1
|
Berube B, Ernst E, Cahn J, Roche B, de Santis Alves C, Lynn J, Scheben A, Grimanelli D, Siepel A, Ross-Ibarra J, Kermicle J, Martienssen RA. Teosinte Pollen Drive guides maize diversification and domestication by RNAi. Nature 2024; 633:380-388. [PMID: 39112710 PMCID: PMC11390486 DOI: 10.1038/s41586-024-07788-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/04/2024] [Indexed: 08/17/2024]
Abstract
Selfish genetic elements contribute to hybrid incompatibility and bias or 'drive' their own transmission1,2. Chromosomal drive typically functions in asymmetric female meiosis, whereas gene drive is normally post-meiotic and typically found in males. Here, using single-molecule and single-pollen genome sequencing, we describe Teosinte Pollen Drive, an instance of gene drive in hybrids between maize (Zea mays ssp. mays) and teosinte mexicana (Z. mays ssp. mexicana) that depends on RNA interference (RNAi). 22-nucleotide small RNAs from a non-coding RNA hairpin in mexicana depend on Dicer-like 2 (Dcl2) and target Teosinte Drive Responder 1 (Tdr1), which encodes a lipase required for pollen viability. Dcl2, Tdr1 and the hairpin are in tight pseudolinkage on chromosome 5, but only when transmitted through the male. Introgression of mexicana into early cultivated maize is thought to have been critical to its geographical dispersal throughout the Americas3, and a tightly linked inversion in mexicana spans a major domestication sweep in modern maize4. A survey of maize traditional varieties and sympatric populations of teosinte mexicana reveals correlated patterns of admixture among unlinked genes required for RNAi on at least four chromosomes that are also subject to gene drive in pollen from synthetic hybrids. Teosinte Pollen Drive probably had a major role in maize domestication and diversification, and offers an explanation for the widespread abundance of 'self' small RNAs in the germ lines of plants and animals.
Collapse
Affiliation(s)
- Benjamin Berube
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Evan Ernst
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Jonathan Cahn
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Benjamin Roche
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | | | - Jason Lynn
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Armin Scheben
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | | | - Adam Siepel
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Jeffrey Ross-Ibarra
- Department of Evolution and Ecology, Center for Population Biology and Genome Center, University of California at Davis, Davis, CA, USA
| | - Jerry Kermicle
- Laboratory of Genetics, University of Wisconsin, Madison, WI, USA
| | - Robert A Martienssen
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
| |
Collapse
|
2
|
Ridges JT, Bladen J, King TD, Brown NC, Large CRL, Cooper JC, Jones AJ, Loppin B, Dubruille R, Phadnis N. Overdrive is essential for targeted sperm elimination by Segregation Distorter. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.04.597441. [PMID: 38895353 PMCID: PMC11185633 DOI: 10.1101/2024.06.04.597441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Intra-genomic conflict driven by selfish chromosomes is a powerful force that shapes the evolution of genomes and species. In the male germline, many selfish chromosomes bias transmission in their own favor by eliminating spermatids bearing the competing homologous chromosomes. However, the mechanisms of targeted gamete elimination remain mysterious. Here, we show that Overdrive (Ovd), a gene required for both segregation distortion and male sterility in Drosophila pseudoobscura hybrids, is broadly conserved in Dipteran insects but dispensable for viability and fertility. In D. melanogaster, Ovd is required for targeted Responder spermatid elimination after the histone-to-protamine transition in the classical Segregation Distorter system. We propose that Ovd functions as a general spermatid quality checkpoint that is hijacked by independent selfish chromosomes to eliminate competing gametes.
Collapse
Affiliation(s)
- Jackson T. Ridges
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Jackson Bladen
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Thomas D. King
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Nora C. Brown
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | | | - Jacob C. Cooper
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Amanda J. Jones
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Benjamin Loppin
- Laboratoire de Biologie et Modélisation de la Cellule, École Normale Supérieure de Lyon, CNRS UMR5239, Université Claude Bernard Lyon 1, Lyon, France
| | - Raphaëlle Dubruille
- Laboratoire de Biologie et Modélisation de la Cellule, École Normale Supérieure de Lyon, CNRS UMR5239, Université Claude Bernard Lyon 1, Lyon, France
| | - Nitin Phadnis
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
3
|
Courret C, Wei X, Larracuente AM. New perspectives on the causes and consequences of male meiotic drive. Curr Opin Genet Dev 2023; 83:102111. [PMID: 37704518 PMCID: PMC10842977 DOI: 10.1016/j.gde.2023.102111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 09/15/2023]
Abstract
Gametogenesis is vulnerable to selfish genetic elements that bias their transmission to the next generation by cheating meiosis. These so-called meiotic drivers are widespread in plants, animals, and fungi and can impact genome evolution. Here, we summarize recent progress on the causes and consequences of meiotic drive in males, where selfish elements attack vulnerabilities in spermatogenesis. Advances in genomics provide new insights into the organization and dynamics of driving chromosomes in natural populations. Common themes, including small RNAs, gene duplications, and heterochromatin, emerged from these studies. Interdisciplinary approaches combining evolutionary genomics with molecular and cell biology are beginning to unravel the mysteries of drive and suppression mechanisms. These approaches also provide insights into fundamental processes in spermatogenesis and chromatin regulation.
Collapse
Affiliation(s)
- Cécile Courret
- Department of Biology, University of Rochester, Rochester, NY 14627, USA. https://twitter.com/@CecileCourret
| | - Xiaolu Wei
- Department of Biology, University of Rochester, Rochester, NY 14627, USA. https://twitter.com/@xiaolu_wei
| | | |
Collapse
|
4
|
Berube B, Ernst E, Cahn J, Roche B, de Santis Alves C, Lynn J, Scheben A, Siepel A, Ross-Ibarra J, Kermicle J, Martienssen R. Teosinte Pollen Drive guides maize diversification and domestication by RNAi. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.12.548689. [PMID: 37503269 PMCID: PMC10370002 DOI: 10.1101/2023.07.12.548689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Meiotic drivers subvert Mendelian expectations by manipulating reproductive development to bias their own transmission. Chromosomal drive typically functions in asymmetric female meiosis, while gene drive is normally postmeiotic and typically found in males. Using single molecule and single-pollen genome sequencing, we describe Teosinte Pollen Drive, an instance of gene drive in hybrids between maize (Zea mays ssp. mays) and teosinte mexicana (Zea mays ssp. mexicana), that depends on RNA interference (RNAi). 22nt small RNAs from a non-coding RNA hairpin in mexicana depend on Dicer-Like 2 (Dcl2) and target Teosinte Drive Responder 1 (Tdr1), which encodes a lipase required for pollen viability. Dcl2, Tdr1, and the hairpin are in tight pseudolinkage on chromosome 5, but only when transmitted through the male. Introgression of mexicana into early cultivated maize is thought to have been critical to its geographical dispersal throughout the Americas, and a tightly linked inversion in mexicana spans a major domestication sweep in modern maize. A survey of maize landraces and sympatric populations of teosinte mexicana reveals correlated patterns of admixture among unlinked genes required for RNAi on at least 4 chromosomes that are also subject to gene drive in pollen from synthetic hybrids. Teosinte Pollen Drive likely played a major role in maize domestication and diversification, and offers an explanation for the widespread abundance of "self" small RNAs in the germlines of plants and animals.
Collapse
Affiliation(s)
- Benjamin Berube
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor NY11724
| | - Evan Ernst
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor NY11724
| | - Jonathan Cahn
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor NY11724
| | - Benjamin Roche
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor NY11724
| | | | - Jason Lynn
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor NY11724
| | - Armin Scheben
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor NY11724
| | - Adam Siepel
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor NY11724
| | - Jeffrey Ross-Ibarra
- Dept. of Evolution & Ecology, Center for Population Biology and Genome Center, University of California, Davis CA
| | - Jerry Kermicle
- Laboratory of Genetics, University of Wisconsin, Madison WI
| | - Rob Martienssen
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor NY11724
| |
Collapse
|
5
|
Lai EC, Vogan AA. Proliferation and dissemination of killer meiotic drive loci. Curr Opin Genet Dev 2023; 82:102100. [PMID: 37625205 PMCID: PMC10900872 DOI: 10.1016/j.gde.2023.102100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/20/2023] [Accepted: 07/22/2023] [Indexed: 08/27/2023]
Abstract
Killer meiotic drive elements are selfish genetic entities that manipulate the sexual cycle to promote their own inheritance via destructive means. Two broad classes are sperm killers, typical of animals and plants, and spore killers, which are present in ascomycete fungi. Killer meiotic drive systems operate via toxins that destroy or disable meiotic products bearing the alternative allele. To avoid suicidal autotargeting, cells that bear these selfish elements must either lack the toxin target, or express an antidote. Historically, these systems were presumed to require large nonrecombining haplotypes to link multiple functional interacting loci. However, recent advances on fungal spore killers reveal that numerous systems are enacted by single genes, and similar molecular genetic studies in Drosophila pinpoint individual loci that distort gamete sex. Notably, many meiotic drivers duplicate readily, forming gene families that can have complex interactions within and between species, and providing substrates for their rapid functional diversification. Here, we summarize the known families of meiotic drivers in fungi and fruit flies, and highlight shared principles about their evolution and proliferation that promote the spread of these noxious genes.
Collapse
Affiliation(s)
- Eric C Lai
- Developmental Biology Program, Sloan Kettering Institute, 430 East 67th St, ROC-10, New York, NY 10065, USA.
| | - Aaron A Vogan
- Institute of Organismal Biology, Uppsala University, Norbyvägen 18D, Uppsala 752 36, Sweden.
| |
Collapse
|
6
|
Iki T, Kawaguchi S, Kai T. miRNA/siRNA-directed pathway to produce noncoding piRNAs from endogenous protein-coding regions ensures Drosophila spermatogenesis. SCIENCE ADVANCES 2023; 9:eadh0397. [PMID: 37467338 PMCID: PMC10355832 DOI: 10.1126/sciadv.adh0397] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/16/2023] [Indexed: 07/21/2023]
Abstract
PIWI-interacting RNA (piRNA) pathways control transposable elements (TEs) and endogenous genes, playing important roles in animal gamete formation. However, the underlying piRNA biogenesis mechanisms remain elusive. Here, we show that endogenous protein coding sequences (CDSs), which are normally used for translation, serve as origins of noncoding piRNA biogenesis in Drosophila melanogaster testes. The product, namely, CDS-piRNAs, formed silencing complexes with Aubergine (Aub) in germ cells. Proximity proteome and functional analyses show that CDS-piRNAs and cluster/TE-piRNAs are distinct species occupying Aub, the former loading selectively relies on chaperone Cyclophilin 40. Moreover, Argonaute 2 (Ago2) and Dicer-2 activities were found critical for CDS-piRNA production. We provide evidence that Ago2-bound short interfering RNAs (siRNAs) and microRNAs (miRNAs) specify precursors to be processed into piRNAs. We further demonstrate that Aub is crucial in spermatid differentiation, regulating chromatins through mRNA cleavage. Collectively, our data illustrate a unique strategy used by male germ line, expanding piRNA repertoire for silencing of endogenous genes during spermatogenesis.
Collapse
Affiliation(s)
| | - Shinichi Kawaguchi
- Laboratory of Germline Biology, Graduate School of Frontier Biosciences, Osaka University, Yamadaoka1-3, Suita, Osaka, Japan
| | | |
Collapse
|
7
|
Vedanayagam J, Lin CJ, Papareddy R, Nodine M, Flynt AS, Wen J, Lai EC. Regulatory logic of endogenous RNAi in silencing de novo genomic conflicts. PLoS Genet 2023; 19:e1010787. [PMID: 37343034 DOI: 10.1371/journal.pgen.1010787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 05/17/2023] [Indexed: 06/23/2023] Open
Abstract
Although the biological utilities of endogenous RNAi (endo-RNAi) have been largely elusive, recent studies reveal its critical role in the non-model fruitfly Drosophila simulans to suppress selfish genes, whose unchecked activities can severely impair spermatogenesis. In particular, hairpin RNA (hpRNA) loci generate endo-siRNAs that suppress evolutionary novel, X-linked, meiotic drive loci. The consequences of deleting even a single hpRNA (Nmy) in males are profound, as such individuals are nearly incapable of siring male progeny. Here, comparative genomic analyses of D. simulans and D. melanogaster mutants of the core RNAi factor dcr-2 reveal a substantially expanded network of recently-emerged hpRNA-target interactions in the former species. The de novo hpRNA regulatory network in D. simulans provides insight into molecular strategies that underlie hpRNA emergence and their potential roles in sex chromosome conflict. In particular, our data support the existence of ongoing rapid evolution of Nmy/Dox-related networks, and recurrent targeting of testis HMG Box loci by hpRNAs. Importantly, the impact of the endo-RNAi network on gene expression flips the convention for regulatory networks, since we observe strong derepression of targets of the youngest hpRNAs, but only mild effects on the targets of the oldest hpRNAs. These data suggest that endo-RNAi are especially critical during incipient stages of intrinsic sex chromosome conflicts, and that continual cycles of distortion and resolution may contribute to speciation.
Collapse
Affiliation(s)
- Jeffrey Vedanayagam
- Developmental Biology Program, Sloan Kettering Institute, New York, New York, United States of America
| | - Ching-Jung Lin
- Developmental Biology Program, Sloan Kettering Institute, New York, New York, United States of America
- Weill Graduate School of Medical Sciences, Weill Cornell Medical College, New York, New York, United States of America
| | - Ranjith Papareddy
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Austria
| | - Michael Nodine
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Austria
| | - Alex S Flynt
- Cellular and Molecular Biology, University of Southern Mississippi, Hattiesburg, Mississippi, United States of America
| | - Jiayu Wen
- Division of Genome Sciences and Cancer, The John Curtin School of Medical Research The Australian National University, Canberra, Australia
| | - Eric C Lai
- Developmental Biology Program, Sloan Kettering Institute, New York, New York, United States of America
| |
Collapse
|
8
|
Vedanayagam J, Herbette M, Mudgett H, Lin CJ, Lai CM, McDonough-Goldstein C, Dorus S, Loppin B, Meiklejohn C, Dubruille R, Lai EC. Essential and recurrent roles for hairpin RNAs in silencing de novo sex chromosome conflict in Drosophila simulans. PLoS Biol 2023; 21:e3002136. [PMID: 37289846 PMCID: PMC10292708 DOI: 10.1371/journal.pbio.3002136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 06/26/2023] [Accepted: 04/21/2023] [Indexed: 06/10/2023] Open
Abstract
Meiotic drive loci distort the normally equal segregation of alleles, which benefits their own transmission even in the face of severe fitness costs to their host organism. However, relatively little is known about the molecular identity of meiotic drivers, their strategies of action, and mechanisms that can suppress their activity. Here, we present data from the fruitfly Drosophila simulans that address these questions. We show that a family of de novo, protamine-derived X-linked selfish genes (the Dox gene family) is silenced by a pair of newly emerged hairpin RNA (hpRNA) small interfering RNA (siRNA)-class loci, Nmy and Tmy. In the w[XD1] genetic background, knockout of nmy derepresses Dox and MDox in testes and depletes male progeny, whereas knockout of tmy causes misexpression of PDox genes and renders males sterile. Importantly, genetic interactions between nmy and tmy mutant alleles reveal that Tmy also specifically maintains male progeny for normal sex ratio. We show the Dox loci are functionally polymorphic within D. simulans, such that both nmy-associated sex ratio bias and tmy-associated sterility can be rescued by wild-type X chromosomes bearing natural deletions in different Dox family genes. Finally, using tagged transgenes of Dox and PDox2, we provide the first experimental evidence Dox family genes encode proteins that are strongly derepressed in cognate hpRNA mutants. Altogether, these studies support a model in which protamine-derived drivers and hpRNA suppressors drive repeated cycles of sex chromosome conflict and resolution that shape genome evolution and the genetic control of male gametogenesis.
Collapse
Affiliation(s)
- Jeffrey Vedanayagam
- Developmental Biology Program, Sloan-Kettering Institute, New York, New York, United States of America
| | - Marion Herbette
- Laboratoire de Biologie et Modélisation de la Cellule, École Normale Supérieure de Lyon CNRS UMR5239, Université Claude Bernard Lyon 1, Lyon, France
| | - Holly Mudgett
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska, United States of America
| | - Ching-Jung Lin
- Developmental Biology Program, Sloan-Kettering Institute, New York, New York, United States of America
- Weill Graduate School of Medical Sciences, Weill Cornell Medical College, New York, New York, United States of America
| | - Chun-Ming Lai
- Developmental Biology Program, Sloan-Kettering Institute, New York, New York, United States of America
| | | | - Stephen Dorus
- Center for Reproductive Evolution, Syracuse University, Syracuse, New York, United States of America
| | - Benjamin Loppin
- Laboratoire de Biologie et Modélisation de la Cellule, École Normale Supérieure de Lyon CNRS UMR5239, Université Claude Bernard Lyon 1, Lyon, France
| | - Colin Meiklejohn
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska, United States of America
| | - Raphaëlle Dubruille
- Laboratoire de Biologie et Modélisation de la Cellule, École Normale Supérieure de Lyon CNRS UMR5239, Université Claude Bernard Lyon 1, Lyon, France
| | - Eric C. Lai
- Developmental Biology Program, Sloan-Kettering Institute, New York, New York, United States of America
- Weill Graduate School of Medical Sciences, Weill Cornell Medical College, New York, New York, United States of America
| |
Collapse
|
9
|
Almeida-Oliveira F, Santos-Araujo S, Carvalho-Kelly LF, Macedo-Silva A, Meyer-Fernandes JR, Gondim KC, Majerowicz D. ATP synthase affects lipid metabolism in the kissing bug Rhodnius prolixus beyond its role in energy metabolism. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023:103956. [PMID: 37196906 DOI: 10.1016/j.ibmb.2023.103956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 04/19/2023] [Accepted: 04/28/2023] [Indexed: 05/19/2023]
Abstract
ATP synthase plays an essential role in mitochondrial metabolism, being responsible for the production of ATP in oxidative phosphorylation. However, recent results have shown that it may also be present in the cell membrane, involved in lipophorin binding to its receptors. Here, we used a functional genetics approach to investigate the roles of ATP synthase in lipid metabolism in the kissing bug Rhodnius prolixus. The genome of R. prolixus encodes five nucleotide-binding domain genes of the ATP synthase alpha and beta family, including the alpha and beta subunits of ATP synthase (RpATPSynA and RpATPSynB), and the catalytic and non-catalytic subunits of the vacuolar ATPase (RpVha68 and RpVha55). These genes were expressed in all analyzed organs, being their expression highest in the ovaries, fat body and flight muscle. Feeding did not regulate the expression of ATP synthases in the posterior midgut or fat body. Furthermore, ATP synthase is present in the fat body's mitochondrial and membrane fractions. RpATPSynB knockdown by RNAi impaired ovarian development and reduced egg-laying by approximately 85%. Furthermore, the lack of RpATPSynB increased the amount of triacylglycerol in the fat body due to increased de novo fatty acid synthesis and reduced transfer of lipids to lipophorin. RpATPSynA knockdown had similar effects, with altered ovarian development, reduced oviposition, and triacylglycerol accumulation in the fat body. However, ATP synthases knockdown had only a slight effect on the amount of ATP in the fat body. These results support the hypothesis that ATP synthase has a direct role in lipid metabolism and lipophorin physiology, which are not directly due to changes in energy metabolism.
Collapse
Affiliation(s)
| | - Samara Santos-Araujo
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Brazil
| | | | - Alessa Macedo-Silva
- Programa de Pós-Graduação em Biociências, Universidade do Estado do Rio de Janeiro, Brazil
| | | | - Katia C Gondim
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Brazil
| | - David Majerowicz
- Programa de Pós-Graduação em Biociências, Universidade do Estado do Rio de Janeiro, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Brazil; Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Brazil.
| |
Collapse
|
10
|
Shao TL, Ting RT, Lee MC. Identification of Lsd1-interacting non-coding RNAs as regulators of fly oogenesis. Cell Rep 2022; 40:111294. [PMID: 36044841 DOI: 10.1016/j.celrep.2022.111294] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 06/03/2022] [Accepted: 08/10/2022] [Indexed: 11/03/2022] Open
Abstract
Lysine-specific demethylase 1 (Lsd1) plays a key role in balancing cell proliferation and differentiation. Lsd1 has been recently reported to associate with specific long noncoding RNAs (lncRNAs) to account for oncogenic gene expression in cancer cells. However, how lncRNA-Lsd1 interplay affects cell-specific differentiation remains elusive in vivo. Here, through Lsd1 specific RNA immunopecipitation sequencing (RIP-seq) experiments, we identify three long hairpin RNAs as Lsd1-interacting non-coding RNAs (LINRs) from fly ovaries. Knocking out LINR-1 and LINR-2 affects fly egg production, while each of the LINR deletion mutant females produce eggs with reduced hatch rate, indicating important functions of LINRs in supporting oogenesis. At the cellular level, LINR-2 regulates the differentiation of germline stem cells and follicle progenitors likely though modulating the expression and function of Lsd1 in vivo. Our identification of ovarian LINRs presents a physiological example of dynamic lncRNA-Lsd1 interplay that regulates stem cell/progenitor differentiation.
Collapse
Affiliation(s)
- Tzu-Ling Shao
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ruei-Teng Ting
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ming-Chia Lee
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
11
|
Rapid evolutionary dynamics of an expanding family of meiotic drive factors and their hpRNA suppressors. Nat Ecol Evol 2021; 5:1613-1623. [PMID: 34862477 PMCID: PMC8665063 DOI: 10.1038/s41559-021-01592-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 10/19/2021] [Indexed: 11/25/2022]
Abstract
Meiotic drivers are a class of selfish genetic elements whose existence is frequently hidden due to concomitant suppressor systems. Accordingly, we know little of their evolutionary breadth and molecular mechanisms. Here, we trace the evolution of the Dox meiotic drive system in Drosophila simulans, which affects male-female balance (sex-ratio). Dox emerged via stepwise mobilization and acquisition of multiple D. melanogaster gene segments including from protamine, which mediates compaction of sperm chromatin. Moreover, we reveal novel Dox homologs and massive amplification of Dox superfamily genes on X chromosomes of its closest sisters D. mauritiana and D. sechellia. Emergence of Dox loci is tightly associated with 359-class satellite repeats that flank de novo genomic copies. In concert, we find coordinated diversification of autosomal hairpin RNA-class siRNA loci that target subsets of Dox superfamily genes. Overall, we reveal fierce genetic arms races between meiotic drive factors and siRNA suppressors associated with recent speciation.
Collapse
|
12
|
Jia L, Li Y, Huang F, Jiang Y, Li H, Wang Z, Chen T, Li J, Zhang Z, Yao W. LIRBase: a comprehensive database of long inverted repeats in eukaryotic genomes. Nucleic Acids Res 2021; 50:D174-D182. [PMID: 34643715 PMCID: PMC8728187 DOI: 10.1093/nar/gkab912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/20/2021] [Accepted: 09/25/2021] [Indexed: 11/14/2022] Open
Abstract
Small RNAs (sRNAs) constitute a large portion of functional elements in eukaryotic genomes. Long inverted repeats (LIRs) can be transcribed into long hairpin RNAs (hpRNAs), which can further be processed into small interfering RNAs (siRNAs) with vital biological roles. In this study, we systematically identified a total of 6 619 473 LIRs in 424 eukaryotic genomes and developed LIRBase (https://venyao.xyz/lirbase/), a specialized database of LIRs across different eukaryotic genomes aiming to facilitate the annotation and identification of LIRs encoding long hpRNAs and siRNAs. LIRBase houses a comprehensive collection of LIRs identified in a wide range of eukaryotic genomes. In addition, LIRBase not only allows users to browse and search the identified LIRs in any eukaryotic genome(s) of interest available in GenBank, but also provides friendly web functionalities to facilitate users to identify LIRs in user-uploaded sequences, align sRNA sequencing data to LIRs, perform differential expression analysis of LIRs, predict mRNA targets for LIR-derived siRNAs, and visualize the secondary structure of candidate long hpRNAs encoded by LIRs. As demonstrated by two case studies, collectively, LIRBase bears the great utility for systematic investigation and characterization of LIRs and functional exploration of potential roles of LIRs and their derived siRNAs in diverse species.
Collapse
Affiliation(s)
- Lihua Jia
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China.,National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Yang Li
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Fangfang Huang
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Yingru Jiang
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Haoran Li
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Zhizhan Wang
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Tiantian Chen
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Jiaming Li
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Zhang Zhang
- China National Center for Bioinformation, Beijing 100101, China.,National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.,CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100101, China
| | - Wen Yao
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
13
|
Chen P, Kotov AA, Godneeva BK, Bazylev SS, Olenina LV, Aravin AA. piRNA-mediated gene regulation and adaptation to sex-specific transposon expression in D. melanogaster male germline. Genes Dev 2021; 35:914-935. [PMID: 33985970 PMCID: PMC8168559 DOI: 10.1101/gad.345041.120] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 04/08/2021] [Indexed: 12/19/2022]
Abstract
Small noncoding piRNAs act as sequence-specific guides to repress complementary targets in Metazoa. Prior studies in Drosophila ovaries have demonstrated the function of the piRNA pathway in transposon silencing and therefore genome defense. However, the ability of the piRNA program to respond to different transposon landscapes and the role of piRNAs in regulating host gene expression remain poorly understood. Here, we comprehensively analyzed piRNA expression and defined the repertoire of their targets in Drosophila melanogaster testes. Comparison of piRNA programs between sexes revealed sexual dimorphism in piRNA programs that parallel sex-specific transposon expression. Using a novel bioinformatic pipeline, we identified new piRNA clusters and established complex satellites as dual-strand piRNA clusters. While sharing most piRNA clusters, the two sexes employ them differentially to combat the sex-specific transposon landscape. We found two piRNA clusters that produce piRNAs antisense to four host genes in testis, including CG12717/pirate, a SUMO protease gene. piRNAs encoded on the Y chromosome silence pirate, but not its paralog, to exert sex- and paralog-specific gene regulation. Interestingly, pirate is targeted by endogenous siRNAs in a sibling species, Drosophila mauritiana, suggesting distinct but related silencing strategies invented in recent evolution to regulate a conserved protein-coding gene.
Collapse
Affiliation(s)
- Peiwei Chen
- California Institute of Technology, Division of Biology and Biological Engineering, Pasadena, California 91125, USA
| | - Alexei A Kotov
- Institute of Molecular Genetics of National Research Center "Kurchatov Institute," Moscow 123182, Russia
| | - Baira K Godneeva
- California Institute of Technology, Division of Biology and Biological Engineering, Pasadena, California 91125, USA
| | - Sergei S Bazylev
- Institute of Molecular Genetics of National Research Center "Kurchatov Institute," Moscow 123182, Russia
| | - Ludmila V Olenina
- Institute of Molecular Genetics of National Research Center "Kurchatov Institute," Moscow 123182, Russia
| | - Alexei A Aravin
- California Institute of Technology, Division of Biology and Biological Engineering, Pasadena, California 91125, USA
| |
Collapse
|
14
|
Ma Q, Srivastav SP, Gamez S, Dayama G, Feitosa-Suntheimer F, Patterson EI, Johnson RM, Matson EM, Gold AS, Brackney DE, Connor JH, Colpitts TM, Hughes GL, Rasgon JL, Nolan T, Akbari OS, Lau NC. A mosquito small RNA genomics resource reveals dynamic evolution and host responses to viruses and transposons. Genome Res 2021; 31:512-528. [PMID: 33419731 PMCID: PMC7919454 DOI: 10.1101/gr.265157.120] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 01/06/2021] [Indexed: 12/14/2022]
Abstract
Although mosquitoes are major transmission vectors for pathogenic arboviruses, viral infection has little impact on mosquito health. This immunity is caused in part by mosquito RNA interference (RNAi) pathways that generate antiviral small interfering RNAs (siRNAs) and Piwi-interacting RNAs (piRNAs). RNAi also maintains genome integrity by potently repressing mosquito transposon activity in the germline and soma. However, viral and transposon small RNA regulatory pathways have not been systematically examined together in mosquitoes. Therefore, we developed an integrated mosquito small RNA genomics (MSRG) resource that analyzes the transposon and virus small RNA profiles in mosquito cell cultures and somatic and gonadal tissues across four medically important mosquito species. Our resource captures both somatic and gonadal small RNA expression profiles within mosquito cell cultures, and we report the evolutionary dynamics of a novel Mosquito-Conserved piRNA Cluster Locus (MCpiRCL) made up of satellite DNA repeats. In the larger culicine mosquito genomes we detected highly regular periodicity in piRNA biogenesis patterns coinciding with the expansion of Piwi pathway genes. Finally, our resource enables detection of cross talk between piRNA and siRNA populations in mosquito cells during a response to virus infection. The MSRG resource will aid efforts to dissect and combat the capacity of mosquitoes to tolerate and spread arboviruses.
Collapse
Affiliation(s)
- Qicheng Ma
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | - Satyam P Srivastav
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | - Stephanie Gamez
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California 92093, USA
| | - Gargi Dayama
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | - Fabiana Feitosa-Suntheimer
- Department of Microbiology and the National Emerging Infectious Disease Laboratory, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | - Edward I Patterson
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Diseases, Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom
| | - Rebecca M Johnson
- Department of Entomology, Center for Infectious Disease Dynamics, and the Huck Institutes for the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Erik M Matson
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | - Alexander S Gold
- Department of Microbiology and the National Emerging Infectious Disease Laboratory, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | - Douglas E Brackney
- Department of Environmental Sciences, The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06511, USA
| | - John H Connor
- Department of Microbiology and the National Emerging Infectious Disease Laboratory, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | - Tonya M Colpitts
- Department of Microbiology and the National Emerging Infectious Disease Laboratory, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | - Grant L Hughes
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Diseases, Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom
| | - Jason L Rasgon
- Department of Entomology, Center for Infectious Disease Dynamics, and the Huck Institutes for the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Tony Nolan
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Diseases, Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom
| | - Omar S Akbari
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California 92093, USA
| | - Nelson C Lau
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
- Boston University Genome Science Institute and the National Emerging Infectious Disease Laboratory, Boston, Massachusetts 02118, USA
| |
Collapse
|
15
|
Kumar M, Kaushik M, Kukreti S. Interaction of a photosensitizer methylene blue with various structural forms (cruciform, bulge duplex and hairpin) of designed DNA sequences. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 242:118716. [PMID: 32731146 DOI: 10.1016/j.saa.2020.118716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/03/2020] [Accepted: 07/04/2020] [Indexed: 06/11/2023]
Abstract
Functionally important, local structural transitions in DNA generate various alternative conformations. Cruciform is one of such alternative DNA structures, usually targeted in genomes by various proteins. Symmetry elements in sequence as inverted repeats are the key factor for cruciform formation, facilitated by the presence of the AT-rich regions. Here, we used biophysical and biochemical techniques such as Gel electrophoresis, Circular dichroism (CD), and UV-thermal melting analysis to explore the structural status of the designed DNA sequences, which had potential to form cruciform structures under physiological conditions. The gel electrophoresis analysis revealed that the designed 53-mer DNA oligonucleotide sequence CR forms an intermolecular bulge duplex with flanking ends, while another sequence CRC adopts an intramolecular hairpin structure with flanking ends. Their equimolar complex (CRCRC) bestowed much-retarded migration due to the formation of a quite intriguing cruciform structure. CD studies confirmed that all the alternative structures (cruciform, bulge duplex, and hairpin with flanking ends) exhibit characteristics of B-DNA type conformation. A triphasic UV-thermal melting curve displayed by the complex formed by the equimolar ratio (CRCRC) is also suggestive of the formation of the cruciform structure. The interaction studies of CR, CRC, and their equimolar complex (1:1) with a photosensitizer methylene blue (MB) indicated that MB could not stabilize the discrete structures formed by CR and CRC sequences, however, the cruciform structure showed a quite significant increment in the melting temperature. Such studies facilitate our understanding of various secondary structures possibly present inside the cell and their interactions with drug/dye molecules.
Collapse
Affiliation(s)
- Mohan Kumar
- Department of Chemistry, University of Delhi, Delhi, India; Department of Chemistry, Shri Varshney College, Aligarh, Uttar Pradesh, India
| | - Mahima Kaushik
- Nano-bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi, India
| | | |
Collapse
|
16
|
Iki T, Takami M, Kai T. Modulation of Ago2 Loading by Cyclophilin 40 Endows a Unique Repertoire of Functional miRNAs during Sperm Maturation in Drosophila. Cell Rep 2020; 33:108380. [PMID: 33176138 DOI: 10.1016/j.celrep.2020.108380] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/25/2020] [Accepted: 10/21/2020] [Indexed: 12/14/2022] Open
Abstract
In gene silencing, Hsp90 chaperone machinery assists Argonaute (Ago) binding and unwinding of silencing small RNA (sRNA) duplexes. This enables the formation of effector RNA-induced silencing complex (RISC) that often displays cargo preferences. Hence, in Drosophila, microRNAs (miRNAs) and small-interfering RNAs (siRNAs) are differentially sorted into Ago1-RISC and Ago2-RISC, respectively. Here, we identify fly Cyclophilin 40 (Cyp40) as a testis-specialized Hsp90 co-chaperone essential for spermatogenesis and for modulating Ago2-RISC formation. We show that testis-distinctive Ago-sorting and strand-selection mechanisms accumulate a unique set of miRNAs on Ago2. Cyp40 interacts with duplex-incorporating Ago2 through Hsp90 in vitro and selectively promotes the build-up of Ago2-bound miRNAs, but not endogenous siRNAs, in vivo. Moreover, one of Cyp40-dependent Ago2-sorted miRNAs is required for late spermatogenesis, unraveling the physiological relevance of the unconventional yet conserved Drosophila miRNA-Ago2 sorting pathway. Collectively, these results identify RISC-regulatory roles for Hsp90 machinery and, more generally, highlight the tissue-specific adaptation of sRNA pathways through chaperone diversification.
Collapse
Affiliation(s)
- Taichiro Iki
- Laboratory of Germline Biology, Graduate School of Frontier Biosciences, Osaka University, Yamadaoka1-3, Suita, Osaka 565-0871, Japan.
| | - Moe Takami
- Laboratory of Germline Biology, Graduate School of Frontier Biosciences, Osaka University, Yamadaoka1-3, Suita, Osaka 565-0871, Japan
| | - Toshie Kai
- Laboratory of Germline Biology, Graduate School of Frontier Biosciences, Osaka University, Yamadaoka1-3, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
17
|
Nitschko V, Kunzelmann S, Fröhlich T, Arnold GJ, Förstemann K. Trafficking of siRNA precursors by the dsRBD protein Blanks in Drosophila. Nucleic Acids Res 2020; 48:3906-3921. [PMID: 32025726 PMCID: PMC7144943 DOI: 10.1093/nar/gkaa072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 01/21/2020] [Accepted: 02/03/2020] [Indexed: 01/03/2023] Open
Abstract
RNA interference targets aberrant transcripts with cognate small interfering RNAs, which derive from double-stranded RNA precursors. Several functional screens have identified Drosophila blanks/lump (CG10630) as a facilitator of RNAi, yet its molecular function has remained unknown. The protein carries two dsRNA binding domains (dsRBD) and blanks mutant males have a spermatogenesis defect. We demonstrate that blanks selectively boosts RNAi triggered by dsRNA of nuclear origin. Blanks binds dsRNA via its second dsRBD in vitro, shuttles between nucleus and cytoplasm and the abundance of siRNAs arising at many sites of convergent transcription is reduced in blanks mutants. Since features of nascent RNAs - such as introns and transcription beyond the polyA site – contribute to the small RNA pool, we propose that Blanks binds dsRNA formed by cognate nascent RNAs in the nucleus and fosters its export to the cytoplasm for dicing. We refer to the resulting small RNAs as blanks exported siRNAs (bepsiRNAs). While bepsiRNAs were fully dependent on RNA binding to the second dsRBD of blanks in transgenic flies, male fertility was not. This is consistent with a previous report that linked fertility to the first dsRBD of Blanks. The role of blanks in spermatogenesis appears thus unrelated to its role in dsRNA export.
Collapse
Affiliation(s)
- Volker Nitschko
- Genzentrum & Department Biochemie, Ludwig-Maximilians-Universität, 81377 München, Germany
| | - Stefan Kunzelmann
- Genzentrum & Department Biochemie, Ludwig-Maximilians-Universität, 81377 München, Germany
| | - Thomas Fröhlich
- Laboratory of Functional Genome Analysis, Ludwig-Maximilians-Universität, 81377 München, Germany
| | - Georg J Arnold
- Laboratory of Functional Genome Analysis, Ludwig-Maximilians-Universität, 81377 München, Germany
| | - Klaus Förstemann
- Genzentrum & Department Biochemie, Ludwig-Maximilians-Universität, 81377 München, Germany
| |
Collapse
|
18
|
Bachtrog D. The Y Chromosome as a Battleground for Intragenomic Conflict. Trends Genet 2020; 36:510-522. [PMID: 32448494 DOI: 10.1016/j.tig.2020.04.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/17/2020] [Accepted: 04/21/2020] [Indexed: 12/12/2022]
Abstract
Y chromosomes are typically viewed as genetic wastelands with few intact genes. Recent genomic analyses in Drosophila, however, show that gene gain is prominent on young Y chromosomes. Meiosis- and RNAi-related genes often coamplify on recently formed X and Y chromosomes, are testis-expressed, and produce antisense transcripts and short RNAs. RNAi pathways are also involved in suppressing sex ratio drive in Drosophila. These observations paint a dynamic picture of sex chromosome differentiation, suggesting that rapidly evolving genomic battles over segregation are rampant on young sex chromosomes and utilize RNAi to defend the genome against selfish elements that manipulate fair meiosis. Recurrent sex chromosome drive can have profound ecological, evolutionary, and cellular impacts and account for unique features of sex chromosomes.
Collapse
Affiliation(s)
- Doris Bachtrog
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
19
|
Sala L, Chandrasekhar S, Vidigal JA. AGO unchained: Canonical and non-canonical roles of Argonaute proteins in mammals. Front Biosci (Landmark Ed) 2020; 25:1-42. [PMID: 31585876 DOI: 10.2741/4793] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Argonaute (AGO) proteins play key roles in animal physiology by binding to small RNAs and regulating the expression of their targets. In mammals, they do so through two distinct pathways: the miRNA pathway represses genes through a multiprotein complex that promotes both decay and translational repression; the siRNA pathway represses transcripts through direct Ago2-mediated cleavage. Here, we review our current knowledge of mechanistic details and physiological requirements of both these pathways and briefly discuss their implications to human disease.
Collapse
Affiliation(s)
- Laura Sala
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, Bethesda, MD 20892, USA
| | - Srividya Chandrasekhar
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, Bethesda, MD 20892, USA
| | - Joana A Vidigal
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, Bethesda, MD 20892, USA,
| |
Collapse
|
20
|
The SUMO Ligase Su(var)2-10 Controls Hetero- and Euchromatic Gene Expression via Establishing H3K9 Trimethylation and Negative Feedback Regulation. Mol Cell 2019; 77:571-585.e4. [PMID: 31901448 DOI: 10.1016/j.molcel.2019.09.033] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 06/11/2019] [Accepted: 09/26/2019] [Indexed: 02/07/2023]
Abstract
Сhromatin is critical for genome compaction and gene expression. On a coarse scale, the genome is divided into euchromatin, which harbors the majority of genes and is enriched in active chromatin marks, and heterochromatin, which is gene-poor but repeat-rich. The conserved molecular hallmark of heterochromatin is the H3K9me3 modification, which is associated with gene silencing. We found that in Drosophila, deposition of most of the H3K9me3 mark depends on SUMO and the SUMO ligase Su(var)2-10, which recruits the histone methyltransferase complex SetDB1/Wde. In addition to repressing repeats, H3K9me3 influences expression of both hetero- and euchromatic host genes. High H3K9me3 levels in heterochromatin are required to suppress spurious transcription and ensure proper gene expression. In euchromatin, a set of conserved genes is repressed by Su(var)2-10/SetDB1-induced H3K9 trimethylation, ensuring tissue-specific gene expression. Several components of heterochromatin are themselves repressed by this pathway, providing a negative feedback mechanism to ensure chromatin homeostasis.
Collapse
|
21
|
Biwot JC, Zhang HB, Chen MY, Wang YF. A new function of immunity-related gene Zn72D in male fertility of Drosophila melanogaster. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2019; 102:e21612. [PMID: 31482645 DOI: 10.1002/arch.21612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 07/21/2019] [Accepted: 08/16/2019] [Indexed: 06/10/2023]
Abstract
Zn72D encodes the Drosophila zinc finger protein Zn72D. It was first identified to be involved in phagocytosis and indicated to have a role in immunity. Then it was demonstrated to have a function in RNA splicing and dosage compensation in Drosophila melanogaster. In this study, we discovered a new function of Zn72D in male fertility. We showed that knockdown of Zn72D in fly testes caused an extremely low egg hatch rate. Immunofluorescence staining of Zn72D knockdown testes exhibited scattered spermatid nuclei and no actin cones or individualization complexes (ICs) during spermiogenesis, whereas the early-stage germ cells and the spermatocytes were observed clearly. There were no mature sperms in the seminal vesicles of Zn72D knockdown fly testes, although a few sperms could be found close to the seminal vesicle. We further showed that many cytoskeleton-related genes were significantly downregulated in fly testes due to Zn72D knockdown. Taken together these findings suggest that Zn72D may have an important function in spermatogenesis by sustaining the cytoskeleton-based morphogenesis and individualization thus ensuring the proper formation of sperm in D. melanogaster.
Collapse
Affiliation(s)
- John C Biwot
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Hua-Bao Zhang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Meng-Yan Chen
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Yu-Feng Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| |
Collapse
|
22
|
Goh E, Okamura K. Hidden sequence specificity in loading of single-stranded RNAs onto Drosophila Argonautes. Nucleic Acids Res 2019; 47:3101-3116. [PMID: 30590701 PMCID: PMC6451100 DOI: 10.1093/nar/gky1300] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 12/16/2018] [Accepted: 12/18/2018] [Indexed: 12/21/2022] Open
Abstract
Argonaute proteins play important roles in gene regulation with small RNAs (sRNAs) serving as guides to targets. Argonautes are believed to bind sRNAs in a sequence non-specific manner. However, we recently discovered that Argonautes selectively load endogenous single-stranded (ss) RNAs, suggesting that Argonaute loading may conform to sequence specificity. To identify sequences preferred for Argonaute loading, we have developed HIgh-throughput Sequencing mediated Specificity Analysis (HISSA). HISSA allows massively parallel analysis of RNA binding efficiency by using randomized oligos in in vitro binding assays and quantifying RNAs by deep-sequencing. We chose Drosophila as a model system to take advantage of the presence of two biochemically distinct Argonautes, AGO1 and AGO2. Our results revealed AGO2 loading to be strongly favored by G-rich sequences. In contrast, AGO1 showed an enrichment of the ‘GAC’ motif in loaded species. Reanalysis of published sRNA sequencing data from fly tissues detected enrichment of the GAC motif in ssRNA-derived small RNAs in the immunopurified AGO1-complex under certain conditions, suggesting that the sequence preference of AGO1-loading may influence the repertoire of AGO1-bound endogenous sRNAs. Finally, we showed that human Ago2 also exhibited selectivity in loading ssRNAs in cell lysates. These findings may have implications for therapeutic ssRNA-mediated gene silencing.
Collapse
Affiliation(s)
- Eling Goh
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore 117604, Singapore.,School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 639798, Singapore
| | - Katsutomo Okamura
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore 117604, Singapore.,School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 639798, Singapore
| |
Collapse
|
23
|
Crysnanto D, Obbard DJ. Widespread gene duplication and adaptive evolution in the RNA interference pathways of the Drosophila obscura group. BMC Evol Biol 2019; 19:99. [PMID: 31068148 PMCID: PMC6505081 DOI: 10.1186/s12862-019-1425-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 04/18/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND RNA interference (RNAi) related pathways provide defense against viruses and transposable elements, and have been implicated in the suppression of meiotic drive elements. Genes in these pathways often exhibit high levels of adaptive substitution, and over longer timescales show gene duplication and loss-most likely as a consequence of their role in mediating conflict with these parasites. This is particularly striking for Argonaute 2 (Ago2), which is ancestrally the key effector of antiviral RNAi in insects, but has repeatedly formed new testis-specific duplicates in the recent history of the obscura species-group of Drosophila. RESULTS Here we take advantage of publicly available genomic and transcriptomic data to identify six further RNAi-pathway genes that have duplicated in this clade of Drosophila, and examine their evolutionary history. As seen for Ago2, we observe high levels of adaptive amino-acid substitution and changes in sex-biased expression in many of the paralogs. However, our phylogenetic analysis suggests that co-duplications of the RNAi machinery were not synchronous, and our expression analysis fails to identify consistent male-specific expression. CONCLUSIONS These results confirm that RNAi genes, including genes of the antiviral and piRNA pathways, have undergone multiple independent duplications and that their history has been particularly labile within the obscura group. However, they also suggest that the selective pressures driving these changes have not been consistent, implying that more than one selective agent may be responsible.
Collapse
Affiliation(s)
- Danang Crysnanto
- Institute of Evolutionary Biology, University of Edinburgh, Charlotte Auerbach Road, Edinburgh, UK
- Animal Genomics, ETH Zurich, Zurich, Switzerland
| | - Darren J. Obbard
- Institute of Evolutionary Biology, University of Edinburgh, Charlotte Auerbach Road, Edinburgh, UK
- Centre for Infection, Evolution and Immunity, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
24
|
A Transgenic Flock House Virus Replicon Reveals an RNAi Independent Antiviral Mechanism Acting in Drosophila Follicular Somatic Cells. G3-GENES GENOMES GENETICS 2019; 9:403-412. [PMID: 30530643 PMCID: PMC6385967 DOI: 10.1534/g3.118.200872] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The small interfering RNA (siRNA) pathway is the main and best studied invertebrate antiviral response. Other poorly characterized protein based antiviral mechanisms also contribute to the control of viral replication in insects. In addition, it remains unclear whether tissue specific factors contribute to RNA and protein-based antiviral immunity mechanisms. In vivo screens to identify such factors are challenging and time consuming. In addition, the scored phenotype is usually limited to survival and/or viral load. Transgenic viral replicons are valuable tools to overcome these limitations and screen for novel antiviral factors. Here we describe transgenic Drosophila melanogaster lines encoding a Flock House Virus-derived replicon (FHV∆B2eGFP), expressing GFP as a reporter of viral replication. This replicon is efficiently controlled by the siRNA pathway in most somatic tissues, with GFP fluorescence providing a reliable marker for the activity of antiviral RNAi. Interestingly, in follicular somatic cells (FSC) of ovaries, this replicon is still partially repressed in an siRNA independent manner. We did not detect replicon derived Piwi-interacting RNAs in FSCs and identified 31 differentially expressed genes between restrictive and permissive FSCs. Altogether, our results uncovered a yet unidentified RNAi-independent mechanism controlling FHV replication in FSCs of ovaries and validate the FHV∆B2eGFP replicon as a tool to screen for novel tissue specific antiviral mechanisms.
Collapse
|
25
|
ATP synthase is required for male fertility and germ cell maturation in Drosophila testes. Mol Med Rep 2019; 19:1561-1570. [PMID: 30628672 PMCID: PMC6390039 DOI: 10.3892/mmr.2019.9834] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 11/08/2018] [Indexed: 01/29/2023] Open
Abstract
Germ cell maturation is essential for spermatogenesis and testis homeostasis. ATP synthase serves significant roles in energy storage in germ cell survival and is catalyzed by alterations in the mitochondrial membrane proton concentration. The intrinsic cellular mechanisms governing stem cell maturation remain largely unknown. In the present study, in vivo RNA interference (RNAi) screening of major ATP synthase subunits was performed, and the function of ATP synthase for male fertility and spermatogenesis in Drosophila was explored. A Upstream Activation Sequence/Gal4 transcription factor system was used to knock down gene expression in specific cell types, and immunofluorescence staining was conducted to assess the roles of ATP synthase subunits in Drosophila testes. It was identified that knockdown of ATP synthase resulted in male infertility and abnormal spermatogenesis in Drosophila testes. In addition, knockdown of the ATP synthase β subunit in germ cells resulted in defects in male infertility and germ cell maturation, while the hub and cyst cell populations were maintained. Other major ATP synthase subunits were also examined and similar phenotypes in Drosophila testes were identified. Taken together, the data from the present study revealed that ATP synthase serves important roles for male fertility during spermatogenesis by regulating germ cell maturation in Drosophila testes.
Collapse
|
26
|
van den Beek M, da Silva B, Pouch J, Ali Chaouche MEA, Carré C, Antoniewski C. Dual-layer transposon repression in heads of Drosophila melanogaster. RNA (NEW YORK, N.Y.) 2018; 24:1749-1760. [PMID: 30217866 PMCID: PMC6239173 DOI: 10.1261/rna.067173.118] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 09/05/2018] [Indexed: 05/11/2023]
Abstract
piRNA-mediated repression of transposable elements (TE) in the germline limits the accumulation of mutations caused by their transposition. It is not clear whether the piRNA pathway plays a role in adult, nongonadal tissues in Drosophila melanogaster. To address this question, we analyzed the small RNA content of adult Drosophila melanogaster heads. We found that the varying amount of piRNA-sized, ping-pong positive molecules in heads correlates with contamination by gonadal tissue during RNA extraction, suggesting that most of the piRNAs detected in heads originate from gonads. We next sequenced the heads of wild-type and piwi mutants to address whether piwi loss of function would affect the low amount of piRNA-sized, ping-pong negative molecules that are still detected in heads hand-checked to avoid gonadal contamination. We find that loss of piwi does not significantly affect these 24-28 nt RNAs. Instead, we observe increased siRNA levels against the majority of Drosophila TE families. To determine the effect of this siRNA level change on transposon expression, we sequenced the transcriptome of wild-type, piwi, dicer-2 and piwi, dicer-2 double-mutant heads. We find that RNA expression levels of the majority of TE in piwi or dicer-2 mutants remain unchanged and that TE transcripts increase only in piwi, dicer-2 double-mutants. These results lead us to suggest a dual-layer model for TE repression in adult somatic tissues. Piwi-mediated gene silencing established during embryogenesis constitutes the first layer of TE repression whereas Dicer-2-dependent siRNA-mediated silencing provides a backup mechanism to repress TEs that escape silencing by Piwi.
Collapse
Affiliation(s)
- Marius van den Beek
- Drosophila Genetics and Epigenetics; Sorbonne Université, CNRS, Biologie du développement - Institut de Biologie Paris Seine, 75005 Paris, France
| | - Bruno da Silva
- Drosophila Genetics and Epigenetics; Sorbonne Université, CNRS, Biologie du développement - Institut de Biologie Paris Seine, 75005 Paris, France
| | - Juliette Pouch
- Genomic facility, Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Université Paris, 75005 Paris, France
| | - Mohammed El Amine Ali Chaouche
- Genomic facility, Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Université Paris, 75005 Paris, France
| | - Clément Carré
- Drosophila Genetics and Epigenetics; Sorbonne Université, CNRS, Biologie du développement - Institut de Biologie Paris Seine, 75005 Paris, France
| | - Christophe Antoniewski
- Drosophila Genetics and Epigenetics; Sorbonne Université, CNRS, Biologie du développement - Institut de Biologie Paris Seine, 75005 Paris, France
- ARTbio Bioinformatics Analysis Facility, Sorbonne Université, CNRS, Institut de Biologie Paris Seine, 75005 Paris, France
| |
Collapse
|
27
|
Harsh S, Ozakman Y, Kitchen SM, Paquin-Proulx D, Nixon DF, Eleftherianos I. Dicer-2 Regulates Resistance and Maintains Homeostasis against Zika Virus Infection in Drosophila. THE JOURNAL OF IMMUNOLOGY 2018; 201:3058-3072. [PMID: 30305326 DOI: 10.4049/jimmunol.1800597] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 09/17/2018] [Indexed: 12/13/2022]
Abstract
Zika virus (ZIKV) outbreaks pose a massive public health threat in several countries. We have developed an in vivo model to investigate the host-ZIKV interaction in Drosophila We have found that a strain of ZIKV replicates in wild-type flies without reducing their survival ability. We have shown that ZIKV infection triggers RNA interference and that mutating Dicer-2 results in enhanced ZIKV load and increased susceptibility to ZIKV infection. Using a flavivirus-specific Ab, we have found that ZIKV is localized in the gut and fat body cells of the infected wild-type flies and results in their perturbed homeostasis. In addition, Dicer-2 mutants display severely reduced insulin activity, which could contribute toward the increased mortality of these flies. Our work establishes the suitability of Drosophila as the model system to study host-ZIKV dynamics, which is expected to greatly advance our understanding of the molecular and physiological processes that determine the outcome of this disease.
Collapse
Affiliation(s)
- Sneh Harsh
- Department of Biological Sciences, The Institute for Biomedical Sciences, The George Washington University, Washington, DC 20052; and
| | - Yaprak Ozakman
- Department of Biological Sciences, The Institute for Biomedical Sciences, The George Washington University, Washington, DC 20052; and
| | - Shannon M Kitchen
- Department of Microbiology, Immunology, and Tropical Medicine, GW School of Medicine & Health Sciences, The George Washington University, Washington, DC 20052
| | - Dominic Paquin-Proulx
- Department of Microbiology, Immunology, and Tropical Medicine, GW School of Medicine & Health Sciences, The George Washington University, Washington, DC 20052
| | - Douglas F Nixon
- Department of Microbiology, Immunology, and Tropical Medicine, GW School of Medicine & Health Sciences, The George Washington University, Washington, DC 20052
| | - Ioannis Eleftherianos
- Department of Biological Sciences, The Institute for Biomedical Sciences, The George Washington University, Washington, DC 20052; and
| |
Collapse
|
28
|
Lin CJ, Hu F, Dubruille R, Vedanayagam J, Wen J, Smibert P, Loppin B, Lai EC. The hpRNA/RNAi Pathway Is Essential to Resolve Intragenomic Conflict in the Drosophila Male Germline. Dev Cell 2018; 46:316-326.e5. [PMID: 30086302 DOI: 10.1016/j.devcel.2018.07.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/13/2018] [Accepted: 07/02/2018] [Indexed: 11/27/2022]
Abstract
Intragenomic conflicts are fueled by rapidly evolving selfish genetic elements, which induce selective pressures to innovate opposing repressive mechanisms. This is patently manifest in sex-ratio (SR) meiotic drive systems, in which distorter and suppressor factors bias and restore equal transmission of X and Y sperm. Here, we reveal that multiple SR suppressors in Drosophila simulans (Nmy and Tmy) encode related hairpin RNAs (hpRNAs), which generate endo-siRNAs that repress the paralogous distorters Dox and MDox. All components in this drive network are recently evolved and largely testis restricted. To connect SR hpRNA function to the RNAi pathway, we generated D. simulans null mutants of Dcr-2 and AGO2. Strikingly, these core RNAi knockouts massively derepress Dox and MDox and are in fact completely male sterile and exhibit highly defective spermatogenesis. Altogether, our data reveal how the adaptive capacity of hpRNAs is critically deployed to restrict selfish gonadal genetic systems that can exterminate a species.
Collapse
Affiliation(s)
- Ching-Jung Lin
- Department of Developmental Biology, Sloan-Kettering Institute, 1275 York Ave, Box 252, New York, NY 10065, USA; Weill Graduate School of Medical Sciences, Weill Cornell Medical College, New York, NY 10065, USA
| | - Fuqu Hu
- Department of Developmental Biology, Sloan-Kettering Institute, 1275 York Ave, Box 252, New York, NY 10065, USA
| | - Raphaelle Dubruille
- Laboratoire de Biométrie et Biologie Evolutive - UMR5558, Université Claude Bernard Lyon I, 16, rue R. Dubois - Bât. G. Mendel, 69622 Villeurbanne Cedex, France
| | - Jeffrey Vedanayagam
- Department of Developmental Biology, Sloan-Kettering Institute, 1275 York Ave, Box 252, New York, NY 10065, USA
| | - Jiayu Wen
- Department of Developmental Biology, Sloan-Kettering Institute, 1275 York Ave, Box 252, New York, NY 10065, USA
| | - Peter Smibert
- Department of Developmental Biology, Sloan-Kettering Institute, 1275 York Ave, Box 252, New York, NY 10065, USA
| | - Benjamin Loppin
- Laboratoire de Biométrie et Biologie Evolutive - UMR5558, Université Claude Bernard Lyon I, 16, rue R. Dubois - Bât. G. Mendel, 69622 Villeurbanne Cedex, France
| | - Eric C Lai
- Department of Developmental Biology, Sloan-Kettering Institute, 1275 York Ave, Box 252, New York, NY 10065, USA.
| |
Collapse
|
29
|
Collins CM, Malacrida B, Burke C, Kiely PA, Dunleavy EM. ATP synthase F 1 subunits recruited to centromeres by CENP-A are required for male meiosis. Nat Commun 2018; 9:2702. [PMID: 30006572 PMCID: PMC6045659 DOI: 10.1038/s41467-018-05093-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 06/01/2018] [Indexed: 01/21/2023] Open
Abstract
The histone H3 variant CENP-A epigenetically defines the centromere and is critical for chromosome segregation. Here we report an interaction between CENP-A and subunits of the mitochondrial ATP synthase complex in the germline of male Drosophila. Furthermore, we report that knockdown of CENP-A, as well as subunits ATPsyn-α, -βlike (a testis-specific paralogue of ATPsyn-β) and -γ disrupts sister centromere cohesion in meiotic prophase I. We find that this disruption is likely independent of reduced ATP levels. We identify that ATPsyn-α and -βlike localise to meiotic centromeres and that this localisation is dependent on the presence of CENP-A. We show that ATPsyn-α directly interacts with the N-terminus of CENP-A in vitro and that truncation of its N terminus perturbs sister centromere cohesion in prophase I. We propose that the CENP-A N-terminus recruits ATPsyn-α and -βlike to centromeres to promote sister centromere cohesion in a nuclear function that is independent of oxidative phosphorylation. The histone H3 CENP-A is known to play a role during meiosis but its role in the testes in the fly is unknown. Here, the authors identify the mitochondrial metabolic protein complex ATP synthase F1 as interacting with CENP-A, promoting centromere cohesion during meiosis and affecting fly fertility.
Collapse
Affiliation(s)
- Caitríona M Collins
- Centre for Chromosome Biology, Biomedical Sciences, National University of Ireland Galway, Galway, Ireland, H91TK33
| | - Beatrice Malacrida
- Graduate Entry Medical School and Health Research Institute, University of Limerick, Limerick, V94 T9PX, Ireland
| | - Colin Burke
- Centre for Chromosome Biology, Biomedical Sciences, National University of Ireland Galway, Galway, Ireland, H91TK33.,Queen's University, Belfast, BT7 1NN, Northern Ireland, UK
| | - Patrick A Kiely
- Graduate Entry Medical School and Health Research Institute, University of Limerick, Limerick, V94 T9PX, Ireland
| | - Elaine M Dunleavy
- Centre for Chromosome Biology, Biomedical Sciences, National University of Ireland Galway, Galway, Ireland, H91TK33.
| |
Collapse
|
30
|
Davis-Vogel C, Ortiz A, Procyk L, Robeson J, Kassa A, Wang Y, Huang E, Walker C, Sethi A, Nelson ME, Sashital DG. Knockdown of RNA interference pathway genes impacts the fitness of western corn rootworm. Sci Rep 2018; 8:7858. [PMID: 29777111 PMCID: PMC5959937 DOI: 10.1038/s41598-018-26129-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 05/04/2018] [Indexed: 12/11/2022] Open
Abstract
Western corn rootworm (Diabrotica virgifera virgifera) is a serious agricultural pest known for its high adaptability to various management strategies, giving rise to a continual need for new control options. Transgenic maize expressing insecticidal RNAs represents a novel mode of action for rootworm management that is dependent on the RNA interference (RNAi) pathways of the insect for efficacy. Preliminary evidence suggests that western corn rootworm could develop broad resistance to all insecticidal RNAs through changes in RNAi pathway genes; however, the likelihood of field-evolved resistance occurring through this mechanism remains unclear. In the current study, eight key genes involved in facilitating interference in the microRNA and small interfering RNA pathways were targeted for knockdown in order to evaluate impact on fitness of western corn rootworm. These genes include drosha, dicer-1, dicer-2, pasha, loquacious, r2d2, argonaute 1, and argonaute 2. Depletion of targeted transcripts in rootworm larvae led to changes in microRNA expression, decreased ability to pupate, reduced adult beetle emergence, and diminished reproductive capacity. The observed effects do not support evolution of resistance through changes in expression of these eight genes due to reduced insect fitness.
Collapse
Affiliation(s)
- Courtney Davis-Vogel
- Research and Development, DuPont Pioneer, 7300 NW 62nd Ave., Johnston, IA, USA.
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, 2437 Pammel Dr., Ames, IA, USA.
| | - Angel Ortiz
- Research and Development, DuPont Pioneer, 7300 NW 62nd Ave., Johnston, IA, USA
| | - Lisa Procyk
- Research and Development, DuPont Pioneer, 7300 NW 62nd Ave., Johnston, IA, USA
| | - Jonathan Robeson
- Research and Development, DuPont Pioneer, 7300 NW 62nd Ave., Johnston, IA, USA
| | - Adane Kassa
- Research and Development, DuPont Pioneer, 7300 NW 62nd Ave., Johnston, IA, USA
| | - Yiwei Wang
- Research and Development, DuPont Pioneer, 7300 NW 62nd Ave., Johnston, IA, USA
| | - Emily Huang
- Research and Development, DuPont Pioneer, 7300 NW 62nd Ave., Johnston, IA, USA
| | - Carl Walker
- Research and Development, DuPont Pioneer, 7300 NW 62nd Ave., Johnston, IA, USA
| | - Amit Sethi
- Research and Development, DuPont Pioneer, 7300 NW 62nd Ave., Johnston, IA, USA
| | - Mark E Nelson
- Research and Development, DuPont Pioneer, 7300 NW 62nd Ave., Johnston, IA, USA
| | - Dipali G Sashital
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, 2437 Pammel Dr., Ames, IA, USA
| |
Collapse
|
31
|
Kondo S, Vedanayagam J, Mohammed J, Eizadshenass S, Kan L, Pang N, Aradhya R, Siepel A, Steinhauer J, Lai EC. New genes often acquire male-specific functions but rarely become essential in Drosophila. Genes Dev 2017; 31:1841-1846. [PMID: 29051389 PMCID: PMC5695085 DOI: 10.1101/gad.303131.117] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Accepted: 09/12/2017] [Indexed: 12/30/2022]
Abstract
In this study, Kondo et al. performed large-scale CRISPR/Cas9 mutagenesis of “conserved, essential” and “young, RNAi-lethal” genes and confirmed the lethality of conserved genes but not young genes. Additionally, two young gene mutants resulted in spermatogenesis and/or male sterility, indicating that young genes have a preferential impact on male reproductive system function. Relatively little is known about the in vivo functions of newly emerging genes, especially in metazoans. Although prior RNAi studies reported prevalent lethality among young gene knockdowns, our phylogenomic analyses reveal that young Drosophila genes are frequently restricted to the nonessential male reproductive system. We performed large-scale CRISPR/Cas9 mutagenesis of “conserved, essential” and “young, RNAi-lethal” genes and broadly confirmed the lethality of the former but the viability of the latter. Nevertheless, certain young gene mutants exhibit defective spermatogenesis and/or male sterility. Moreover, we detected widespread signatures of positive selection on young male-biased genes. Thus, young genes have a preferential impact on male reproductive system function.
Collapse
Affiliation(s)
- Shu Kondo
- Invertebrate Genetics Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Jeffrey Vedanayagam
- Department of Developmental Biology, Sloan-Kettering Institute, New York, New York 10065, USA
| | - Jaaved Mohammed
- Department of Developmental Biology, Sloan-Kettering Institute, New York, New York 10065, USA.,Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, New York 14853, USA.,Tri-Institutional Training Program in Computational Biology and Medicine, New York, New York 10021, USA
| | - Sogol Eizadshenass
- Department of Biology, Yeshiva University, New York, New York 10033, USA
| | - Lijuan Kan
- Department of Developmental Biology, Sloan-Kettering Institute, New York, New York 10065, USA
| | - Nan Pang
- Department of Developmental Biology, Sloan-Kettering Institute, New York, New York 10065, USA
| | - Rajaguru Aradhya
- Department of Developmental Biology, Sloan-Kettering Institute, New York, New York 10065, USA
| | - Adam Siepel
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Josefa Steinhauer
- Department of Biology, Yeshiva University, New York, New York 10033, USA
| | - Eric C Lai
- Department of Developmental Biology, Sloan-Kettering Institute, New York, New York 10065, USA
| |
Collapse
|
32
|
Paces J, Nic M, Novotny T, Svoboda P. Literature review of baseline information to support the risk assessment of RNAi‐based GM plants. ACTA ACUST UNITED AC 2017. [PMCID: PMC7163844 DOI: 10.2903/sp.efsa.2017.en-1246] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jan Paces
- Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic (IMG)
| | | | | | - Petr Svoboda
- Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic (IMG)
| |
Collapse
|
33
|
Sawyer EM, Brunner EC, Hwang Y, Ivey LE, Brown O, Bannon M, Akrobetu D, Sheaffer KE, Morgan O, Field CO, Suresh N, Gordon MG, Gunnell ET, Regruto LA, Wood CG, Fuller MT, Hales KG. Testis-specific ATP synthase peripheral stalk subunits required for tissue-specific mitochondrial morphogenesis in Drosophila. BMC Cell Biol 2017; 18:16. [PMID: 28335714 PMCID: PMC5364652 DOI: 10.1186/s12860-017-0132-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 03/15/2017] [Indexed: 12/13/2022] Open
Abstract
Background In Drosophila early post-meiotic spermatids, mitochondria undergo dramatic shaping into the Nebenkern, a spherical body with complex internal structure that contains two interwrapped giant mitochondrial derivatives. The purpose of this study was to elucidate genetic and molecular mechanisms underlying the shaping of this structure. Results The knotted onions (knon) gene encodes an unconventionally large testis-specific paralog of ATP synthase subunit d and is required for internal structure of the Nebenkern as well as its subsequent disassembly and elongation. Knon localizes to spermatid mitochondria and, when exogenously expressed in flight muscle, alters the ratio of ATP synthase complex dimers to monomers. By RNAi knockdown we uncovered mitochondrial shaping roles for other testis-expressed ATP synthase subunits. Conclusions We demonstrate the first known instance of a tissue-specific ATP synthase subunit affecting tissue-specific mitochondrial morphogenesis. Since ATP synthase dimerization is known to affect the degree of inner mitochondrial membrane curvature in other systems, the effect of Knon and other testis-specific paralogs of ATP synthase subunits may be to mediate differential membrane curvature within the Nebenkern.
Collapse
Affiliation(s)
- Eric M Sawyer
- Department of Biology, Davidson College, Davidson, NC, USA
| | | | - Yihharn Hwang
- Department of Biology, Davidson College, Davidson, NC, USA
| | - Lauren E Ivey
- Department of Biology, Davidson College, Davidson, NC, USA
| | - Olivia Brown
- Department of Biology, Davidson College, Davidson, NC, USA
| | - Megan Bannon
- Department of Biology, Davidson College, Davidson, NC, USA
| | | | | | - Oshauna Morgan
- Department of Biology, Davidson College, Davidson, NC, USA
| | - Conroy O Field
- Department of Biology, Davidson College, Davidson, NC, USA
| | - Nishita Suresh
- Department of Biology, Davidson College, Davidson, NC, USA
| | - M Grace Gordon
- Department of Biology, Davidson College, Davidson, NC, USA
| | | | | | - Cricket G Wood
- Departments of Developmental Biology and Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Margaret T Fuller
- Departments of Developmental Biology and Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Karen G Hales
- Department of Biology, Davidson College, Davidson, NC, USA. .,Departments of Developmental Biology and Genetics, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
34
|
Lewis SH, Webster CL, Salmela H, Obbard DJ. Repeated Duplication of Argonaute2 Is Associated with Strong Selection and Testis Specialization in Drosophila. Genetics 2016; 204:757-769. [PMID: 27535930 PMCID: PMC5068860 DOI: 10.1534/genetics.116.192336] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 08/12/2016] [Indexed: 11/18/2022] Open
Abstract
Argonaute2 (Ago2) is a rapidly evolving nuclease in the Drosophila melanogaster RNA interference (RNAi) pathway that targets viruses and transposable elements in somatic tissues. Here we reconstruct the history of Ago2 duplications across the D. obscura group and use patterns of gene expression to infer new functional specialization. We show that some duplications are old, shared by the entire species group, and that losses may be common, including previously undetected losses in the lineage leading to D. pseudoobscura We find that while the original (syntenic) gene copy has generally retained the ancestral ubiquitous expression pattern, most of the novel Ago2 paralogs have independently specialized to testis-specific expression. Using population genetic analyses, we show that most testis-specific paralogs have significantly lower genetic diversity than the genome-wide average. This suggests recent positive selection in three different species, and model-based analyses provide strong evidence of recent hard selective sweeps in or near four of the six D. pseudoobscura Ago2 paralogs. We speculate that the repeated evolution of testis specificity in obscura group Ago2 genes, combined with their dynamic turnover and strong signatures of adaptive evolution, may be associated with highly derived roles in the suppression of transposable elements or meiotic drive. Our study highlights the lability of RNAi pathways, even within well-studied groups such as Drosophila, and suggests that strong selection may act quickly after duplication in RNAi pathways, potentially giving rise to new and unknown RNAi functions in nonmodel species.
Collapse
Affiliation(s)
- Samuel H Lewis
- Institute of Evolutionary Biology, University of Edinburgh, Ashworth Laboratories, EH9 3FL, United Kingdom
| | - Claire L Webster
- Institute of Evolutionary Biology, University of Edinburgh, Ashworth Laboratories, EH9 3FL, United Kingdom
| | - Heli Salmela
- Department of Biosciences, Centre of Excellence in Biological Interactions, University of Helsinki, Finland
| | - Darren J Obbard
- Institute of Evolutionary Biology, University of Edinburgh, Ashworth Laboratories, EH9 3FL, United Kingdom Centre for Immunity, Infection and Evolution, University of Edinburgh, Ashworth Laboratories, EH9 3FL, United Kingdom
| |
Collapse
|
35
|
Schmidts I, Böttcher R, Mirkovic-Hösle M, Förstemann K. Homology directed repair is unaffected by the absence of siRNAs in Drosophila melanogaster. Nucleic Acids Res 2016; 44:8261-71. [PMID: 27353331 PMCID: PMC5041469 DOI: 10.1093/nar/gkw570] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 06/14/2016] [Indexed: 12/28/2022] Open
Abstract
Small interfering RNAs (siRNAs) defend the organism against harmful transcripts from exogenous (e.g. viral) or endogenous (e.g. transposons) sources. Recent publications describe the production of siRNAs induced by DNA double-strand breaks (DSB) in Neurospora crassa, Arabidopsis thaliana, Drosophila melanogaster and human cells, which suggests a conserved function. A current hypothesis is that break-induced small RNAs ensure efficient homologous recombination (HR). However, biogenesis of siRNAs is often intertwined with other small RNA species, such as microRNAs (miRNAs), which complicates interpretation of experimental results. In Drosophila, siRNAs are produced by Dcr-2 while miRNAs are processed by Dcr-1. Thus, it is possible to probe siRNA function without miRNA deregulation. We therefore examined DNA double-strand break repair after perturbation of siRNA biogenesis in cultured Drosophila cells as well as mutant flies. Our assays comprised reporters for the single-strand annealing pathway, homologous recombination and sensitivity to the DSB-inducing drug camptothecin. We could not detect any repair defects caused by the lack of siRNAs derived from the broken DNA locus. Since production of these siRNAs depends on local transcription, they may thus participate in RNA metabolism-an established function of siRNAs-rather than DNA repair.
Collapse
Affiliation(s)
- Ines Schmidts
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Feodor-Lynen-Straße 25, D-81377, München, Germany
| | - Romy Böttcher
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Feodor-Lynen-Straße 25, D-81377, München, Germany
| | - Milijana Mirkovic-Hösle
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Feodor-Lynen-Straße 25, D-81377, München, Germany
| | - Klaus Förstemann
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Feodor-Lynen-Straße 25, D-81377, München, Germany
| |
Collapse
|
36
|
Cugusi S, Li Y, Jin P, Lucchesi JC. The Drosophila Helicase MLE Targets Hairpin Structures in Genomic Transcripts. PLoS Genet 2016; 12:e1005761. [PMID: 26752049 PMCID: PMC4710571 DOI: 10.1371/journal.pgen.1005761] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 12/02/2015] [Indexed: 12/28/2022] Open
Abstract
RNA hairpins are a common type of secondary structures that play a role in every aspect of RNA biochemistry including RNA editing, mRNA stability, localization and translation of transcripts, and in the activation of the RNA interference (RNAi) and microRNA (miRNA) pathways. Participation in these functions often requires restructuring the RNA molecules by the association of single-strand (ss) RNA-binding proteins or by the action of helicases. The Drosophila MLE helicase has long been identified as a member of the MSL complex responsible for dosage compensation. The complex includes one of two long non-coding RNAs and MLE was shown to remodel the roX RNA hairpin structures in order to initiate assembly of the complex. Here we report that this function of MLE may apply to the hairpins present in the primary RNA transcripts that generate the small molecules responsible for RNA interference. Using stocks from the Transgenic RNAi Project and the Vienna Drosophila Research Center, we show that MLE specifically targets hairpin RNAs at their site of transcription. The association of MLE at these sites is independent of sequence and chromosome location. We use two functional assays to test the biological relevance of this association and determine that MLE participates in the RNAi pathway.
Collapse
Affiliation(s)
- Simona Cugusi
- Department of Biology, Emory University, Atlanta, Georgia, United States of America
| | - Yujing Li
- Department of Human Genetics, Emory University School of Medicine, Atlanta
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta
| | - John C. Lucchesi
- Department of Biology, Emory University, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
37
|
Analysis of Nearly One Thousand Mammalian Mirtrons Reveals Novel Features of Dicer Substrates. PLoS Comput Biol 2015; 11:e1004441. [PMID: 26325366 PMCID: PMC4556696 DOI: 10.1371/journal.pcbi.1004441] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 07/09/2015] [Indexed: 12/11/2022] Open
Abstract
Mirtrons are microRNA (miRNA) substrates that utilize the splicing machinery to bypass the necessity of Drosha cleavage for their biogenesis. Expanding our recent efforts for mammalian mirtron annotation, we use meta-analysis of aggregate datasets to identify ~500 novel mouse and human introns that confidently generate diced small RNA duplexes. These comprise nearly 1000 total loci distributed in four splicing-mediated biogenesis subclasses, with 5'-tailed mirtrons as, by far, the dominant subtype. Thus, mirtrons surprisingly comprise a substantial fraction of endogenous Dicer substrates in mammalian genomes. Although mirtron-derived small RNAs exhibit overall expression correlation with their host mRNAs, we observe a subset with substantial differences that suggest regulated processing or accumulation. We identify characteristic sequence, length, and structural features of mirtron loci that distinguish them from bulk introns, and find that mirtrons preferentially emerge from genes with larger numbers of introns. While mirtrons generate miRNA-class regulatory RNAs, we also find that mirtrons exhibit many features that distinguish them from canonical miRNAs. We observe that conventional mirtron hairpins are substantially longer than Drosha-generated pre-miRNAs, indicating that the characteristic length of canonical pre-miRNAs is not a general feature of Dicer substrate hairpins. In addition, mammalian mirtrons exhibit unique patterns of ordered 5' and 3' heterogeneity, which reveal hidden complexity in miRNA processing pathways. These include broad 3'-uridylation of mirtron hairpins, atypically heterogeneous 5' termini that may result from exonucleolytic processing, and occasionally robust decapitation of the 5' guanine (G) of mirtron-5p species defined by splicing. Altogether, this study reveals that this extensive class of non-canonical miRNA bears a multitude of characteristic properties, many of which raise general mechanistic questions regarding the processing of endogenous hairpin transcripts.
Collapse
|
38
|
Deng S, Bothe I, Baylies MK. The Formin Diaphanous Regulates Myoblast Fusion through Actin Polymerization and Arp2/3 Regulation. PLoS Genet 2015; 11:e1005381. [PMID: 26295716 PMCID: PMC4546610 DOI: 10.1371/journal.pgen.1005381] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 06/23/2015] [Indexed: 11/19/2022] Open
Abstract
The formation of multinucleated muscle cells through cell-cell fusion is a conserved process from fruit flies to humans. Numerous studies have shown the importance of Arp2/3, its regulators, and branched actin for the formation of an actin structure, the F-actin focus, at the fusion site. This F-actin focus forms the core of an invasive podosome-like structure that is required for myoblast fusion. In this study, we find that the formin Diaphanous (Dia), which nucleates and facilitates the elongation of actin filaments, is essential for Drosophila myoblast fusion. Following cell recognition and adhesion, Dia is enriched at the myoblast fusion site, concomitant with, and having the same dynamics as, the F-actin focus. Through analysis of Dia loss-of-function conditions using mutant alleles but particularly a dominant negative Dia transgene, we demonstrate that reduction in Dia activity in myoblasts leads to a fusion block. Significantly, no actin focus is detected, and neither branched actin regulators, SCAR or WASp, accumulate at the fusion site when Dia levels are reduced. Expression of constitutively active Dia also causes a fusion block that is associated with an increase in highly dynamic filopodia, altered actin turnover rates and F-actin distribution, and mislocalization of SCAR and WASp at the fusion site. Together our data indicate that Dia plays two roles during invasive podosome formation at the fusion site: it dictates the level of linear F-actin polymerization, and it is required for appropriate branched actin polymerization via localization of SCAR and WASp. These studies provide new insight to the mechanisms of cell-cell fusion, the relationship between different regulators of actin polymerization, and invasive podosome formation that occurs in normal development and in disease.
Collapse
Affiliation(s)
- Su Deng
- Graduate Program in Physiology, Biophysics & Systems Biology, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, New York, United States of America
| | - Ingo Bothe
- Program in Developmental Biology, Sloan Kettering Institute, New York, New York, United States of America
| | - Mary K. Baylies
- Graduate Program in Physiology, Biophysics & Systems Biology, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, New York, United States of America
- Program in Developmental Biology, Sloan Kettering Institute, New York, New York, United States of America
| |
Collapse
|
39
|
Steinhauer J. Separating from the pack: Molecular mechanisms of Drosophila spermatid individualization. SPERMATOGENESIS 2015; 5:e1041345. [PMID: 26413413 PMCID: PMC4581072 DOI: 10.1080/21565562.2015.1041345] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 03/26/2015] [Accepted: 03/26/2015] [Indexed: 12/18/2022]
|