty of Medicine, Ludwig-Maximilians-Universität in Munich, Martinsried, Germany
| | - Christoph F Kurat
- Biomedical Center Munich (BMC), Division of Molecular Biology, Faculty of Medicine, Ludwig-Maximilians-Universität in Munich, Martinsried, Germany.
| |
Collapse
|
18
|
The CMG helicase and cancer: a tumor "engine" and weakness with missing mutations. Oncogene 2023; 42:473-490. [PMID: 36522488 PMCID: PMC9948756 DOI: 10.1038/s41388-022-02572-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 12/01/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022]
Abstract
The replicative Cdc45-MCM-GINS (CMG) helicase is a large protein complex that functions in the DNA melting and unwinding steps as a component of replisomes during DNA replication in mammalian cells. Although the CMG performs this important role in cell growth, the CMG is not a simple bystander in cell cycle events. Components of the CMG, specifically the MCM precursors, are also involved in maintaining genomic stability by regulating DNA replication fork speeds, facilitating recovery from replicative stresses, and preventing consequential DNA damage. Given these important functions, MCM/CMG complexes are highly regulated by growth factors such as TGF-ß1 and by signaling factors such as Myc, Cyclin E, and the retinoblastoma protein. Mismanagement of MCM/CMG complexes when these signaling mediators are deregulated, and in the absence of the tumor suppressor protein p53, leads to increased genomic instability and is a contributor to tumorigenic transformation and tumor heterogeneity. The goal of this review is to provide insight into the mechanisms and dynamics by which the CMG is regulated during its assembly and activation in mammalian genomes, and how errors in CMG regulation due to oncogenic changes promote tumorigenesis. Finally, and most importantly, we highlight the emerging understanding of the CMG helicase as an exploitable vulnerability and novel target for therapeutic intervention in cancer.
Collapse
|
19
|
Suwara J, Radzikowska-Cieciura E, Chworos A, Pawlowska R. The ATP-dependent Pathways and Human Diseases. Curr Med Chem 2023; 30:1232-1255. [PMID: 35319356 DOI: 10.2174/0929867329666220322104552] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 12/31/2021] [Accepted: 01/04/2022] [Indexed: 11/22/2022]
Abstract
Adenosine triphosphate (ATP) is one of the most important molecules of life, present both inside the cells and extracellularly. It is an essential building block for nucleic acids biosynthesis and crucial intracellular energy storage. However, one of the most interesting functions of ATP is the role of a signaling molecule. Numerous studies indicate the involvement of ATP-dependent pathways in maintaining the proper functioning of individual tissues and organs. Herein, the latest data indicating the ATP function in the network of intra- and extracellular signaling pathways including purinergic signaling, MAP kinase pathway, mTOR and calcium signaling are collected. The main ATP-dependent processes maintaining the proper functioning of the nervous, cardiovascular and immune systems, as well as skin and bones, are summarized. The disturbances in the ATP amount, its cellular localization, or interaction with target elements may induce pathological changes in signaling pathways leading to the development of serious diseases. The impact of an ATP imbalance on the development of dangerous health dysfunctions such as neurodegeneration diseases, cardiovascular diseases (CVDs), diabetes mellitus, obesity, cancers and immune pathogenesis are discussed here.
Collapse
Affiliation(s)
- Justyna Suwara
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Lodz, Poland
| | - Ewa Radzikowska-Cieciura
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Lodz, Poland
| | - Arkadiusz Chworos
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Lodz, Poland
| | - Roza Pawlowska
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Lodz, Poland
| |
Collapse
|
20
|
Casas-Delucchi CS, Daza-Martin M, Williams SL, Coster G. The mechanism of replication stalling and recovery within repetitive DNA. Nat Commun 2022; 13:3953. [PMID: 35853874 PMCID: PMC9296464 DOI: 10.1038/s41467-022-31657-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 06/27/2022] [Indexed: 11/09/2022] Open
Abstract
Accurate chromosomal DNA replication is essential to maintain genomic stability. Genetic evidence suggests that certain repetitive sequences impair replication, yet the underlying mechanism is poorly defined. Replication could be directly inhibited by the DNA template or indirectly, for example by DNA-bound proteins. Here, we reconstitute replication of mono-, di- and trinucleotide repeats in vitro using eukaryotic replisomes assembled from purified proteins. We find that structure-prone repeats are sufficient to impair replication. Whilst template unwinding is unaffected, leading strand synthesis is inhibited, leading to fork uncoupling. Synthesis through hairpin-forming repeats is rescued by replisome-intrinsic mechanisms, whereas synthesis of quadruplex-forming repeats requires an extrinsic accessory helicase. DNA-induced fork stalling is mechanistically similar to that induced by leading strand DNA lesions, highlighting structure-prone repeats as an important potential source of replication stress. Thus, we propose that our understanding of the cellular response to replication stress may also be applied to DNA-induced replication stalling.
Collapse
Affiliation(s)
- Corella S Casas-Delucchi
- Genome Replication lab, Division of Cancer Biology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London, SW3 6JB, UK
| | - Manuel Daza-Martin
- Genome Replication lab, Division of Cancer Biology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London, SW3 6JB, UK
| | - Sophie L Williams
- Genome Replication lab, Division of Cancer Biology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London, SW3 6JB, UK
| | - Gideon Coster
- Genome Replication lab, Division of Cancer Biology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London, SW3 6JB, UK.
| |
Collapse
|
21
|
Saito Y, Santosa V, Ishiguro KI, Kanemaki MT. MCMBP promotes the assembly of the MCM2-7 hetero-hexamer to ensure robust DNA replication in human cells. eLife 2022; 11:77393. [PMID: 35438632 PMCID: PMC9018068 DOI: 10.7554/elife.77393] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/08/2022] [Indexed: 12/26/2022] Open
Abstract
The MCM2–7 hetero-hexamer is the replicative DNA helicase that plays a central role in eukaryotic DNA replication. In proliferating cells, the expression level of the MCM2–7 hexamer is kept high, which safeguards the integrity of the genome. However, how the MCM2–7 hexamer is assembled in living cells remains unknown. Here, we revealed that the MCM-binding protein (MCMBP) plays a critical role in the assembly of this hexamer in human cells. MCMBP associates with MCM3 which is essential for maintaining the level of the MCM2–7 hexamer. Acute depletion of MCMBP demonstrated that it contributes to MCM2–7 assembly using nascent MCM3. Cells depleted of MCMBP gradually ceased to proliferate because of reduced replication licensing. Under this condition, p53-positive cells exhibited arrest in the G1 phase, whereas p53-null cells entered the S phase and lost their viability because of the accumulation of DNA damage, suggesting that MCMBP is a potential target for killing p53-deficient cancers.
Collapse
Affiliation(s)
- Yuichiro Saito
- Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Mishima, Japan
| | - Venny Santosa
- Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Mishima, Japan
| | - Kei-Ichiro Ishiguro
- Department of Chromosome Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto, Japan
| | - Masato T Kanemaki
- Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Mishima, Japan.,Department of Genetics, The Graduate University for Advanced Studies (SOKENDAI), Mishima, Japan
| |
Collapse
|
22
|
Schmidt JM, Yang R, Kumar A, Hunker O, Seebacher J, Bleichert F. A mechanism of origin licensing control through autoinhibition of S. cerevisiae ORC·DNA·Cdc6. Nat Commun 2022; 13:1059. [PMID: 35217664 PMCID: PMC8881611 DOI: 10.1038/s41467-022-28695-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 02/04/2022] [Indexed: 11/10/2022] Open
Abstract
The coordinated action of multiple replicative helicase loading factors is needed for the licensing of replication origins prior to DNA replication. Binding of the Origin Recognition Complex (ORC) to DNA initiates the ATP-dependent recruitment of Cdc6, Cdt1 and Mcm2-7 loading, but the structural details for timely ATPase site regulation and for how loading can be impeded by inhibitory signals, such as cyclin-dependent kinase phosphorylation, are unknown. Using cryo-electron microscopy, we have determined several structures of S. cerevisiae ORC·DNA·Cdc6 intermediates at 2.5-2.7 Å resolution. These structures reveal distinct ring conformations of the initiator·co-loader assembly and inactive ATPase site configurations for ORC and Cdc6. The Orc6 N-terminal domain laterally engages the ORC·Cdc6 ring in a manner that is incompatible with productive Mcm2-7 docking, while deletion of this Orc6 region alleviates the CDK-mediated inhibition of Mcm7 recruitment. Our findings support a model in which Orc6 promotes the assembly of an autoinhibited ORC·DNA·Cdc6 intermediate to block origin licensing in response to CDK phosphorylation and to avert DNA re-replication.
Collapse
Affiliation(s)
- Jan Marten Schmidt
- Friedrich Miescher Institute for Biomedical Research, Basel, 4058, Switzerland
- University of Basel, Basel, 4051, Switzerland
- Novartis Institutes for Biomedical Research, Basel, 4033, Switzerland
| | - Ran Yang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Ashish Kumar
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Olivia Hunker
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Jan Seebacher
- Friedrich Miescher Institute for Biomedical Research, Basel, 4058, Switzerland
| | - Franziska Bleichert
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA.
| |
Collapse
|
23
|
Abstract
DNA replication in eukaryotic cells initiates from large numbers of sites called replication origins. Initiation of replication from these origins must be tightly controlled to ensure the entire genome is precisely duplicated in each cell cycle. This is accomplished through the regulation of the first two steps in replication: loading and activation of the replicative DNA helicase. Here we describe what is known about the mechanism and regulation of these two reactions from a genetic, biochemical, and structural perspective, focusing on recent progress using proteins from budding yeast. Expected final online publication date for the Annual Review of Biochemistry, Volume 91 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Alessandro Costa
- Macromolecular Machines Laboratory, The Francis Crick Institute, London, UK;
| | - John F X Diffley
- Chromosome Replication Laboratory, The Francis Crick Institute, London, UK;
| |
Collapse
|
24
|
Mcm5 Represses Endodermal Migration through Cxcr4a-itgb1b Cascade Instead of Cell Cycle Control. Biomolecules 2022; 12:biom12020286. [PMID: 35204787 PMCID: PMC8961633 DOI: 10.3390/biom12020286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/04/2022] [Accepted: 02/05/2022] [Indexed: 02/01/2023] Open
Abstract
Minichromosome maintenance protein 5 (MCM5) is a critical cell cycle regulator; its role in DNA replication is well known, but whether it is involved in the regulation of organogenesis in a cell cycle-independent way, is far from clear. In this study, we found that a loss of mcm5 function resulted in a mildly smaller liver, but that mcm5 overexpression led to liver bifida. Further, the data showed that mcm5 overexpression delayed endodermal migration in the ventral–dorsal axis and induced the liver bifida. Cell cycle analysis showed that a loss of mcm5 function, but not overexpression, resulted in cell cycle delay and increased cell apoptosis during gastrulation, implying that liver bifida was not the result of a cell cycle defect. In terms of its mechanism, our data proves that mcm5 represses the expression of cxcr4a, which sequentially causes a decrease in the expression of itgb1b during gastrulation. The downregulation of the cxcr4a-itgb1b cascade leads to an endodermal migration delay during gastrulation, as well as to the subsequent liver bifida during liver morphogenesis. In conclusion, our results suggest that in a cell cycle-independent way, mcm5 works as a gene expression regulator, either partially and directly, or indirectly repressing the expression of cxcr4a and the downstream gene itgb1b, to coordinate endodermal migration during gastrulation and liver location during liver organogenesis.
Collapse
|
25
|
Multiple roles of Pol epsilon in eukaryotic chromosome replication. Biochem Soc Trans 2022; 50:309-320. [PMID: 35129614 PMCID: PMC9022971 DOI: 10.1042/bst20210082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/23/2021] [Accepted: 01/06/2022] [Indexed: 11/17/2022]
Abstract
Pol epsilon is a tetrameric assembly that plays distinct roles during eukaryotic chromosome replication. It catalyses leading strand DNA synthesis; yet this function is dispensable for viability. Its non-catalytic domains instead play an essential role in the assembly of the active replicative helicase and origin activation, while non-essential histone-fold subunits serve a critical function in parental histone redeposition onto newly synthesised DNA. Furthermore, Pol epsilon plays a structural role in linking the RFC–Ctf18 clamp loader to the replisome, supporting processive DNA synthesis, DNA damage response signalling as well as sister chromatid cohesion. In this minireview, we discuss recent biochemical and structural work that begins to explain various aspects of eukaryotic chromosome replication, with a focus on the multiple roles of Pol epsilon in this process.
Collapse
|
26
|
Abstract
Sperm nuclei present a highly organized and condensed chromatin due to the interchange of histones by protamines during spermiogenesis. This high DNA condensation leads to almost inert chromatin, with the impossibility of conducting gene transcription as in most other somatic cells. The major chromosomal structure responsible for DNA condensation is the formation of protamine-DNA toroids containing 25-50 kilobases of DNA. These toroids are connected by toroid linker regions (TLR), which attach them to the nuclear matrix, as matrix attachment regions (MAR) do in somatic cells. Despite this high degree of condensation, evidence shows that sperm chromatin contains vulnerable elements that can be degraded even in fully condensed chromatin, which may correspond to chromatin regions that transfer functionality to the zygote at fertilization. This chapter covers an updated review of our model for sperm chromatin structure and its potential functional elements that affect embryo development.
Collapse
Affiliation(s)
- Jordi Ribas-Maynou
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain
| | - Hieu Nguyen
- Department Anatomy, Biochemistry and Physiology, Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Hongwen Wu
- Department Anatomy, Biochemistry and Physiology, Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
| | - W. Steven Ward
- Department Anatomy, Biochemistry and Physiology, Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
| |
Collapse
|
27
|
ReconSil: An electron microscopy toolbox to study helicase function at an origin of replication. Methods Enzymol 2022; 672:203-231. [DOI: 10.1016/bs.mie.2022.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
28
|
Greiwe JF, Miller TCR, Locke J, Martino F, Howell S, Schreiber A, Nans A, Diffley JFX, Costa A. Structural mechanism for the selective phosphorylation of DNA-loaded MCM double hexamers by the Dbf4-dependent kinase. Nat Struct Mol Biol 2022; 29:10-20. [PMID: 34963704 PMCID: PMC8770131 DOI: 10.1038/s41594-021-00698-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 11/05/2021] [Indexed: 12/04/2022]
Abstract
Loading of the eukaryotic replicative helicase onto replication origins involves two MCM hexamers forming a double hexamer (DH) around duplex DNA. During S phase, helicase activation requires MCM phosphorylation by Dbf4-dependent kinase (DDK), comprising Cdc7 and Dbf4. DDK selectively phosphorylates loaded DHs, but how such fidelity is achieved is unknown. Here, we determine the cryogenic electron microscopy structure of Saccharomyces cerevisiae DDK in the act of phosphorylating a DH. DDK docks onto one MCM ring and phosphorylates the opposed ring. Truncation of the Dbf4 docking domain abrogates DH phosphorylation, yet Cdc7 kinase activity is unaffected. Late origin firing is blocked in response to DNA damage via Dbf4 phosphorylation by the Rad53 checkpoint kinase. DDK phosphorylation by Rad53 impairs DH phosphorylation by blockage of DDK binding to DHs, and also interferes with the Cdc7 active site. Our results explain the structural basis and regulation of the selective phosphorylation of DNA-loaded MCM DHs, which supports bidirectional replication.
Collapse
Affiliation(s)
- Julia F Greiwe
- Macromolecular Machines Laboratory, The Francis Crick Institute, London, UK
| | - Thomas C R Miller
- Macromolecular Machines Laboratory, The Francis Crick Institute, London, UK
- Center for Chromosome Stability, University of Copenhagen, Copenhagen, Denmark
| | - Julia Locke
- Macromolecular Machines Laboratory, The Francis Crick Institute, London, UK
| | - Fabrizio Martino
- Macromolecular Machines Laboratory, The Francis Crick Institute, London, UK
- Human Technopole, Milan, Italy
| | - Steven Howell
- Proteomics Science Technology Platform, The Francis Crick Institute, London, UK
| | - Anne Schreiber
- Cellular Degradation Systems Laboratory, The Francis Crick Institute, London, UK
| | - Andrea Nans
- Structural Biology Science Technology Platform, The Francis Crick Institute, London, UK
| | - John F X Diffley
- Chromosome Replication Laboratory, The Francis Crick Institute, London, UK
| | - Alessandro Costa
- Macromolecular Machines Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
29
|
Gupta S, Friedman LJ, Gelles J, Bell SP. A helicase-tethered ORC flip enables bidirectional helicase loading. eLife 2021; 10:74282. [PMID: 34882090 PMCID: PMC8828053 DOI: 10.7554/elife.74282] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/08/2021] [Indexed: 11/13/2022] Open
Abstract
Replication origins are licensed by loading two Mcm2‑7 helicases around DNA in a head-to-head conformation poised to initiate bidirectional replication. This process requires ORC, Cdc6, and Cdt1. Although different Cdc6 and Cdt1 molecules load each helicase, whether two ORC proteins are required is unclear. Using colocalization single-molecule spectroscopy combined with FRET, we investigated interactions between ORC and Mcm2‑7 during helicase loading. In the large majority of events, we observed a single ORC molecule recruiting both Mcm2‑7/Cdt1 complexes via similar interactions that end upon Cdt1 release. Between first and second helicase recruitment, a rapid change in interactions between ORC and the first Mcm2-7 occurs. Within seconds, ORC breaks the interactions mediating first Mcm2-7 recruitment, releases from its initial DNA-binding site, and forms a new interaction with the opposite face of the first Mcm2-7. This rearrangement requires release of the first Cdt1 and tethers ORC as it flips over the first Mcm2-7 to form an inverted Mcm2‑7-ORC-DNA complex required for second-helicase recruitment. To ensure correct licensing, this complex is maintained until head-to-head interactions between the two helicases are formed. Our findings reconcile previous observations and reveal a highly-coordinated series of events through which a single ORC molecule can load two oppositely-oriented helicases.
Collapse
Affiliation(s)
- Shalini Gupta
- Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, United States
| | - Larry J Friedman
- Department of Biochemistry, Brandeis University, Waltham, United States
| | - Jeff Gelles
- Department of Biochemistry, Brandeis University, Waltham, United States
| | - Stephen P Bell
- Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, United States
| |
Collapse
|
30
|
Knapp KM, Jenkins DE, Sullivan R, Harms FL, von Elsner L, Ockeloen CW, de Munnik S, Bongers EMHF, Murray J, Pachter N, Denecke J, Kutsche K, Bicknell LS. MCM complex members MCM3 and MCM7 are associated with a phenotypic spectrum from Meier-Gorlin syndrome to lipodystrophy and adrenal insufficiency. Eur J Hum Genet 2021; 29:1110-1120. [PMID: 33654309 PMCID: PMC8298597 DOI: 10.1038/s41431-021-00839-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 02/06/2021] [Accepted: 02/17/2021] [Indexed: 12/30/2022] Open
Abstract
The MCM2-7 helicase is a heterohexameric complex with essential roles as part of both the pre-replication and pre-initiation complexes in the early stages of DNA replication. Meier-Gorlin syndrome, a rare primordial dwarfism, is strongly associated with disruption to the pre-replication complex, including a single case described with variants in MCM5. Conversely, a biallelic pathogenic variant in MCM4 underlies immune deficiency with growth retardation, features also seen in individuals with pathogenic variants in other pre-initiation complex encoding genes such as GINS1, MCM10, and POLE. Through exome and chromium genome sequencing, supported by functional studies, we identify biallelic pathogenic variants in MCM7 and a strong candidate biallelic pathogenic variant in MCM3. We confirm variants in MCM7 are deleterious and through interfering with MCM complex formation, impact efficiency of S phase progression. The associated phenotypes are striking; one patient has typical Meier-Gorlin syndrome, whereas the second case has a multi-system disorder with neonatal progeroid appearance, lipodystrophy and adrenal insufficiency. We provide further insight into the developmental complexity of disrupted MCM function, highlighted by two patients with a similar variant profile in MCM7 but disparate clinical features. Our results build on other genetic findings linked to disruption of the pre-replication and pre-initiation complexes, and the replisome, and expand the complex clinical genetics landscape emerging due to disruption of DNA replication.
Collapse
Affiliation(s)
- Karen M Knapp
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Danielle E Jenkins
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Rosie Sullivan
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Frederike L Harms
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Leonie von Elsner
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Charlotte W Ockeloen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Sonja de Munnik
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Ernie M H F Bongers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Jennie Murray
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
- South East Scotland Clinical Genetics Service, NHS Lothian, Western General Hospital, Edinburgh, UK
| | - Nicholas Pachter
- Genetic Services of Western Australia, King Edward Memorial Hospital, Perth, WA, Australia
- Faculty of Health and Medical Sciences, University of Western Australia, Perth, WA, Australia
| | - Jonas Denecke
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kerstin Kutsche
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Louise S Bicknell
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
31
|
The structure of ORC-Cdc6 on an origin DNA reveals the mechanism of ORC activation by the replication initiator Cdc6. Nat Commun 2021; 12:3883. [PMID: 34162887 PMCID: PMC8222357 DOI: 10.1038/s41467-021-24199-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 06/07/2021] [Indexed: 01/31/2023] Open
Abstract
The Origin Recognition Complex (ORC) binds to sites in chromosomes to specify the location of origins of DNA replication. The S. cerevisiae ORC binds to specific DNA sequences throughout the cell cycle but becomes active only when it binds to the replication initiator Cdc6. It has been unclear at the molecular level how Cdc6 activates ORC, converting it to an active recruiter of the Mcm2-7 hexamer, the core of the replicative helicase. Here we report the cryo-EM structure at 3.3 Å resolution of the yeast ORC–Cdc6 bound to an 85-bp ARS1 origin DNA. The structure reveals that Cdc6 contributes to origin DNA recognition via its winged helix domain (WHD) and its initiator-specific motif. Cdc6 binding rearranges a short α-helix in the Orc1 AAA+ domain and the Orc2 WHD, leading to the activation of the Cdc6 ATPase and the formation of the three sites for the recruitment of Mcm2-7, none of which are present in ORC alone. The results illuminate the molecular mechanism of a critical biochemical step in the licensing of eukaryotic replication origins. Eukaryotic DNA replication is mediated by many proteins which are tightly regulated for an efficient firing of replication at each cell cycle. Here the authors report a cryo-EM structure of the yeast ORC–Cdc6 bound to an 85-bp ARS1 origin DNA revealing additional insights into how Cdc6 contributes to origin DNA recognition.
Collapse
|
32
|
Wu Y, Huang S, Zhao H, Cao K, Gan J, Yang C, Xu Z, Li S, Su B. Zebrafish Minichromosome Maintenance Protein 5 Gene Regulates the Development and Migration of Facial Motor Neurons via Fibroblast Growth Factor Signaling. Dev Neurosci 2021; 43:84-94. [PMID: 34130286 DOI: 10.1159/000514852] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/28/2021] [Indexed: 11/19/2022] Open
Abstract
Minichromosome maintenance protein 5 (MCM5), a member of the microchromosomal maintenance protein family, plays an important role in the initiation and extension of DNA replication. However, its role in neural development in zebrafish remains unclear. Here, we used morpholino (MO) and CRISPR/Cas9 to knock down mcm5 and investigated the developmental features of facial motor neurons (FMNs) in the hindbrain of zebrafish. We found that knockdown of mcm5 using mcm5 MO resulted in a small head, small eyes, and a blurred midbrain-hindbrain boundary, while MO injection of mcm5 led to decrease in FMNs and their migration disorder. However, the mutant of mcm5 only resulted in the migration defect of FMNs rather than quantity change. We further investigated the underlying mechanism of mcm5 in the development of hindbrain using in situ hybridization (ISH) and fgfr1a mRNA co-injected with mcm5 MO. Results from ISH showed that the fibroblast growth factor (FGF) signaling pathway was changed when the MCM5 function was lost, with the decrease in fgfr1a and the increase in fgf8, while that of pea3 had opposite trend. FMN development defects were rescued by fgfr1a mRNA co-injected with mcm5 MO. Our results demonstrated that FGF signaling pathway is required for FMN development in zebrafish. Specifically, mcm5 regulates FMN development during zebrafish growing.
Collapse
Affiliation(s)
- Yongmei Wu
- Department of Histology and Embryology, Department of Pathology, Development and Regeneration Key Lab of Sichuan Province, Chengdu Medical College, Chengdu, China,
| | - Sizhou Huang
- Department of Histology and Embryology, Department of Pathology, Development and Regeneration Key Lab of Sichuan Province, Chengdu Medical College, Chengdu, China
| | - Haixia Zhao
- Department of Histology and Embryology, Department of Pathology, Development and Regeneration Key Lab of Sichuan Province, Chengdu Medical College, Chengdu, China
| | - Kang Cao
- Department of Histology and Embryology, Department of Pathology, Development and Regeneration Key Lab of Sichuan Province, Chengdu Medical College, Chengdu, China
| | - Jinfan Gan
- Department of Histology and Embryology, Department of Pathology, Development and Regeneration Key Lab of Sichuan Province, Chengdu Medical College, Chengdu, China
| | - Chan Yang
- Department of Histology and Embryology, Department of Pathology, Development and Regeneration Key Lab of Sichuan Province, Chengdu Medical College, Chengdu, China
| | - Zhen Xu
- Department of Histology and Embryology, Department of Pathology, Development and Regeneration Key Lab of Sichuan Province, Chengdu Medical College, Chengdu, China
| | - Shurong Li
- Department of Histology and Embryology, Department of Pathology, Development and Regeneration Key Lab of Sichuan Province, Chengdu Medical College, Chengdu, China
| | - Bingyin Su
- Department of Histology and Embryology, Department of Pathology, Development and Regeneration Key Lab of Sichuan Province, Chengdu Medical College, Chengdu, China
| |
Collapse
|
33
|
Henrikus SS, Costa A. Towards a Structural Mechanism for Sister Chromatid Cohesion Establishment at the Eukaryotic Replication Fork. BIOLOGY 2021; 10:466. [PMID: 34073213 PMCID: PMC8229022 DOI: 10.3390/biology10060466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/23/2022]
Abstract
Cohesion between replicated chromosomes is essential for chromatin dynamics and equal segregation of duplicated genetic material. In the G1 phase, the ring-shaped cohesin complex is loaded onto duplex DNA, enriching at replication start sites, or "origins". During the same phase of the cell cycle, and also at the origin sites, two MCM helicases are loaded as symmetric double hexamers around duplex DNA. During the S phase, and through the action of replication factors, cohesin switches from encircling one parental duplex DNA to topologically enclosing the two duplicated DNA filaments, which are known as sister chromatids. Despite its vital importance, the structural mechanism leading to sister chromatid cohesion establishment at the replication fork is mostly elusive. Here we review the current understanding of the molecular interactions between the replication machinery and cohesin, which support sister chromatid cohesion establishment and cohesin function. In particular, we discuss how cryo-EM is shedding light on the mechanisms of DNA replication and cohesin loading processes. We further expound how frontier cryo-EM approaches, combined with biochemistry and single-molecule fluorescence assays, can lead to understanding the molecular basis of sister chromatid cohesion establishment at the replication fork.
Collapse
Affiliation(s)
| | - Alessandro Costa
- Macromolecular Machines Laboratory, The Francis Crick Institute, London NW1 1AT, UK;
| |
Collapse
|
34
|
Puri N, Fernandez AJ, O'Shea Murray VL, McMillan S, Keck JL, Berger JM. The molecular coupling between substrate recognition and ATP turnover in a AAA+ hexameric helicase loader. eLife 2021; 10:64232. [PMID: 34036936 PMCID: PMC8213410 DOI: 10.7554/elife.64232] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 05/25/2021] [Indexed: 11/16/2022] Open
Abstract
In many bacteria and eukaryotes, replication fork establishment requires the controlled loading of hexameric, ring-shaped helicases around DNA by AAA+(ATPases Associated with various cellular Activities) ATPases. How loading factors use ATP to control helicase deposition is poorly understood. Here, we dissect how specific ATPase elements of Escherichia coli DnaC, an archetypal loader for the bacterial DnaB helicase, play distinct roles in helicase loading and the activation of DNA unwinding. We have identified a new element, the arginine-coupler, which regulates the switch-like behavior of DnaC to prevent futile ATPase cycling and maintains loader responsiveness to replication restart systems. Our data help explain how the ATPase cycle of a AAA+-family helicase loader is channeled into productive action on its target; comparative studies indicate that elements analogous to the Arg-coupler are present in related, switch-like AAA+ proteins that control replicative helicase loading in eukaryotes, as well as in polymerase clamp loading and certain classes of DNA transposases.
Collapse
Affiliation(s)
- Neha Puri
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, United States
| | - Amy J Fernandez
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, United States
| | - Valerie L O'Shea Murray
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, United States.,Saul Ewing Arnstein & Lehr, LLP, Centre Square West, Philadelphia, United States
| | - Sarah McMillan
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, United States
| | - James L Keck
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, United States
| | - James M Berger
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, United States
| |
Collapse
|
35
|
Abstract
The faithful and timely copying of DNA by molecular machines known as replisomes depends on a disparate suite of enzymes and scaffolding factors working together in a highly orchestrated manner. Large, dynamic protein-nucleic acid assemblies that selectively morph between distinct conformations and compositional states underpin this critical cellular process. In this article, we discuss recent progress outlining the physical basis of replisome construction and progression in eukaryotes.
Collapse
Affiliation(s)
- Ilan Attali
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA;
| | - Michael R Botchan
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| | - James M Berger
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA;
| |
Collapse
|
36
|
Amin A, Wu R, Cheung MH, Scott JF, Wang Z, Zhou Z, Liu C, Zhu G, Wong CKC, Yu Z, Liang C. An Essential and Cell-Cycle-Dependent ORC Dimerization Cycle Regulates Eukaryotic Chromosomal DNA Replication. Cell Rep 2021; 30:3323-3338.e6. [PMID: 32160540 DOI: 10.1016/j.celrep.2020.02.046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 10/04/2019] [Accepted: 02/10/2020] [Indexed: 12/24/2022] Open
Abstract
Eukaryotic DNA replication licensing is a prerequisite for, and plays a role in, regulating genome duplication that occurs exactly once per cell cycle. ORC (origin recognition complex) binds to and marks replication origins throughout the cell cycle and loads other replication-initiation proteins onto replication origins to form pre-replicative complexes (pre-RCs), completing replication licensing. However, how an asymmetric single-heterohexameric ORC structure loads the symmetric MCM (minichromosome maintenance) double hexamers is controversial, and importantly, it remains unknown when and how ORC proteins associate with the newly replicated origins to protect them from invasion by histones. Here, we report an essential and cell-cycle-dependent ORC "dimerization cycle" that plays three fundamental roles in the regulation of DNA replication: providing a symmetric platform to load the symmetric pre-RCs, marking and protecting the nascent sister replication origins for the next licensing, and playing a crucial role to prevent origin re-licensing within the same cell cycle.
Collapse
Affiliation(s)
- Aftab Amin
- School of Chinese Medicine and Department of Biology, Hong Kong Baptist University, Hong Kong, China; Division of Life Science, Center for Cancer Research, and State Key Lab of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Rentian Wu
- Division of Life Science, Center for Cancer Research, and State Key Lab of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Man Hei Cheung
- Division of Life Science, Center for Cancer Research, and State Key Lab of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - John F Scott
- Division of Life Science, Center for Cancer Research, and State Key Lab of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Ziyi Wang
- Division of Life Science, Center for Cancer Research, and State Key Lab of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Zijing Zhou
- Division of Life Science, Center for Cancer Research, and State Key Lab of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Changdong Liu
- Division of Life Science, Center for Cancer Research, and State Key Lab of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Guang Zhu
- Division of Life Science, Center for Cancer Research, and State Key Lab of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Chris Kong-Chu Wong
- School of Chinese Medicine and Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Zhiling Yu
- School of Chinese Medicine and Department of Biology, Hong Kong Baptist University, Hong Kong, China.
| | - Chun Liang
- Division of Life Science, Center for Cancer Research, and State Key Lab of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China; The First Clinical Medicine College, Guangzhou University of Chinese Medicine, Guangzhou, China; EnKang Pharmaceuticals Limited, Guangzhou, China.
| |
Collapse
|
37
|
Stabilisation of half MCM ring by Cdt1 during DNA insertion. Nat Commun 2021; 12:1746. [PMID: 33741931 PMCID: PMC7979726 DOI: 10.1038/s41467-021-21932-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 02/17/2021] [Indexed: 01/02/2023] Open
Abstract
Origin licensing ensures precise once per cell cycle replication in eukaryotic cells. The Origin Recognition Complex, Cdc6 and Cdt1 load Mcm2-7 helicase (MCM) into a double hexamer, bound around duplex DNA. The complex formed by ORC-Cdc6 bound to duplex DNA (OC) recruits the MCM-Cdt1 complex into the replication origins. Through the stacking of both complexes, the duplex DNA is inserted inside the helicase by an unknown mechanism. In this paper we show that the DNA insertion comes with a topological problem in the stacking of OC with MCM-Cdt1. Unless an essential, conserved C terminal winged helix domain (C-WHD) of Cdt1 is present, the MCM splits into two halves. The binding of this domain with the essential C-WHD of Mcm6, allows the latching between the MCM-Cdt1 and OC, through a conserved Orc5 AAA-lid interaction. Our work provides new insights into how DNA is inserted into the eukaryotic replicative helicase, through a series of synchronized events. During pre-Replication Complex, eukaryotic cells load two MCMs into a head-to-head Double Hexamer around duplex DNA (DH). Here the authors preRC assembly assay with purified proteins to reveal insights into S. cerevisiae’s first steps that lead to the DH formation.
Collapse
|
38
|
Caught in the act: structural dynamics of replication origin activation and fork progression. Biochem Soc Trans 2021; 48:1057-1066. [PMID: 32369549 PMCID: PMC7329347 DOI: 10.1042/bst20190998] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 04/09/2020] [Accepted: 04/14/2020] [Indexed: 01/03/2023]
Abstract
This review discusses recent advances in single-particle cryo-EM and single-molecule approaches used to visualise eukaryotic DNA replication reactions reconstituted in vitro. We comment on the new challenges facing structural biologists, as they turn to describing the dynamic cascade of events that lead to replication origin activation and fork progression.
Collapse
|
39
|
Shared and distinct roles of Esc2 and Mms21 in suppressing genome rearrangements and regulating intracellular sumoylation. PLoS One 2021; 16:e0247132. [PMID: 33600463 PMCID: PMC7891725 DOI: 10.1371/journal.pone.0247132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/01/2021] [Indexed: 12/12/2022] Open
Abstract
Protein sumoylation, especially when catalyzed by the Mms21 SUMO E3 ligase, plays a major role in suppressing duplication-mediated gross chromosomal rearrangements (dGCRs). How Mms21 targets its substrates in the cell is insufficiently understood. Here, we demonstrate that Esc2, a protein with SUMO-like domains (SLDs), recruits the Ubc9 SUMO conjugating enzyme to specifically facilitate Mms21-dependent sumoylation and suppress dGCRs. The D430R mutation in Esc2 impairs its binding to Ubc9 and causes a synergistic growth defect and accumulation of dGCRs with mutations that delete the Siz1 and Siz2 E3 ligases. By contrast, esc2-D430R does not appreciably affect sensitivity to DNA damage or the dGCRs caused by the catalytically inactive mms21-CH. Moreover, proteome-wide analysis of intracellular sumoylation demonstrates that esc2-D430R specifically down-regulates sumoylation levels of Mms21-preferred targets, including the nucleolar proteins, components of the SMC complexes and the MCM complex that acts as the catalytic core of the replicative DNA helicase. These effects closely resemble those caused by mms21-CH, and are relatively unaffected by deleting Siz1 and Siz2. Thus, by recruiting Ubc9, Esc2 facilitates Mms21-dependent sumoylation to suppress the accumulation of dGCRs independent of Siz1 and Siz2.
Collapse
|
40
|
Guilliam TA, Yeeles JT. The eukaryotic replisome tolerates leading-strand base damage by replicase switching. EMBO J 2021; 40:e107037. [PMID: 33555053 PMCID: PMC7917549 DOI: 10.15252/embj.2020107037] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/09/2020] [Accepted: 01/07/2021] [Indexed: 01/15/2023] Open
Abstract
The high‐fidelity replicative DNA polymerases, Pol ε and Pol δ, are generally thought to be poorly equipped to replicate damaged DNA. Direct and complete replication of a damaged template therefore typically requires the activity of low‐fidelity translesion synthesis (TLS) polymerases. Here we show that a yeast replisome, reconstituted with purified proteins, is inherently tolerant of the common oxidative lesion thymine glycol (Tg). Surprisingly, leading‐strand Tg was bypassed efficiently in the presence and absence of the TLS machinery. Our data reveal that following helicase–polymerase uncoupling a switch from Pol ε, the canonical leading‐strand replicase, to the lagging‐strand replicase Pol δ, facilitates rapid, efficient and error‐free lesion bypass at physiological nucleotide levels. This replicase switch mechanism also promotes bypass of the unrelated oxidative lesion, 8‐oxoguanine. We propose that replicase switching may promote continued leading‐strand synthesis whenever the replisome encounters leading‐strand damage that is bypassed more efficiently by Pol δ than by Pol ε.
Collapse
Affiliation(s)
- Thomas A Guilliam
- Division of Protein and Nucleic Acid Chemistry, Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Joseph Tp Yeeles
- Division of Protein and Nucleic Acid Chemistry, Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| |
Collapse
|
41
|
Shibata E, Dutta A. A human cancer cell line initiates DNA replication normally in the absence of ORC5 and ORC2 proteins. J Biol Chem 2020; 295:16949-16959. [PMID: 32989049 PMCID: PMC7863895 DOI: 10.1074/jbc.ra120.015450] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/23/2020] [Indexed: 01/03/2023] Open
Abstract
The origin recognition complex (ORC), composed of six subunits, ORC1-6, binds to origins of replication as a ring-shaped heterohexameric ATPase that is believed to be essential to recruit and load MCM2-7, the minichromosome maintenance protein complex, around DNA and initiate DNA replication. We previously reported the creation of viable cancer cell lines that lacked detectable ORC1 or ORC2 protein without a reduction in the number of origins firing. Here, using CRISPR-Cas9-mediated mutations, we report that human HCT116 colon cancer cells also survive when ORC5 protein expression is abolished via a mutation in the initiator ATG of the ORC5 gene. Even if an internal methionine is used to produce an undetectable, N terminally deleted ORC5, the protein would lack 80% of the AAA+ ATPase domain, including the Walker A motif. The ORC5-depleted cells show normal chromatin binding of MCM2-7 and initiate replication from a similar number of origins as WT cells. In addition, we introduced a second mutation in ORC2 in the ORC5 mutant cells, rendering both ORC5 and ORC2 proteins undetectable in the same cells and destabilizing the ORC1, ORC3, and ORC4 proteins. Yet the double mutant cells grow, recruit MCM2-7 normally to chromatin, and initiate DNA replication with normal number of origins. Thus, in these selected cancer cells, either a crippled ORC lacking ORC2 and ORC5 and present at minimal levels on the chromatin can recruit and load enough MCM2-7 to initiate DNA replication, or human cell lines can sometimes recruit MCM2-7 to origins independent of ORC.
Collapse
Affiliation(s)
- Etsuko Shibata
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Anindya Dutta
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia, USA.
| |
Collapse
|
42
|
Structural mechanism for replication origin binding and remodeling by a metazoan origin recognition complex and its co-loader Cdc6. Nat Commun 2020; 11:4263. [PMID: 32848132 PMCID: PMC7450096 DOI: 10.1038/s41467-020-18067-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/03/2020] [Indexed: 12/11/2022] Open
Abstract
Eukaryotic DNA replication initiation relies on the origin recognition complex (ORC), a DNA-binding ATPase that loads the Mcm2–7 replicative helicase onto replication origins. Here, we report cryo-electron microscopy (cryo-EM) structures of DNA-bound Drosophila ORC with and without the co-loader Cdc6. These structures reveal that Orc1 and Orc4 constitute the primary DNA binding site in the ORC ring and cooperate with the winged-helix domains to stabilize DNA bending. A loop region near the catalytic Walker B motif of Orc1 directly contacts DNA, allosterically coupling DNA binding to ORC’s ATPase site. Correlating structural and biochemical data show that DNA sequence modulates DNA binding and remodeling by ORC, and that DNA bending promotes Mcm2–7 loading in vitro. Together, these findings explain the distinct DNA sequence-dependencies of metazoan and S. cerevisiae initiators in origin recognition and support a model in which DNA geometry and bendability contribute to Mcm2–7 loading site selection in metazoans. The origin recognition complex (ORC) is essential for loading the Mcm2–7 replicative helicase onto DNA during DNA replication initiation. Here, the authors describe several cryo-electron microscopy structures of Drosophila ORC bound to DNA and its cofactor Cdc6 and also report an in vitro reconstitution system for Drosophila Mcm2–7 loading, revealing unexpected features of ORC’s DNA binding and remodeling mechanism during Mcm2–7 loading.
Collapse
|
43
|
Deegan TD, Mukherjee PP, Fujisawa R, Polo Rivera C, Labib K. CMG helicase disassembly is controlled by replication fork DNA, replisome components and a ubiquitin threshold. eLife 2020; 9:e60371. [PMID: 32804080 PMCID: PMC7462611 DOI: 10.7554/elife.60371] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/14/2020] [Indexed: 12/20/2022] Open
Abstract
The eukaryotic replisome assembles around the CMG helicase, which stably associates with DNA replication forks throughout elongation. When replication terminates, CMG is ubiquitylated on its Mcm7 subunit and disassembled by the Cdc48/p97 ATPase. Until now, the regulation that restricts CMG ubiquitylation to termination was unknown, as was the mechanism of disassembly. By reconstituting these processes with purified budding yeast proteins, we show that ubiquitylation is tightly repressed throughout elongation by the Y-shaped DNA structure of replication forks. Termination removes the repressive DNA structure, whereupon long K48-linked ubiquitin chains are conjugated to CMG-Mcm7, dependent on multiple replisome components that bind to the ubiquitin ligase SCFDia2. This mechanism pushes CMG beyond a '5-ubiquitin threshold' that is inherent to Cdc48, which specifically unfolds ubiquitylated Mcm7 and thereby disassembles CMG. These findings explain the exquisite regulation of CMG disassembly and provide a general model for the disassembly of ubiquitylated protein complexes by Cdc48.
Collapse
Affiliation(s)
- Tom D Deegan
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - Progya P Mukherjee
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - Ryo Fujisawa
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - Cristian Polo Rivera
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - Karim Labib
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| |
Collapse
|
44
|
Abstract
The loading of the core Mcm2-7 helicase onto origin DNA is essential for the formation of replication forks and genomic stability. Here, we report two cryo-electron microscopy (cryo-EM) structures that capture helicase loader–helicase complexes just prior to DNA insertion. These pre-loading structures, combined with a computational simulation of the dynamic transition from the pre-loading state to the loaded state, provide crucial insights into the mechanism required for topologically linking the helicase to DNA. The helicase loading system is highly conserved from yeast to human, which means that the molecular principles described here for the yeast system are likely applicable to the human system. DNA replication origins serve as sites of replicative helicase loading. In all eukaryotes, the six-subunit origin recognition complex (Orc1-6; ORC) recognizes the replication origin. During late M-phase of the cell-cycle, Cdc6 binds to ORC and the ORC–Cdc6 complex loads in a multistep reaction and, with the help of Cdt1, the core Mcm2-7 helicase onto DNA. A key intermediate is the ORC–Cdc6–Cdt1–Mcm2-7 (OCCM) complex in which DNA has been already inserted into the central channel of Mcm2-7. Until now, it has been unclear how the origin DNA is guided by ORC–Cdc6 and inserted into the Mcm2-7 hexamer. Here, we truncated the C-terminal winged-helix-domain (WHD) of Mcm6 to slow down the loading reaction, thereby capturing two loading intermediates prior to DNA insertion in budding yeast. In “semi-attached OCCM,” the Mcm3 and Mcm7 WHDs latch onto ORC–Cdc6 while the main body of the Mcm2-7 hexamer is not connected. In “pre-insertion OCCM,” the main body of Mcm2-7 docks onto ORC–Cdc6, and the origin DNA is bent and positioned adjacent to the open DNA entry gate, poised for insertion, at the Mcm2–Mcm5 interface. We used molecular simulations to reveal the dynamic transition from preloading conformers to the loaded conformers in which the loading of Mcm2-7 on DNA is complete and the DNA entry gate is fully closed. Our work provides multiple molecular insights into a key event of eukaryotic DNA replication.
Collapse
|
45
|
Baretić D, Jenkyn-Bedford M, Aria V, Cannone G, Skehel M, Yeeles JTP. Cryo-EM Structure of the Fork Protection Complex Bound to CMG at a Replication Fork. Mol Cell 2020; 78:926-940.e13. [PMID: 32369734 PMCID: PMC7276988 DOI: 10.1016/j.molcel.2020.04.012] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/09/2020] [Accepted: 04/09/2020] [Indexed: 12/15/2022]
Abstract
The eukaryotic replisome, organized around the Cdc45-MCM-GINS (CMG) helicase, orchestrates chromosome replication. Multiple factors associate directly with CMG, including Ctf4 and the heterotrimeric fork protection complex (Csm3/Tof1 and Mrc1), which has important roles including aiding normal replication rates and stabilizing stalled forks. How these proteins interface with CMG to execute these functions is poorly understood. Here we present 3 to 3.5 Å resolution electron cryomicroscopy (cryo-EM) structures comprising CMG, Ctf4, and the fork protection complex at a replication fork. The structures provide high-resolution views of CMG-DNA interactions, revealing a mechanism for strand separation, and show Csm3/Tof1 “grip” duplex DNA ahead of CMG via a network of interactions important for efficient replication fork pausing. Although Mrc1 was not resolved in our structures, we determine its topology in the replisome by cross-linking mass spectrometry. Collectively, our work reveals how four highly conserved replisome components collaborate with CMG to facilitate replisome progression and maintain genome stability. Cryo-EM structure of Csm3/Tof1 and Ctf4 bound to the eukaryotic CMG helicase Csm3/Tof1 are positioned at the front of the replisome where they grip duplex DNA High-resolution views of CMG-DNA contacts suggest a mechanism for strand separation Mrc1 binds across one side of CMG contacting the front and back of the replisome
Collapse
Affiliation(s)
- Domagoj Baretić
- Laboratory of Molecular Biology, Medical Research Council, Cambridge CB2 0QH, UK
| | | | - Valentina Aria
- Laboratory of Molecular Biology, Medical Research Council, Cambridge CB2 0QH, UK
| | - Giuseppe Cannone
- Laboratory of Molecular Biology, Medical Research Council, Cambridge CB2 0QH, UK
| | - Mark Skehel
- Laboratory of Molecular Biology, Medical Research Council, Cambridge CB2 0QH, UK
| | - Joseph T P Yeeles
- Laboratory of Molecular Biology, Medical Research Council, Cambridge CB2 0QH, UK.
| |
Collapse
|
46
|
Guilliam TA, Yeeles JTP. Reconstitution of translesion synthesis reveals a mechanism of eukaryotic DNA replication restart. Nat Struct Mol Biol 2020; 27:450-460. [PMID: 32341533 DOI: 10.1038/s41594-020-0418-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 03/16/2020] [Indexed: 12/23/2022]
Abstract
Leading-strand template aberrations cause helicase-polymerase uncoupling and impede replication fork progression, but the details of how uncoupled forks are restarted remain uncertain. Using purified proteins from Saccharomyces cerevisiae, we have reconstituted translesion synthesis (TLS)-mediated restart of a eukaryotic replisome following collision with a cyclobutane pyrimidine dimer. We find that TLS functions 'on the fly' to promote resumption of rapid replication fork rates, despite lesion bypass occurring uncoupled from the Cdc45-MCM-GINS (CMG) helicase. Surprisingly, the main lagging-strand polymerase, Pol δ, binds the leading strand upon uncoupling and inhibits TLS. Pol δ is also crucial for efficient recoupling of leading-strand synthesis to CMG following lesion bypass. Proliferating cell nuclear antigen monoubiquitination positively regulates TLS to overcome Pol δ inhibition. We reveal that these mechanisms of negative and positive regulation also operate on the lagging strand. Our observations have implications for both fork restart and the division of labor during leading-strand synthesis generally.
Collapse
Affiliation(s)
- Thomas A Guilliam
- Division of Protein and Nucleic Acid Chemistry, Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Joseph T P Yeeles
- Division of Protein and Nucleic Acid Chemistry, Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.
| |
Collapse
|
47
|
Yuan Z, Georgescu R, Bai L, Zhang D, Li H, O'Donnell ME. DNA unwinding mechanism of a eukaryotic replicative CMG helicase. Nat Commun 2020; 11:688. [PMID: 32019936 PMCID: PMC7000775 DOI: 10.1038/s41467-020-14577-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 01/17/2020] [Indexed: 11/09/2022] Open
Abstract
High-resolution structures have not been reported for replicative helicases at a replication fork at atomic resolution, a prerequisite to understanding the unwinding mechanism. The eukaryotic replicative CMG (Cdc45, Mcm2-7, GINS) helicase contains a Mcm2-7 motor ring, with the N-tier ring in front and the C-tier motor ring behind. The N-tier ring is structurally divided into a zinc finger (ZF) sub-ring followed by the oligosaccharide/oligonucleotide-binding (OB) fold ring. Here we report the cryo-EM structure of CMG on forked DNA at 3.9 Å, revealing that parental DNA enters the ZF sub-ring and strand separation occurs at the bottom of the ZF sub-ring, where the lagging strand is blocked and diverted sideways by OB hairpin-loops of Mcm3, Mcm4, Mcm6, and Mcm7. Thus, instead of employing a specific steric exclusion process, or even a separation pin, unwinding is achieved via a "dam-and-diversion tunnel" mechanism that does not require specific protein-DNA interaction. The C-tier motor ring contains spirally configured PS1 and H2I loops of Mcms 2, 3, 5, 6 that translocate on the spirally-configured leading strand, and thereby pull the preceding DNA segment through the diversion tunnel for strand separation.
Collapse
Affiliation(s)
- Zuanning Yuan
- Structural Biology Program, Van Andel Institute, Grand Rapids, MI, USA
| | - Roxana Georgescu
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.,DNA Replication Laboratory, The Rockefeller University, New York, NY, USA
| | - Lin Bai
- Structural Biology Program, Van Andel Institute, Grand Rapids, MI, USA
| | - Dan Zhang
- DNA Replication Laboratory, The Rockefeller University, New York, NY, USA
| | - Huilin Li
- Structural Biology Program, Van Andel Institute, Grand Rapids, MI, USA.
| | - Michael E O'Donnell
- Howard Hughes Medical Institute, Chevy Chase, MD, USA. .,DNA Replication Laboratory, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
48
|
Miller TCR, Locke J, Greiwe JF, Diffley JFX, Costa A. Mechanism of head-to-head MCM double-hexamer formation revealed by cryo-EM. Nature 2019; 575:704-710. [PMID: 31748745 PMCID: PMC6887548 DOI: 10.1038/s41586-019-1768-0] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 09/27/2019] [Indexed: 11/09/2022]
Abstract
In preparation for bidirectional replication, the origin recognition complex (ORC) loads two MCM helicases forming a head-to-head double hexamer (DH) around DNA1,2. How DH formation occurs is debated. Single-molecule experiments suggest a sequential mechanism whereby ORC-dependent loading of the first hexamer drives second hexamer recruitment3. In contrast, biochemical data show that two rings are loaded independently via the same ORC-mediated mechanism, at two inverted DNA sites4,5. We visualized MCM loading using time-resolved EM, to identify DH formation intermediates. We confirm that both hexamers are recruited via the same interaction between the MCM and ORC C-terminal domains, and identify the mechanism for coupled MCM loading. A first loaded hexamer locked around DNA is recognized by ORC, which unexpectedly engages the N-terminal homo-dimerization interface of MCM. In this configuration, ORC is poised to direct second hexamer recruitment in an inverted orientation, suitable for DH formation. Our data reconcile two apparently contrasting models.
Collapse
Affiliation(s)
- Thomas C R Miller
- Macromolecular Machines Laboratory, Francis Crick Institute, London, UK
| | - Julia Locke
- Macromolecular Machines Laboratory, Francis Crick Institute, London, UK
| | - Julia F Greiwe
- Macromolecular Machines Laboratory, Francis Crick Institute, London, UK
| | - John F X Diffley
- Chromosome Replication Laboratory, Francis Crick Institute, London, UK
| | - Alessandro Costa
- Macromolecular Machines Laboratory, Francis Crick Institute, London, UK.
| |
Collapse
|
49
|
Bleichert F. Mechanisms of replication origin licensing: a structural perspective. Curr Opin Struct Biol 2019; 59:195-204. [PMID: 31630057 DOI: 10.1016/j.sbi.2019.08.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 08/26/2019] [Accepted: 08/29/2019] [Indexed: 12/24/2022]
Abstract
The duplication of chromosomal DNA is a key cell cycle event that involves the controlled, bidirectional assembly of the replicative machinery. In a tightly regulated, multi-step reaction, replicative helicases and other components of the DNA synthesis apparatus are recruited to replication start sites. Although the molecular approaches for assembling this machinery vary between the different domains of life, a common theme revolves around the use of ATP-dependent initiation factors to recognize and remodel origins and to load replicative helicases in a bidirectional manner onto DNA. This review summarizes recent advances in understanding the mechanisms of replication initiation in eukaryotes, focusing on how the replicative helicase is loaded in this system.
Collapse
|
50
|
Champasa K, Blank C, Friedman LJ, Gelles J, Bell SP. A conserved Mcm4 motif is required for Mcm2-7 double-hexamer formation and origin DNA unwinding. eLife 2019; 8:45538. [PMID: 31385807 PMCID: PMC6701924 DOI: 10.7554/elife.45538] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 08/05/2019] [Indexed: 11/13/2022] Open
Abstract
Licensing of eukaryotic origins of replication requires DNA loading of two copies of the Mcm2-7 replicative helicase to form a head-to-head double-hexamer, ensuring activated helicases depart the origin bidirectionally. To understand the formation and importance of this double-hexamer, we identified mutations in a conserved and essential Mcm4 motif that permit loading of two Mcm2-7 complexes but are defective for double-hexamer formation. Single-molecule studies show mutant Mcm2-7 forms initial hexamer-hexamer interactions; however, the resulting complex is unstable. Kinetic analyses of wild-type and mutant Mcm2-7 reveal a limited time window for double-hexamer formation following second Mcm2-7 association, suggesting that this process is facilitated. Double-hexamer formation is required for extensive origin DNA unwinding but not initial DNA melting or recruitment of helicase-activation proteins (Cdc45, GINS, Mcm10). Our findings elucidate dynamic mechanisms of origin licensing, and identify the transition between initial DNA melting and extensive unwinding as the first initiation event requiring double-hexamer formation.
Collapse
Affiliation(s)
- Kanokwan Champasa
- Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, United States
| | - Caitlin Blank
- Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, United States.,Microbiology Graduate Program, Massachusetts Institute of Technology, Cambridge, United States
| | - Larry J Friedman
- Department of Biochemistry, Brandeis University, Waltham, United States
| | - Jeff Gelles
- Department of Biochemistry, Brandeis University, Waltham, United States
| | - Stephen P Bell
- Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, United States
| |
Collapse
|