1
|
Lyu J, Chen C. Transcriptome and Temporal Transcriptome Analyses in Single Cells. Int J Mol Sci 2024; 25:12845. [PMID: 39684556 DOI: 10.3390/ijms252312845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/21/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Transcriptome analysis in single cells, enabled by single-cell RNA sequencing, has become a prevalent approach in biomedical research, ranging from investigations of gene regulation to the characterization of tissue organization. Over the past decade, advances in single-cell RNA sequencing technology, including its underlying chemistry, have significantly enhanced its performance, marking notable improvements in methodology. A recent development in the field, which integrates RNA metabolic labeling with single-cell RNA sequencing, has enabled the profiling of temporal transcriptomes in individual cells, offering new insights into dynamic biological processes involving RNA kinetics and cell fate determination. In this review, we explore the chemical principles and design improvements that have enhanced single-molecule capture efficiency, improved RNA quantification accuracy, and increased cellular throughput in single-cell transcriptome analysis. We also illustrate the concept of RNA metabolic labeling for detecting newly synthesized transcripts and summarize recent advancements that enable single-cell temporal transcriptome analysis. Additionally, we examine data analysis strategies for the precise quantification of newly synthesized transcripts and highlight key applications of transcriptome and temporal transcriptome analyses in single cells.
Collapse
Affiliation(s)
- Jun Lyu
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chongyi Chen
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
2
|
Tang P, Yang J, Chen Z, Du C, Yang Y, Zhao H, Huang L, Li G, Liu F, Dong B, Shan T, Bao X, Zhou Y. Nuclear retention coupled with sequential polyadenylation dictates post-transcriptional m 6A modification in the nucleus. Mol Cell 2024; 84:3758-3774.e10. [PMID: 39127036 DOI: 10.1016/j.molcel.2024.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 06/28/2024] [Accepted: 07/17/2024] [Indexed: 08/12/2024]
Abstract
N6-methyladenosine (m6A) modification is deemed to be co-transcriptionally installed on pre-mRNAs, thereby influencing various downstream RNA metabolism events. However, the causal relationship between m6A modification and RNA processing is often unclear, resulting in premature or even misleading generalizations on the function of m6A modification. Here, we develop 4sU-coupled m6A-level and isoform-characterization sequencing (4sU-m6A-LAIC-seq) and 4sU-GLORI to quantify the m6A levels for both newly synthesized and steady-state RNAs at transcript and single-base-resolution levels, respectively, which enable dissecting the relationship between m6A modification and alternative RNA polyadenylation. Unexpectedly, our results show that many m6A addition events occur post-transcriptionally, especially on transcripts with high m6A levels. Importantly, we find higher m6A levels on shorter 3' UTR isoforms, which likely result from sequential polyadenylation of longer 3' UTR isoforms with prolonged nuclear dwelling time. Therefore, m6A modification can also take place post-transcriptionally to intimately couple with other key RNA metabolism processes to establish and dynamically regulate epi-transcriptomics in mammalian cells.
Collapse
Affiliation(s)
- Peng Tang
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Hubei Key Laboratory of Cell Homeostasis, RNA Institute, Wuhan University, Wuhan, China; CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Jiayi Yang
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Hubei Key Laboratory of Cell Homeostasis, RNA Institute, Wuhan University, Wuhan, China
| | - Zonggui Chen
- Institute of Advanced Studies, Wuhan University, Wuhan, China
| | - Chen Du
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Hubei Key Laboratory of Cell Homeostasis, RNA Institute, Wuhan University, Wuhan, China; Frontier Science Center for Immunology and Metabolism, State Key Laboratory of Virology, Wuhan University, Wuhan, China
| | - Yang Yang
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Hubei Key Laboratory of Cell Homeostasis, RNA Institute, Wuhan University, Wuhan, China; Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Haiping Zhao
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Li Huang
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Hubei Key Laboratory of Cell Homeostasis, RNA Institute, Wuhan University, Wuhan, China
| | - Guangnan Li
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Hubei Key Laboratory of Cell Homeostasis, RNA Institute, Wuhan University, Wuhan, China
| | - Feiyan Liu
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Hubei Key Laboratory of Cell Homeostasis, RNA Institute, Wuhan University, Wuhan, China
| | - Bei Dong
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Ting Shan
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Hubei Key Laboratory of Cell Homeostasis, RNA Institute, Wuhan University, Wuhan, China
| | - Xichen Bao
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yu Zhou
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Hubei Key Laboratory of Cell Homeostasis, RNA Institute, Wuhan University, Wuhan, China; Institute of Advanced Studies, Wuhan University, Wuhan, China; Frontier Science Center for Immunology and Metabolism, State Key Laboratory of Virology, Wuhan University, Wuhan, China.
| |
Collapse
|
3
|
Francette AM, Arndt KM. Multiple direct and indirect roles of the Paf1 complex in transcription elongation, splicing, and histone modifications. Cell Rep 2024; 43:114730. [PMID: 39244754 PMCID: PMC11498942 DOI: 10.1016/j.celrep.2024.114730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/17/2024] [Accepted: 08/23/2024] [Indexed: 09/10/2024] Open
Abstract
The polymerase-associated factor 1 (Paf1) complex (Paf1C) is a conserved protein complex with critical functions during eukaryotic transcription. Previous studies showed that Paf1C is multi-functional, controlling specific aspects of transcription ranging from RNA polymerase II (RNAPII) processivity to histone modifications. However, it is unclear how specific Paf1C subunits directly impact transcription and coupled processes. We have compared conditional depletion to steady-state deletion for each Paf1C subunit to determine the direct and indirect contributions to gene expression in Saccharomyces cerevisiae. Using nascent transcript sequencing, RNAPII profiling, and modeling of transcription elongation dynamics, we have demonstrated direct effects of Paf1C subunits on RNAPII processivity and elongation rate and indirect effects on transcript splicing and repression of antisense transcripts. Further, our results suggest that the direct transcriptional effects of Paf1C cannot be readily assigned to any particular histone modification. This work comprehensively analyzes both the immediate and the extended roles of each Paf1C subunit in transcription elongation and transcript regulation.
Collapse
Affiliation(s)
- Alex M Francette
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Karen M Arndt
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
4
|
Moon MH, Vock IW, Streit AD, Connor LJ, Senkina J, Ellman JA, Simon MD. Disulfide Tethering to Map Small Molecule Binding Sites Transcriptome-wide. ACS Chem Biol 2024; 19:2081-2086. [PMID: 39192734 DOI: 10.1021/acschembio.4c00538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
We report the development of Tether-seq, a transcriptome-wide screen to probe RNA-small molecule interactions using disulfide tethering. This technique uses s4U metabolic labeling to provide sites for reversible and covalent attachment of small molecule disulfides to the transcriptome. By screening under reducing conditions, we identify interactions that are stabilized by binding over those driven by the reactivity of the RNA sites. When applied to cellular RNA, Tether-seq with a disulfide analogue of risdiplam, an FDA-approved drug that targets RNA to treat spinal muscular atrophy (SMA), revealed a number of potential binding sites, most prominently at a site within the cytochrome C oxidase 1 (COX1) transcript. Structure probing by SHAPE-MaP revealed a structured motif and confirmed binding to the lead molecule. This work demonstrates that these screens have the power to identify binding sites throughout the transcriptome and provide invaluable insight into the thermodynamic properties that define small molecule binding.
Collapse
Affiliation(s)
- Michelle H Moon
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, Connecticut 06511, United States
- Institute of Biomolecular Design & Discovery, Yale University, New Haven, Connecticut 06511, United States
- Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| | - Isaac W Vock
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, Connecticut 06511, United States
- Institute of Biomolecular Design & Discovery, Yale University, New Haven, Connecticut 06511, United States
| | - Andrew D Streit
- Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| | - Leah J Connor
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, Connecticut 06511, United States
- Institute of Biomolecular Design & Discovery, Yale University, New Haven, Connecticut 06511, United States
- Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| | - Julia Senkina
- Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| | - Jonathan A Ellman
- Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| | - Matthew D Simon
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, Connecticut 06511, United States
- Institute of Biomolecular Design & Discovery, Yale University, New Haven, Connecticut 06511, United States
| |
Collapse
|
5
|
Martinek V, Martin J, Belair C, Payea M, Malla S, Alexiou P, Maragkakis M. Deep learning and direct sequencing of labeled RNA captures transcriptome dynamics. NAR Genom Bioinform 2024; 6:lqae116. [PMID: 39211330 PMCID: PMC11358824 DOI: 10.1093/nargab/lqae116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/29/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
In eukaryotes, genes produce a variety of distinct RNA isoforms, each with potentially unique protein products, coding potential or regulatory signals such as poly(A) tail and nucleotide modifications. Assessing the kinetics of RNA isoform metabolism, such as transcription and decay rates, is essential for unraveling gene regulation. However, it is currently impeded by lack of methods that can differentiate between individual isoforms. Here, we introduce RNAkinet, a deep convolutional and recurrent neural network, to detect nascent RNA molecules following metabolic labeling with the nucleoside analog 5-ethynyl uridine and long-read, direct RNA sequencing with nanopores. RNAkinet processes electrical signals from nanopore sequencing directly and distinguishes nascent from pre-existing RNA molecules. Our results show that RNAkinet prediction performance generalizes in various cell types and organisms and can be used to quantify RNA isoform half-lives. RNAkinet is expected to enable the identification of the kinetic parameters of RNA isoforms and to facilitate studies of RNA metabolism and the regulatory elements that influence it.
Collapse
Affiliation(s)
- Vlastimil Martinek
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Jessica Martin
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
- Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Cedric Belair
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Matthew J Payea
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Sulochan Malla
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Panagiotis Alexiou
- Centre for Molecular Medicine & Biobanking, University of Malta, MSD 2080 Msida, Malta
| | - Manolis Maragkakis
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| |
Collapse
|
6
|
Downie Ruiz Velasco A, Parsons A, Heatley M, Martin AG, Smart A, Shah N, Jopling C. MicroRNA biogenesis is broadly disrupted by inhibition of the splicing factor SF3B1. Nucleic Acids Res 2024; 52:9210-9229. [PMID: 38884273 PMCID: PMC11347158 DOI: 10.1093/nar/gkae505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 05/03/2024] [Accepted: 06/06/2024] [Indexed: 06/18/2024] Open
Abstract
In animals, microRNA (miRNA) biogenesis begins with cotranscriptional cleavage of the primary (pri-)miRNA by the Microprocessor complex. Cotranscriptional splicing has been shown to influence Microprocessor cleavage when miRNAs are hosted in introns of protein-coding pri-miRNAs, but the impact of splicing on production of miRNAs hosted in long non-coding (lnc)RNAs is largely unknown. Here, we investigated the role of splicing in the biogenesis of miR-122, an lncRNA-hosted, highly expressed, medically important, liver-specific miRNA. We found that splicing inhibition by the SF3B1 inhibitor pladienolide B (PlaB) led to strong and rapid reduction in transcription of endogenous, but not plasmid-encoded, pri-miR-122, resulting in reduced production of mature miR-122. To allow detection of rapid changes in miRNA biogenesis despite the high stability of mature miRNAs, we used SLAMseq to globally quantify the effects of short-term splicing inhibition on miRNA synthesis. We observed an overall decrease in biogenesis of mature miRNAs following PlaB treatment. Surprisingly, miRNAs hosted in exons and introns were similarly affected. Together, this study provides new insights into the emerging role of splicing in transcription, demonstrating novel biological importance in promotion of miR-122 biogenesis from an lncRNA, and shows that SF3B1 is important for global miRNA biogenesis.
Collapse
Affiliation(s)
| | - Aimee L Parsons
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Matthew C Heatley
- The Digital Research Service, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Athena R G Martin
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Alfredo D Smart
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Niraj Shah
- The Digital Research Service, University of Nottingham, Nottingham, NG7 2RD, UK
| | | |
Collapse
|
7
|
McJunkin K, Gottesman S. What goes up must come down: off switches for regulatory RNAs. Genes Dev 2024; 38:597-613. [PMID: 39111824 PMCID: PMC11368247 DOI: 10.1101/gad.351934.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Small RNAs base pair with and regulate mRNA translation and stability. For both bacterial small regulatory RNAs and eukaryotic microRNAs, association with partner proteins is critical for the stability and function of the regulatory RNAs. We review the mechanisms for degradation of these RNAs: displacement of the regulatory RNA from its protein partner (in bacteria) or destruction of the protein and its associated microRNAs (in eukaryotes). These mechanisms can allow specific destruction of a regulatory RNA via pairing with a decay trigger RNA or function as global off switches by disrupting the stability or function of the protein partner.
Collapse
Affiliation(s)
- Katherine McJunkin
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases Intramural Research Program, Bethesda, Maryland 20892, USA;
| | - Susan Gottesman
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| |
Collapse
|
8
|
Xu Z, Sziraki A, Lee J, Zhou W, Cao J. Dissecting key regulators of transcriptome kinetics through scalable single-cell RNA profiling of pooled CRISPR screens. Nat Biotechnol 2024; 42:1218-1223. [PMID: 37749268 PMCID: PMC10961254 DOI: 10.1038/s41587-023-01948-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 08/15/2023] [Indexed: 09/27/2023]
Abstract
We present a combinatorial indexing method, PerturbSci-Kinetics, for capturing whole transcriptomes, nascent transcriptomes and single guide RNA (sgRNA) identities across hundreds of genetic perturbations at the single-cell level. Profiling a pooled CRISPR screen targeting various biological processes, we show the gene expression regulation during RNA synthesis, processing and degradation, miRNA biogenesis and mitochondrial mRNA processing, systematically decoding the genome-wide regulatory network that underlies RNA temporal dynamics at scale.
Collapse
Affiliation(s)
- Zihan Xu
- Laboratory of Single Cell Genomics and Population Dynamics, The Rockefeller University, New York, NY, USA
- The David Rockefeller Graduate Program in Bioscience, The Rockefeller University, New York, NY, USA
| | - Andras Sziraki
- Laboratory of Single Cell Genomics and Population Dynamics, The Rockefeller University, New York, NY, USA
- The David Rockefeller Graduate Program in Bioscience, The Rockefeller University, New York, NY, USA
| | - Jasper Lee
- Laboratory of Single Cell Genomics and Population Dynamics, The Rockefeller University, New York, NY, USA
| | - Wei Zhou
- Laboratory of Single Cell Genomics and Population Dynamics, The Rockefeller University, New York, NY, USA
| | - Junyue Cao
- Laboratory of Single Cell Genomics and Population Dynamics, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
9
|
Mandler MD, Maligireddy SS, Guiblet WM, Fitzsimmons CM, McDonald KS, Warrell DL, Batista PJ. The modification landscape of Pseudomonas aeruginosa tRNAs. RNA (NEW YORK, N.Y.) 2024; 30:1025-1040. [PMID: 38684317 PMCID: PMC11251520 DOI: 10.1261/rna.080004.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/09/2024] [Indexed: 05/02/2024]
Abstract
RNA modifications have a substantial impact on tRNA function, with modifications in the anticodon loop contributing to translational fidelity and modifications in the tRNA core impacting structural stability. In bacteria, tRNA modifications are crucial for responding to stress and regulating the expression of virulence factors. Although tRNA modifications are well-characterized in a few model organisms, our knowledge of tRNA modifications in human pathogens, such as Pseudomonas aeruginosa, remains limited. Here, we leveraged two orthogonal approaches to build a reference landscape of tRNA modifications in Escherichia coli, which enabled us to identify similar modifications in P. aeruginosa Our analysis supports a substantial degree of conservation between the two organisms, while also uncovering potential sites of tRNA modification in P. aeruginosa tRNAs that are not present in E. coli The mutational signature at one of these sites, position 46 of tRNAGln1(UUG) is dependent on the P. aeruginosa homolog of TapT, the enzyme responsible for the 3-(3-amino-3-carboxypropyl) uridine (acp3U) modification. Identifying which modifications are present on different tRNAs will uncover the pathways impacted by the different tRNA-modifying enzymes, some of which play roles in determining virulence and pathogenicity.
Collapse
Affiliation(s)
- Mariana D Mandler
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Siddhardha S Maligireddy
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Wilfried M Guiblet
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Christina M Fitzsimmons
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Kayla S McDonald
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Delayna L Warrell
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Pedro J Batista
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
10
|
Rogers JM, Mimoso CA, Martin BJE, Martin AP, Aster JC, Adelman K, Blacklow SC. Notch induces transcription by stimulating release of paused RNA Polymerase II. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.13.598853. [PMID: 38915655 PMCID: PMC11195215 DOI: 10.1101/2024.06.13.598853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Notch proteins undergo ligand-induced proteolysis to release a nuclear effector that influences a wide range of cellular processes by regulating transcription. Despite years of study, however, how Notch induces the transcription of its target genes remains unclear. Here, we comprehensively examined the response to human Notch1 across a time course of activation using high-resolution genomic assays of chromatin accessibility and nascent RNA production. Our data reveal that Notch induces target gene transcription primarily by releasing paused RNA polymerase II (RNAPII). Moreover, in contrast to prevailing models suggesting that Notch acts by promoting chromatin accessibility, we found that open chromatin was established at Notch-responsive regulatory elements prior to Notch signal induction, through SWI/SNF-mediated remodeling. Together, these studies show that the nuclear response to Notch signaling is dictated by the pre-existing chromatin state and RNAPII distribution at the time of signal activation.
Collapse
Affiliation(s)
- Julia M Rogers
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Claudia A Mimoso
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Benjamin JE Martin
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Alexandre P Martin
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Jon C Aster
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA 02215, USA
- Ludwig Center at Harvard, Boston, MA 02115, USA
| | - Karen Adelman
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
- Ludwig Center at Harvard, Boston, MA 02115, USA
- The Eli and Edythe L. Broad Institute, Cambridge, MA 02142, USA
| | - Stephen C Blacklow
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
- The Eli and Edythe L. Broad Institute, Cambridge, MA 02142, USA
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA 02215, USA
- Lead contact
| |
Collapse
|
11
|
Francette AM, Arndt KM. Multiple direct and indirect roles of Paf1C in elongation, splicing, and histone post-translational modifications. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.25.591159. [PMID: 38712269 PMCID: PMC11071476 DOI: 10.1101/2024.04.25.591159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Paf1C is a highly conserved protein complex with critical functions during eukaryotic transcription. Previous studies have shown that Paf1C is multi-functional, controlling specific aspects of transcription, ranging from RNAPII processivity to histone modifications. However, it is unclear how specific Paf1C subunits directly impact transcription and coupled processes. We have compared conditional depletion to steady-state deletion for each Paf1C subunit to determine the direct and indirect contributions to gene expression in Saccharomyces cerevisiae. Using nascent transcript sequencing, RNAPII profiling, and modeling of transcription elongation dynamics, we have demonstrated direct effects of Paf1C subunits on RNAPII processivity and elongation rate and indirect effects on transcript splicing and repression of antisense transcripts. Further, our results suggest that the direct transcriptional effects of Paf1C cannot be readily assigned to any particular histone modification. This work comprehensively analyzes both the immediate and extended roles of each Paf1C subunit in transcription elongation and transcript regulation.
Collapse
Affiliation(s)
- Alex M. Francette
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA
| | - Karen M. Arndt
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA
- Lead contact
| |
Collapse
|
12
|
Ugolini M, Kerlin MA, Kuznetsova K, Oda H, Kimura H, Vastenhouw NL. Transcription bodies regulate gene expression by sequestering CDK9. Nat Cell Biol 2024; 26:604-612. [PMID: 38589534 PMCID: PMC11021188 DOI: 10.1038/s41556-024-01389-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 02/28/2024] [Indexed: 04/10/2024]
Abstract
The localization of transcriptional activity in specialized transcription bodies is a hallmark of gene expression in eukaryotic cells. It remains unclear, however, if and how transcription bodies affect gene expression. Here we disrupted the formation of two prominent endogenous transcription bodies that mark the onset of zygotic transcription in zebrafish embryos and analysed the effect on gene expression using enriched SLAM-seq and live-cell imaging. We find that the disruption of transcription bodies results in the misregulation of hundreds of genes. Here we focus on genes that are upregulated. These genes have accessible chromatin and are poised to be transcribed in the presence of the two transcription bodies, but they do not go into elongation. Live-cell imaging shows that disruption of the two large transcription bodies enables these poised genes to be transcribed in ectopic transcription bodies, suggesting that the large transcription bodies sequester a pause release factor. Supporting this hypothesis, we find that CDK9-the kinase that releases paused polymerase II-is highly enriched in the two large transcription bodies. Overexpression of CDK9 in wild-type embryos results in the formation of ectopic transcription bodies and thus phenocopies the removal of the two large transcription bodies. Taken together, our results show that transcription bodies regulate transcription by sequestering machinery, thereby preventing genes elsewhere in the nucleus from being transcribed.
Collapse
Affiliation(s)
- Martino Ugolini
- Center for Integrative Genomics (CIG), University of Lausanne (UNIL), Lausanne, Switzerland
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Dresden, Germany
| | - Maciej A Kerlin
- Center for Integrative Genomics (CIG), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Ksenia Kuznetsova
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Dresden, Germany
| | - Haruka Oda
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
- Institute of Human Genetics, CNRS, Montpellier, France
| | - Hiroshi Kimura
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Nadine L Vastenhouw
- Center for Integrative Genomics (CIG), University of Lausanne (UNIL), Lausanne, Switzerland.
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Dresden, Germany.
| |
Collapse
|
13
|
Li T, Shu X, Gao M, Huang C, Li T, Cao J, Ying X, Liu D, Liu J. N4-Allylcytidine: a new nucleoside analogue for RNA labelling and chemical sequencing. RSC Chem Biol 2024; 5:225-235. [PMID: 38456037 PMCID: PMC10915972 DOI: 10.1039/d3cb00189j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/15/2023] [Indexed: 03/09/2024] Open
Abstract
RNA labelling has become indispensable in studying RNA biology. Nucleoside analogues with a chemical sequencing power represent desirable RNA labelling molecules because precise labelling information at base resolution can be obtained. Here, we report a new nucleoside analogue, N4-allylcytidine (a4C), which is able to tag RNA through both in vitro and in vivo pathways and further specifically reacts with iodine to form 3, N4-cyclized cytidine (cyc-C) in a catalyst-free, fast and complete manner. Full spectroscopic characterization concluded that cyc-C consisted of paired diastereoisomers with opposite chiral carbon centers in the fused 3, N4-five-membered ring. During RNA reverse transcription into complementary DNA, cyc-C induces base misincorporation due to the disruption of canonical hydrogen bonding by the cyclized structure and thus can be accurately identified by sequencing at single base resolution. With the chemical sequencing rationale of a4C, successful applications have been performed including pinpointing N4-methylcytidine methyltransferases' substrate modification sites, metabolically labelling mammalian cellular RNAs, and mapping active cellular RNA polymerase locations with the chromatin run-on RNA sequencing technique. Collectively, our work demonstrates that a4C is a promising molecule for RNA labelling and chemical sequencing and expands the toolkit for studying sophisticated RNA biology.
Collapse
Affiliation(s)
- Tengwei Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University Yuhangtang Road 866 Hangzhou 310058 Zhejiang Province China
| | - Xiao Shu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University Yuhangtang Road 866 Hangzhou 310058 Zhejiang Province China
| | - Minsong Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University Yuhangtang Road 866 Hangzhou 310058 Zhejiang Province China
| | - Chenyang Huang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University Yuhangtang Road 866 Hangzhou 310058 Zhejiang Province China
| | - Ting Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University Yuhangtang Road 866 Hangzhou 310058 Zhejiang Province China
| | - Jie Cao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University Yuhangtang Road 866 Hangzhou 310058 Zhejiang Province China
- Life Sciences Institute, Zhejiang University Yuhangtang Road 866 Hangzhou 310058 Zhejiang Province China
| | - Xiner Ying
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University Yuhangtang Road 866 Hangzhou 310058 Zhejiang Province China
| | - Donghong Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University Yuhangtang Road 866 Hangzhou 310058 Zhejiang Province China
| | - Jianzhao Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University Yuhangtang Road 866 Hangzhou 310058 Zhejiang Province China
- Life Sciences Institute, Zhejiang University Yuhangtang Road 866 Hangzhou 310058 Zhejiang Province China
| |
Collapse
|
14
|
Buhagiar AF, Kleaveland B. To kill a microRNA: emerging concepts in target-directed microRNA degradation. Nucleic Acids Res 2024; 52:1558-1574. [PMID: 38224449 PMCID: PMC10899785 DOI: 10.1093/nar/gkae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/21/2023] [Accepted: 01/02/2024] [Indexed: 01/16/2024] Open
Abstract
MicroRNAs (miRNAs) guide Argonaute (AGO) proteins to bind mRNA targets. Although most targets are destabilized by miRNA-AGO binding, some targets induce degradation of the miRNA instead. These special targets are also referred to as trigger RNAs. All triggers identified thus far have binding sites with greater complementarity to the miRNA than typical target sites. Target-directed miRNA degradation (TDMD) occurs when trigger RNAs bind the miRNA-AGO complex and recruit the ZSWIM8 E3 ubiquitin ligase, leading to AGO ubiquitination and proteolysis and subsequent miRNA destruction. More than 100 different miRNAs are regulated by ZSWIM8 in bilaterian animals, and hundreds of trigger RNAs have been predicted computationally. Disruption of individual trigger RNAs or ZSWIM8 has uncovered important developmental and physiologic roles for TDMD across a variety of model organisms and cell types. In this review, we highlight recent progress in understanding the mechanistic basis and functions of TDMD, describe common features of trigger RNAs, outline best practices for validating trigger RNAs, and discuss outstanding questions in the field.
Collapse
Affiliation(s)
- Amber F Buhagiar
- Department of Pathology and Lab Medicine, Weill Cornell Medicine, New York, NY10065, USA
| | - Benjamin Kleaveland
- Department of Pathology and Lab Medicine, Weill Cornell Medicine, New York, NY10065, USA
| |
Collapse
|
15
|
Ohashi S, Nakamura M, Acharyya S, Inagaki M, Abe N, Kimura Y, Hashiya F, Abe H. Development and Comparison of 4-Thiouridine to Cytidine Base Conversion Reaction. ACS OMEGA 2024; 9:9300-9308. [PMID: 38434802 PMCID: PMC10905967 DOI: 10.1021/acsomega.3c08516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/14/2024] [Accepted: 02/01/2024] [Indexed: 03/05/2024]
Abstract
To study transcriptome dynamics without harming cells, it is essential to convert chemical bases. 4-Thiouridine (4sU) is a biocompatible uridine analogue that can be converted into a cytidine analogue. Although several reactions can convert 4sU into a cytidine analogue, few studies have compared the features of these reactions. In this study, we performed three reported base conversion reactions, including osmium tetroxide, iodoacetamide, and sodium periodate treatment, as well as a new reaction using 2,4-dinitrofluorobenzene. We compared the reaction time, conversion efficacy, and effects on reverse transcription. These reactions successfully converted 4sU into a cytidine analogue quantitatively using trinucleotides. However, the conversion efficacy and effect on reverse transcription vary depending on the reaction with the RNA transcript. OsO4 treatment followed by NH4Cl treatment showed the best base-conversion efficiency. Nevertheless, each reaction has its own advantages and disadvantages as a tool for studying the transcriptome. Therefore, it is crucial to select the appropriate reaction for the target of interest.
Collapse
Affiliation(s)
- Sana Ohashi
- Graduate
School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
| | - Mayu Nakamura
- Graduate
School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
| | - Susit Acharyya
- Graduate
School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
| | - Masahito Inagaki
- Graduate
School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
| | - Naoko Abe
- Graduate
School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
| | - Yasuaki Kimura
- Graduate
School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
| | - Fumitaka Hashiya
- Research
Center for Material Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
- CREST, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
| | - Hiroshi Abe
- Graduate
School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
- Research
Center for Material Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
- CREST, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
- Institute
for Glyco-core Research (iGCORE), Nagoya
University, Nagoya, Aichi 464-8602, Japan
| |
Collapse
|
16
|
Mandler MD, Maligireddy SS, Guiblet WM, Fitzsimmons CM, McDonald KS, Warrell DL, Batista PJ. The modification landscape of P. aeruginosa tRNAs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.21.581370. [PMID: 38529508 PMCID: PMC10962704 DOI: 10.1101/2024.02.21.581370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
RNA modifications have a substantial impact on tRNA function, with modifications in the anticodon loop contributing to translational fidelity and modifications in the tRNA core impacting structural stability. In bacteria, tRNA modifications are crucial for responding to stress and regulating the expression of virulence factors. Although tRNA modifications are well-characterized in a few model organisms, our knowledge of tRNA modifications in human pathogens, such as Pseudomonas aeruginosa, remains limited. Here we leveraged two orthogonal approaches to build a reference landscape of tRNA modifications in E. coli, which enabled us to identify similar modifications in P. aeruginosa. Our analysis revealed a substantial degree of conservation between the two organisms, while also uncovering potential sites of tRNA modification in P. aeruginosa tRNAs that are not present in E. coli. The mutational signature at one of these sites, position 46 of tRNAGln1(UUG) is dependent on the P. aeruginosa homolog of TapT, the enzyme responsible for the 3-(3-amino-3-carboxypropyl) uridine (acp3U) modification. Identifying which modifications are present on different tRNAs will uncover the pathways impacted by the different tRNA modifying enzymes, some of which play roles in determining virulence and pathogenicity.
Collapse
Affiliation(s)
- Mariana D Mandler
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health
| | - Siddhardha S Maligireddy
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health
| | - Wilfried M Guiblet
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health
| | - Christina M Fitzsimmons
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health
| | - Kayla S McDonald
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health
| | - Delayna L Warrell
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institues of Health
| | - Pedro J Batista
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health
| |
Collapse
|
17
|
Unruh BA, Weidemann DE, Miao L, Kojima S. Coordination of rhythmic RNA synthesis and degradation orchestrates 24- and 12-h RNA expression patterns in mouse fibroblasts. Proc Natl Acad Sci U S A 2024; 121:e2314690121. [PMID: 38315868 PMCID: PMC10873638 DOI: 10.1073/pnas.2314690121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 01/02/2024] [Indexed: 02/07/2024] Open
Abstract
Circadian RNA expression is essential to ultimately regulate a plethora of downstream rhythmic biochemical, physiological, and behavioral processes. Both transcriptional and posttranscriptional mechanisms are considered important to drive rhythmic RNA expression; however, the extent to which each regulatory process contributes to the rhythmic RNA expression remains controversial. To systematically address this, we monitored RNA dynamics using metabolic RNA labeling technology during a circadian cycle in mouse fibroblasts. We find that rhythmic RNA synthesis is the primary contributor of 24-h RNA rhythms, while rhythmic degradation is more important for 12-h RNA rhythms. These rhythms were predominantly regulated by Bmal1 and/or the core clock mechanism, and the interplay between rhythmic synthesis and degradation has a significant impact in shaping rhythmic RNA expression patterns. Interestingly, core clock RNAs are regulated by multiple rhythmic processes and have the highest amplitude of synthesis and degradation, presumably critical to sustain robust rhythmicity of cell-autonomous circadian rhythms. Our study yields invaluable insights into the temporal dynamics of both 24- and 12-h RNA rhythms in mouse fibroblasts.
Collapse
Affiliation(s)
- Benjamin A. Unruh
- Department of Biological Sciences, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA24061
| | - Douglas E. Weidemann
- Department of Biological Sciences, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA24061
| | - Lin Miao
- Department of Biological Sciences, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA24061
| | - Shihoko Kojima
- Department of Biological Sciences, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA24061
| |
Collapse
|
18
|
Klein DC, Lardo SM, Hainer SJ. The ncBAF Complex Regulates Transcription in AML Through H3K27ac Sensing by BRD9. CANCER RESEARCH COMMUNICATIONS 2024; 4:237-252. [PMID: 38126767 PMCID: PMC10831031 DOI: 10.1158/2767-9764.crc-23-0382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/02/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
The non-canonical BAF complex (ncBAF) subunit BRD9 is essential for acute myeloid leukemia (AML) cell viability but has an unclear role in leukemogenesis. Because BRD9 is required for ncBAF complex assembly through its DUF3512 domain, precise bromodomain inhibition is necessary to parse the role of BRD9 as a transcriptional regulator from that of a scaffolding protein. To understand the role of BRD9 bromodomain function in regulating AML, we selected a panel of five AML cell lines with distinct driver mutations, disease classifications, and genomic aberrations and subjected these cells to short-term BRD9 bromodomain inhibition. We examined the bromodomain-dependent growth of these cell lines, identifying a dependency in AML cell lines but not HEK293T cells. To define a mechanism through which BRD9 maintains AML cell survival, we examined nascent transcription, chromatin accessibility, and ncBAF complex binding genome-wide after bromodomain inhibition. We identified extensive regulation of transcription by BRD9 bromodomain activity, including repression of myeloid maturation factors and tumor suppressor genes, while standard AML chemotherapy targets were repressed by inhibition of the BRD9 bromodomain. BRD9 bromodomain activity maintained accessible chromatin at both gene promoters and gene-distal putative enhancer regions, in a manner that qualitatively correlated with enrichment of BRD9 binding. Furthermore, we identified reduced chromatin accessibility at GATA, ETS, and AP-1 motifs and increased chromatin accessibility at SNAIL-, HIC-, and TP53-recognized motifs after BRD9 inhibition. These data suggest a role for BRD9 in regulating AML cell differentiation through modulation of accessibility at hematopoietic transcription factor binding sites. SIGNIFICANCE The bromodomain-containing protein BRD9 is essential for AML cell viability, but it is unclear whether this requirement is due to the protein's role as an epigenetic reader. We inhibited this activity and identified altered gene-distal chromatin regulation and transcription consistent with a more mature myeloid cell state.
Collapse
Affiliation(s)
- David C. Klein
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Santana M. Lardo
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Sarah J. Hainer
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
19
|
Martinek V, Martin J, Belair C, Payea MJ, Malla S, Alexiou P, Maragkakis M. Deep learning and direct sequencing of labeled RNA captures transcriptome dynamics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.17.567581. [PMID: 38014155 PMCID: PMC10680836 DOI: 10.1101/2023.11.17.567581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Quantification of the dynamics of RNA metabolism is essential for understanding gene regulation in health and disease. Existing methods rely on metabolic labeling of nascent RNAs and physical separation or inference of labeling through PCR-generated mutations, followed by short-read sequencing. However, these methods are limited in their ability to identify transient decay intermediates or co-analyze RNA decay with cis-regulatory elements of RNA stability such as poly(A) tail length and modification status, at single molecule resolution. Here we use 5-ethynyl uridine (5EU) to label nascent RNA followed by direct RNA sequencing with nanopores. We developed RNAkinet, a deep convolutional and recurrent neural network that processes the electrical signal produced by nanopore sequencing to identify 5EU-labeled nascent RNA molecules. RNAkinet demonstrates generalizability to distinct cell types and organisms and reproducibly quantifies RNA kinetic parameters allowing the combined interrogation of RNA metabolism and cis-acting RNA regulatory elements.
Collapse
Affiliation(s)
- Vlastimil Martinek
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Jessica Martin
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
- Center for Alzheimer’s and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Cedric Belair
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Matthew J Payea
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Sulochan Malla
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Panagiotis Alexiou
- Centre for Molecular Medicine & Biobanking, University of Malta, MSD 2080 Msida, Malta
| | - Manolis Maragkakis
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| |
Collapse
|
20
|
Wang Y, Traugot CM, Bubenik JL, Li T, Sheng P, Hiers NM, Fernandez P, Li L, Bian J, Swanson MS, Xie M. N 6-methyladenosine in 7SK small nuclear RNA underlies RNA polymerase II transcription regulation. Mol Cell 2023; 83:3818-3834.e7. [PMID: 37820733 PMCID: PMC10873123 DOI: 10.1016/j.molcel.2023.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 08/07/2023] [Accepted: 09/13/2023] [Indexed: 10/13/2023]
Abstract
N6-methyladenosine (m6A) modifications play crucial roles in RNA metabolism. How m6A regulates RNA polymerase II (RNA Pol II) transcription remains unclear. We find that 7SK small nuclear RNA (snRNA), a regulator of RNA Pol II promoter-proximal pausing, is highly m6A-modified in non-small cell lung cancer (NSCLC) cells. In A549 cells, we identified eight m6A sites on 7SK and discovered methyltransferase-like 3 (METTL3) and alkB homolog 5 (ALKBH5) as the responsible writer and eraser. When the m6A-7SK is specifically erased by a dCasRx-ALKBH5 fusion protein, A549 cell growth is attenuated due to reduction of RNA Pol II transcription. Mechanistically, removal of m6A leads to 7SK structural rearrangements that facilitate sequestration of the positive transcription elongation factor b (P-TEFb) complex, which results in reduction of serine 2 phosphorylation (Ser2P) in the RNA Pol II C-terminal domain and accumulation of RNA Pol II in the promoter-proximal region. Taken together, we uncover that m6A modifications of a non-coding RNA regulate RNA Pol II transcription and NSCLC tumorigenesis.
Collapse
Affiliation(s)
- Yuzhi Wang
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, USA; UF Health Cancer Center, University of Florida, Gainesville, FL 32610, USA
| | - Conner M Traugot
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, USA; UF Health Cancer Center, University of Florida, Gainesville, FL 32610, USA
| | - Jodi L Bubenik
- Department of Molecular Genetics & Microbiology, University of Florida, Gainesville, FL 32610, USA; UF Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Tianqi Li
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, USA; UF Health Cancer Center, University of Florida, Gainesville, FL 32610, USA
| | - Peike Sheng
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, USA; UF Health Cancer Center, University of Florida, Gainesville, FL 32610, USA
| | - Nicholas M Hiers
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, USA; UF Health Cancer Center, University of Florida, Gainesville, FL 32610, USA
| | - Paul Fernandez
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, USA; UF Health Cancer Center, University of Florida, Gainesville, FL 32610, USA
| | - Lu Li
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, USA; UF Health Cancer Center, University of Florida, Gainesville, FL 32610, USA
| | - Jiang Bian
- UF Health Cancer Center, University of Florida, Gainesville, FL 32610, USA; Department of Health Outcomes & Biomedical Informatics, University of Florida, Gainesville, FL 32610, USA
| | - Maurice S Swanson
- Department of Molecular Genetics & Microbiology, University of Florida, Gainesville, FL 32610, USA; UF Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Mingyi Xie
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, USA; UF Health Cancer Center, University of Florida, Gainesville, FL 32610, USA; UF Genetics Institute, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
21
|
Miller GM, Brant TS, Goodrich JA, Kugel JF. Short-term exposure to ethanol induces transcriptional changes in nontumorigenic breast cells. FEBS Open Bio 2023; 13:1941-1952. [PMID: 37572351 PMCID: PMC10549231 DOI: 10.1002/2211-5463.13693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 06/15/2023] [Accepted: 08/11/2023] [Indexed: 08/14/2023] Open
Abstract
Breast cancer is a leading cause of cancer-related deaths in women. Many genetic and behavioral risk factors can contribute to the initiation and progression of breast cancer, one being alcohol consumption. Numerous epidemiological studies have established a positive correlation between alcohol consumption and breast cancer; however, the molecular basis for this link remains ill defined. Elucidating ethanol-induced changes to global transcriptional programming in breast cells is important to ultimately understand how alcohol and breast cancer are connected mechanistically. We investigated induced transcriptional changes in response to a short cellular exposure to moderate levels of alcohol. We treated the nontumorigenic breast cell line MCF10A and the tumorigenic breast cell lines MDA-MB-231 and MCF7, with ethanol for 6 h, and then captured the changes to ongoing transcription using 4-thiouridine metabolic labeling followed by deep sequencing. Only the MCF10A cell line exhibited statistically significant changes in newly transcribed RNA in response to ethanol treatment. Further experiments revealed that some ethanol-upregulated genes are sensitive to the dose of alcohol treatment, while others are not. Gene Ontology and biochemical pathway analyses revealed that ethanol-upregulated genes in MCF10A cells are enriched in biological functions that could contribute to cancer development.
Collapse
Affiliation(s)
| | - Tyler S. Brant
- Department of BiochemistryUniversity of Colorado BoulderCOUSA
| | | | | |
Collapse
|
22
|
Lu-Culligan WJ, Connor LJ, Xie Y, Ekundayo BE, Rose BT, Machyna M, Pintado-Urbanc AP, Zimmer JT, Vock IW, Bhanu NV, King MC, Garcia BA, Bleichert F, Simon MD. Acetyl-methyllysine marks chromatin at active transcription start sites. Nature 2023; 622:173-179. [PMID: 37731000 PMCID: PMC10845139 DOI: 10.1038/s41586-023-06565-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 08/23/2023] [Indexed: 09/22/2023]
Abstract
Lysine residues in histones and other proteins can be modified by post-translational modifications that encode regulatory information1. Lysine acetylation and methylation are especially important for regulating chromatin and gene expression2-4. Pathways involving these post-translational modifications are targets for clinically approved therapeutics to treat human diseases. Lysine methylation and acetylation are generally assumed to be mutually exclusive at the same residue. Here we report cellular lysine residues that are both methylated and acetylated on the same side chain to form Nε-acetyl-Nε-methyllysine (Kacme). We show that Kacme is found on histone H4 (H4Kacme) across a range of species and across mammalian tissues. Kacme is associated with marks of active chromatin, increased transcriptional initiation and is regulated in response to biological signals. H4Kacme can be installed by enzymatic acetylation of monomethyllysine peptides and is resistant to deacetylation by some HDACs in vitro. Kacme can be bound by chromatin proteins that recognize modified lysine residues, as we demonstrate with the crystal structure of acetyllysine-binding protein BRD2 bound to a histone H4Kacme peptide. These results establish Kacme as a cellular post-translational modification with the potential to encode information distinct from methylation and acetylation alone and demonstrate that Kacme has all the hallmarks of a post-translational modification with fundamental importance to chromatin biology.
Collapse
Affiliation(s)
- William J Lu-Culligan
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, USA
- Institute of Biomolecular Design & Discovery, Yale University, West Haven, CT, USA
| | - Leah J Connor
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, USA
- Institute of Biomolecular Design & Discovery, Yale University, West Haven, CT, USA
| | - Yixuan Xie
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO, USA
| | - Babatunde E Ekundayo
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, USA
| | - Brendan T Rose
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, USA
- Institute of Biomolecular Design & Discovery, Yale University, West Haven, CT, USA
| | - Martin Machyna
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, USA
- Institute of Biomolecular Design & Discovery, Yale University, West Haven, CT, USA
| | - Andreas P Pintado-Urbanc
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, USA
- Institute of Biomolecular Design & Discovery, Yale University, West Haven, CT, USA
| | - Joshua T Zimmer
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, USA
- Institute of Biomolecular Design & Discovery, Yale University, West Haven, CT, USA
| | - Isaac W Vock
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, USA
- Institute of Biomolecular Design & Discovery, Yale University, West Haven, CT, USA
| | - Natarajan V Bhanu
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO, USA
| | - Megan C King
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA
| | - Benjamin A Garcia
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO, USA
| | - Franziska Bleichert
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, USA
| | - Matthew D Simon
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, USA.
- Institute of Biomolecular Design & Discovery, Yale University, West Haven, CT, USA.
| |
Collapse
|
23
|
Shu X, Huang C, Li T, Cao J, Liu J. a 6A-seq: N 6-allyladenosine-based cellular messenger RNA metabolic labelling and sequencing. FUNDAMENTAL RESEARCH 2023; 3:657-664. [PMID: 38933292 PMCID: PMC11197751 DOI: 10.1016/j.fmre.2023.04.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/04/2023] [Accepted: 04/19/2023] [Indexed: 06/28/2024] Open
Abstract
The integration of RNA metabolic labelling by nucleoside analogues with high-throughput RNA sequencing has been harnessed to study RNA dynamics. The immunoprecipitation purification or chemical pulldown technique is generally required to enrich the analogue-labelled RNAs. Here we developed an a6A-seq method, which takes advantage of N6-allyladenosine (a6A) metabolic labelling on cellular mRNAs and profiles them in an immunoprecipitation-free and mutation-based manner. a6A plays a role as a chemical sequencing tag in that the iodination of a6A in mRNAs results in 1,N 6-cyclized adenosine (cyc-A), which induces base misincorporation during RNA reverse transcription, thus making a6A-labelled mRNAs detectable by sequencing. A nucleic acid melting assay was utilized to investigate why cyc-A prefers to be paired with guanine. a6A-seq was utilized to study cellular gene expression changes under a methionine-free stress condition. Compared with regular RNA-seq, a6A-seq could more sensitively detect the change of mRNA production over a time scale. The experiment of a6A-containing mRNA immunoprecipitation followed by qPCR successfully validated the high-throughput a6A-seq data. Together, our results show a6A-seq is an effective tool to study RNA dynamics.
Collapse
Affiliation(s)
- Xiao Shu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Zheda Road 38, Hangzhou 310027, China
| | - Chenyang Huang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Zheda Road 38, Hangzhou 310027, China
| | - Tengwei Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Zheda Road 38, Hangzhou 310027, China
| | - Jie Cao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Zheda Road 38, Hangzhou 310027, China
- Life Sciences Institute, Zhejiang University, 866 Yuhangtang Rd, Hangzhou 310058, China
| | - Jianzhao Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Zheda Road 38, Hangzhou 310027, China
- Life Sciences Institute, Zhejiang University, 866 Yuhangtang Rd, Hangzhou 310058, China
| |
Collapse
|
24
|
Klein DC, Lardo SM, McCannell KN, Hainer SJ. FACT regulates pluripotency through proximal and distal regulation of gene expression in murine embryonic stem cells. BMC Biol 2023; 21:167. [PMID: 37542287 PMCID: PMC10403911 DOI: 10.1186/s12915-023-01669-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 07/26/2023] [Indexed: 08/06/2023] Open
Abstract
BACKGROUND The FACT complex is a conserved histone chaperone with critical roles in transcription and histone deposition. FACT is essential in pluripotent and cancer cells, but otherwise dispensable for most mammalian cell types. FACT deletion or inhibition can block induction of pluripotent stem cells, yet the mechanism through which FACT regulates cell fate decisions remains unclear. RESULTS To explore the mechanism for FACT function, we generated AID-tagged murine embryonic cell lines for FACT subunit SPT16 and paired depletion with nascent transcription and chromatin accessibility analyses. We also analyzed SPT16 occupancy using CUT&RUN and found that SPT16 localizes to both promoter and enhancer elements, with a strong overlap in binding with OCT4, SOX2, and NANOG. Over a timecourse of SPT16 depletion, nucleosomes invade new loci, including promoters, regions bound by SPT16, OCT4, SOX2, and NANOG, and TSS-distal DNaseI hypersensitive sites. Simultaneously, transcription of Pou5f1 (encoding OCT4), Sox2, Nanog, and enhancer RNAs produced from these genes' associated enhancers are downregulated. CONCLUSIONS We propose that FACT maintains cellular pluripotency through a precise nucleosome-based regulatory mechanism for appropriate expression of both coding and non-coding transcripts associated with pluripotency.
Collapse
Affiliation(s)
- David C Klein
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Santana M Lardo
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Kurtis N McCannell
- Department of Biology and Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Sarah J Hainer
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
25
|
Mahendrawada L, Warfield L, Donczew R, Hahn S. Surprising connections between DNA binding and function for the near-complete set of yeast transcription factors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.25.550593. [PMID: 37546716 PMCID: PMC10402042 DOI: 10.1101/2023.07.25.550593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
DNA sequence-specific transcription factors (TFs) modulate transcription and chromatin architecture, acting from regulatory sites in enhancers and promoters of eukaryotic genes. How TFs locate their DNA targets and how multiple TFs cooperate to regulate individual genes is still unclear. Most yeast TFs are thought to regulate transcription via binding to upstream activating sequences, situated within a few hundred base pairs upstream of the regulated gene. While this model has been validated for individual TFs and specific genes, it has not been tested in a systematic way with the large set of yeast TFs. Here, we have integrated information on the binding and expression targets for the near-complete set of yeast TFs. While we found many instances of functional TF binding sites in upstream regulatory regions, we found many more instances that do not fit this model. In many cases, rapid TF depletion affects gene expression where there is no detectable binding of that TF to the upstream region of the affected gene. In addition, for most TFs, only a small fraction of bound TFs regulates the nearby gene, showing that TF binding does not automatically correspond to regulation of the linked gene. Finally, we found that only a small percentage of TFs are exclusively strong activators or repressors with most TFs having dual function. Overall, our comprehensive mapping of TF binding and regulatory targets have both confirmed known TF relationships and revealed surprising properties of TF function.
Collapse
|
26
|
Unruh BA, Weidemann DE, Kojima S. Coordination of rhythmic RNA synthesis and degradation orchestrates 24-hour and 12-hour RNA expression patterns in mouse fibroblasts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.26.550672. [PMID: 37546997 PMCID: PMC10402069 DOI: 10.1101/2023.07.26.550672] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Circadian RNA expression is essential to ultimately regulate a plethora of downstream rhythmic biochemical, physiological, and behavioral processes. Both transcriptional and post-transcriptional mechanisms are considered important to drive rhythmic RNA expression, however, the extent to which each regulatory process contributes to the rhythmic RNA expression remains controversial. To systematically address this, we monitored RNA dynamics using metabolic RNA labeling technology during a circadian cycle in mouse fibroblasts. We find that rhythmic RNA synthesis is the primary contributor of 24 hr RNA rhythms, while rhythmic degradation is more important for 12 hr RNA rhythms. These rhythms were predominantly regulated by Bmal1 and/or the core clock mechanism, and interplay between rhythmic synthesis and degradation has a significant impact in shaping rhythmic RNA expression patterns. Interestingly, core clock RNAs are regulated by multiple rhythmic processes and have the highest amplitude of synthesis and degradation, presumably critical to sustain robust rhythmicity of cell-autonomous circadian rhythms. Our study yields invaluable insights into the temporal dynamics of both 24 hr and 12 hr RNA rhythms in mouse fibroblasts.
Collapse
Affiliation(s)
- Benjamin A Unruh
- Department of Biological Sciences, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA USA
| | - Douglas E Weidemann
- Department of Biological Sciences, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA USA
| | - Shihoko Kojima
- Department of Biological Sciences, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA USA
| |
Collapse
|
27
|
Thompson MK, Ceccarelli A, Ish-Horowicz D, Davis I. Dynamically regulated transcription factors are encoded by highly unstable mRNAs in the Drosophila larval brain. RNA (NEW YORK, N.Y.) 2023; 29:1020-1032. [PMID: 37041032 PMCID: PMC10275270 DOI: 10.1261/rna.079552.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
The level of each RNA species depends on the balance between its rates of production and decay. Although previous studies have measured RNA decay across the genome in tissue culture and single-celled organisms, few experiments have been performed in intact complex tissues and organs. It is therefore unclear whether the determinants of RNA decay found in cultured cells are preserved in an intact tissue, and whether they differ between neighboring cell types and are regulated during development. To address these questions, we measured RNA synthesis and decay rates genome wide via metabolic labeling of whole cultured Drosophila larval brains using 4-thiouridine. Our analysis revealed that decay rates span a range of more than 100-fold, and that RNA stability is linked to gene function, with mRNAs encoding transcription factors being much less stable than mRNAs involved in core metabolic functions. Surprisingly, among transcription factor mRNAs there was a clear demarcation between more widely used transcription factors and those that are expressed only transiently during development. mRNAs encoding transient transcription factors are among the least stable in the brain. These mRNAs are characterized by epigenetic silencing in most cell types, as shown by their enrichment with the histone modification H3K27me3. Our data suggest the presence of an mRNA destabilizing mechanism targeted to these transiently expressed transcription factors to allow their levels to be regulated rapidly with high precision. Our study also demonstrates a general method for measuring mRNA transcription and decay rates in intact organs or tissues, offering insights into the role of mRNA stability in the regulation of complex developmental programs.
Collapse
Affiliation(s)
- Mary Kay Thompson
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Arianna Ceccarelli
- Mathematical Institute, University of Oxford, Oxford OX1 3LB, United Kingdom
| | - David Ish-Horowicz
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Ilan Davis
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| |
Collapse
|
28
|
Vock IW, Simon MD. bakR: uncovering differential RNA synthesis and degradation kinetics transcriptome-wide with Bayesian hierarchical modeling. RNA (NEW YORK, N.Y.) 2023; 29:958-976. [PMID: 37028916 DOI: 10.1261/rna.079451.122] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
Differential expression analysis of RNA sequencing (RNA-seq) data can identify changes in cellular RNA levels, but provides limited information about the kinetic mechanisms underlying such changes. Nucleotide recoding RNA-seq methods (NR-seq; e.g., TimeLapse-seq, SLAM-seq, etc.) address this shortcoming and are widely used approaches to identify changes in RNA synthesis and degradation kinetics. While advanced statistical models implemented in user-friendly software (e.g., DESeq2) have ensured the statistical rigor of differential expression analyses, no such tools that facilitate differential kinetic analysis with NR-seq exist. Here, we report the development of Bayesian analysis of the kinetics of RNA (bakR; https:// github.com/simonlabcode/bakR), an R package to address this need. bakR relies on Bayesian hierarchical modeling of NR-seq data to increase statistical power by sharing information across transcripts. Analyses of simulated data confirmed that bakR implementations of the hierarchical model outperform attempts to analyze differential kinetics with existing models. bakR also uncovers biological signals in real NR-seq data sets and provides improved analyses of existing data sets. This work establishes bakR as an important tool for identifying differential RNA synthesis and degradation kinetics.
Collapse
Affiliation(s)
- Isaac W Vock
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06536, USA
- Institute of Biomolecular Design and Discovery, Yale University, West Haven, Connecticut 06477, USA
| | - Matthew D Simon
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06536, USA
- Institute of Biomolecular Design and Discovery, Yale University, West Haven, Connecticut 06477, USA
| |
Collapse
|
29
|
Gvozdenov Z, Barcutean Z, Struhl K. Functional analysis of a random-sequence chromosome reveals a high level and the molecular nature of transcriptional noise in yeast cells. Mol Cell 2023; 83:1786-1797.e5. [PMID: 37137302 PMCID: PMC10247422 DOI: 10.1016/j.molcel.2023.04.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 02/18/2023] [Accepted: 04/10/2023] [Indexed: 05/05/2023]
Abstract
We measure transcriptional noise in yeast by analyzing chromatin structure and transcription of an 18-kb region of DNA whose sequence was randomly generated. Nucleosomes fully occupy random-sequence DNA, but nucleosome-depleted regions (NDRs) are much less frequent, and there are fewer well-positioned nucleosomes and shorter nucleosome arrays. Steady-state levels of random-sequence RNAs are comparable to yeast mRNAs, although transcription and decay rates are higher. Transcriptional initiation from random-sequence DNA occurs at numerous sites, indicating very low intrinsic specificity of the RNA Pol II machinery. In contrast, poly(A) profiles of random-sequence RNAs are roughly comparable to those of yeast mRNAs, suggesting limited evolutionary restraints on poly(A) site choice. Random-sequence RNAs show higher cell-to-cell variability than yeast mRNAs, suggesting that functional elements limit variability. These observations indicate that transcriptional noise occurs at high levels in yeast, and they provide insight into how chromatin and transcription patterns arise from the evolved yeast genome.
Collapse
Affiliation(s)
- Zlata Gvozdenov
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Zeno Barcutean
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Kevin Struhl
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
30
|
Zimmer JT, Vock IW, Schofield JA, Kiefer L, Moon MH, Simon MD. Improving the study of RNA dynamics through advances in RNA-seq with metabolic labeling and nucleotide-recoding chemistry. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.24.542133. [PMID: 37292657 PMCID: PMC10245837 DOI: 10.1101/2023.05.24.542133] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
RNA metabolic labeling using 4-thiouridine (s4U) captures the dynamics of RNA synthesis and decay. The power of this approach is dependent on appropriate quantification of labeled and unlabeled sequencing reads, which can be compromised by the apparent loss of s4U-labeled reads in a process we refer to as dropout. Here we show that s4U-containing transcripts can be selectively lost when RNA samples are handled under sub-optimal conditions, but that this loss can be minimized using an optimized protocol. We demonstrate a second cause of dropout in nucleotide recoding and RNA sequencing (NR-seq) experiments that is computational and downstream of library preparation. NR-seq experiments involve chemically converting s4U from a uridine analog to a cytidine analog and using the apparent T-to-C mutations to identify the populations of newly synthesized RNA. We show that high levels of T-to-C mutations can prevent read alignment with some computational pipelines, but that this bias can be overcome using improved alignment pipelines. Importantly, kinetic parameter estimates are affected by dropout independent of the NR chemistry employed, and all chemistries are practically indistinguishable in bulk, short-read RNA-seq experiments. Dropout is an avoidable problem that can be identified by including unlabeled controls, and mitigated through improved sample handing and read alignment that together improve the robustness and reproducibility of NR-seq experiments.
Collapse
Affiliation(s)
- Joshua T. Zimmer
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06511, USA
- Institute for Biomolecular Design and Discovery, Yale University, West Haven, CT 06516, USA
| | - Isaac W. Vock
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06511, USA
- Institute for Biomolecular Design and Discovery, Yale University, West Haven, CT 06516, USA
| | - Jeremy A. Schofield
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06511, USA
- Institute for Biomolecular Design and Discovery, Yale University, West Haven, CT 06516, USA
- Current address: Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA 98105, USA
| | - Lea Kiefer
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06511, USA
- Institute for Biomolecular Design and Discovery, Yale University, West Haven, CT 06516, USA
- Current address: Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Michelle H. Moon
- Institute for Biomolecular Design and Discovery, Yale University, West Haven, CT 06516, USA
- Department of Chemistry, Yale University, New Haven, CT 06511, USA
| | - Matthew D. Simon
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06511, USA
- Institute for Biomolecular Design and Discovery, Yale University, West Haven, CT 06516, USA
| |
Collapse
|
31
|
Xu Z, Sziraki A, Lee J, Zhou W, Cao J. PerturbSci-Kinetics: Dissecting key regulators of transcriptome kinetics through scalable single-cell RNA profiling of pooled CRISPR screens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.29.526143. [PMID: 36778497 PMCID: PMC9915486 DOI: 10.1101/2023.01.29.526143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Here we described PerturbSci-Kinetics, a novel combinatorial indexing method for capturing three-layer single-cell readout (i.e., whole transcriptomes, nascent transcriptomes, sgRNA identities) across hundreds of genetic perturbations. Through PerturbSci-Kinetics profiling of pooled CRISPR screens targeting a variety of biological processes, we were able to decipher the complexity of RNA regulations at multiple levels (e.g., synthesis, processing, degradation), and revealed key regulators involved in miRNA and mitochondrial RNA processing pathways. Our technique opens the possibility of systematically decoding the genome-wide regulatory network underlying RNA temporal dynamics at scale and cost-effectively.
Collapse
|
32
|
Schofield JA, Hahn S. Broad compatibility between yeast UAS elements and core promoters and identification of promoter elements that determine cofactor specificity. Cell Rep 2023; 42:112387. [PMID: 37058407 PMCID: PMC10567116 DOI: 10.1016/j.celrep.2023.112387] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/30/2023] [Accepted: 03/28/2023] [Indexed: 04/15/2023] Open
Abstract
Three classes of yeast protein-coding genes are distinguished by their dependence on the transcription cofactors TFIID, SAGA, and Mediator (MED) Tail, but whether this dependence is determined by the core promoter, upstream activating sequences (UASs), or other gene features is unclear. Also unclear is whether UASs can broadly activate transcription from the different promoter classes. Here, we measure transcription and cofactor specificity for thousands of UAS-core promoter combinations and find that most UASs broadly activate promoters regardless of regulatory class, while few display strong promoter specificity. However, matching UASs and promoters from the same gene class is generally important for optimal expression. We find that sensitivity to rapid depletion of MED Tail or SAGA is dependent on the identity of both UAS and core promoter, while dependence on TFIID localizes to only the promoter. Finally, our results suggest the role of TATA and TATA-like promoter sequences in MED Tail function.
Collapse
Affiliation(s)
- Jeremy A Schofield
- Basic Sciences Division, Fred Hutchinson Cancer Center, 1100 Fairview Avenue N, Seattle, WA 98105, USA
| | - Steven Hahn
- Basic Sciences Division, Fred Hutchinson Cancer Center, 1100 Fairview Avenue N, Seattle, WA 98105, USA.
| |
Collapse
|
33
|
Mimoso CA, Adelman K. U1 snRNP increases RNA Pol II elongation rate to enable synthesis of long genes. Mol Cell 2023; 83:1264-1279.e10. [PMID: 36965480 PMCID: PMC10135401 DOI: 10.1016/j.molcel.2023.03.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/06/2023] [Accepted: 02/28/2023] [Indexed: 03/27/2023]
Abstract
The expansion of introns within mammalian genomes poses a challenge for the production of full-length messenger RNAs (mRNAs), with increasing evidence that these long AT-rich sequences present obstacles to transcription. Here, we investigate RNA polymerase II (RNAPII) elongation at high resolution in mammalian cells and demonstrate that RNAPII transcribes faster across introns. Moreover, we find that this acceleration requires the association of U1 snRNP (U1) with the elongation complex at 5' splice sites. The role of U1 to stimulate elongation rate through introns reduces the frequency of both premature termination and transcriptional arrest, thereby dramatically increasing RNA production. We further show that changes in RNAPII elongation rate due to AT content and U1 binding explain previous reports of pausing or termination at splice junctions and the edge of CpG islands. We propose that U1-mediated acceleration of elongation has evolved to mitigate the risks that long AT-rich introns pose to transcript completion.
Collapse
Affiliation(s)
- Claudia A Mimoso
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Karen Adelman
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Ludwig Center at Harvard, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
34
|
Yoo M, Choi DC, Murphy A, Ahsan AM, Junn E. MicroRNA-593-5p contributes to cell death following exposure to 1-methyl-4-phenylpyridinium (MPP +) by targeting PTEN-induced putative kinase 1 (PINK1). J Biol Chem 2023; 299:104709. [PMID: 37060996 DOI: 10.1016/j.jbc.2023.104709] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 04/03/2023] [Accepted: 04/08/2023] [Indexed: 04/17/2023] Open
Abstract
Neurodegenerative diseases are characterized by a decline in neuronal function and structure, leading to neuronal death. Understanding the molecular mechanisms of neuronal death is crucial for developing therapeutics. MicroRNAs (miRs) are small non-coding RNAs that regulate gene expression by degrading target mRNAs or inhibiting translation. MiR dysregulation has been linked to many neurodegenerative diseases, but the underlying mechanisms are not well understood. As mitochondrial dysfunction is one of the common molecular mechanisms leading to neuronal death in many neurodegenerative diseases, here we studied miRs that modulate neuronal death caused by 1-methyl-4-phenylpyridinium (MPP+), an inhibitor of complex I in mitochondria. We identified miR-593-5p, levels of which were increased in SH-SY5Y human neuronal cells, after exposure to MPP+. We found that intracellular Ca2+, but not of reactive oxygen species (ROS), mediated this miR-593-5p increase. Furthermore, we found the increase in miR-593-5p was due to enhanced stability, not increased transcription or miR processing. Importantly, we show the increase in miR-593-5p contributed to MPP+-induced cell death. Our data revealed that miR-593-5p inhibits a signaling pathway involving PTEN-induced putative kinase 1 (PINK1) and Parkin, two proteins responsible for the removal of damaged mitochondria from cells, by targeting the coding sequence of PINK1 mRNA. Our findings suggest that miR-593-5p contributes to neuronal death resulting from MPP+ toxicity, in part, by impeding the PINK1/Parkin-mediated pathway that facilitates the clearance of damaged mitochondria. Taken together, our observations highlight the potential significance of inhibiting miR-593-5p as a therapeutic approach for neurodegenerative diseases.
Collapse
Affiliation(s)
- Myungsik Yoo
- RWJMS Institute for Neurological Therapeutics, Department of Neurology, Rutgers -Robert Wood Johnson Medical School, Piscataway, NJ. 08854, USA
| | - Doo Chul Choi
- RWJMS Institute for Neurological Therapeutics, Department of Neurology, Rutgers -Robert Wood Johnson Medical School, Piscataway, NJ. 08854, USA
| | - Aleta Murphy
- RWJMS Institute for Neurological Therapeutics, Department of Neurology, Rutgers -Robert Wood Johnson Medical School, Piscataway, NJ. 08854, USA
| | - Atiq M Ahsan
- RWJMS Institute for Neurological Therapeutics, Department of Neurology, Rutgers -Robert Wood Johnson Medical School, Piscataway, NJ. 08854, USA
| | - Eunsung Junn
- RWJMS Institute for Neurological Therapeutics, Department of Neurology, Rutgers -Robert Wood Johnson Medical School, Piscataway, NJ. 08854, USA.
| |
Collapse
|
35
|
Sugio Y, Yamagami R, Shigi N, Hori H. A selective and sensitive detection system for 4-thiouridine modification in RNA. RNA (NEW YORK, N.Y.) 2023; 29:241-251. [PMID: 36411056 PMCID: PMC9891261 DOI: 10.1261/rna.079445.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
4-Thiouridine (s4U) is a modified nucleoside, found at positions 8 and 9 in tRNA from eubacteria and archaea. Studies of the biosynthetic pathway and physiological role of s4U in tRNA are ongoing in the tRNA modification field. s4U has also recently been utilized as a biotechnological tool for analysis of RNAs. Therefore, a selective and sensitive system for the detection of s4U is essential for progress in the fields of RNA technologies and tRNA modification. Here, we report the use of biotin-coupled 2-aminoethyl-methanethiosulfonate (MTSEA biotin-XX) for labeling of s4U and demonstrate that the system is sensitive and quantitative. This technique can be used without denaturation; however, addition of a denaturation step improves the limit of detection. Thermus thermophilus tRNAs, which abundantly contain 5-methyl-2-thiouridine, were tested to investigate the selectivity of the MTSEA biotin-XX s4U detection system. The system did not react with 5-methyl-2-thiouridine in tRNAs from a T. thermophilus tRNA 4-thiouridine synthetase (thiI) gene deletion strain. Thus, the most useful advantage of the MTSEA biotin-XX s4U detection system is that MTSEA biotin-XX reacts only with s4U and not with other sulfur-containing modified nucleosides such as s2U derivatives in tRNAs. Furthermore, the MTSEA biotin-XX s4U detection system can analyze multiple samples in a short time span. The MTSEA biotin-XX s4U detection system can also be used for the analysis of s4U formation in tRNA. Finally, we demonstrate that the MTSEA biotin-XX system can be used to visualize newly transcribed tRNAs in S. cerevisiae cells.
Collapse
Affiliation(s)
- Yuzuru Sugio
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Ryota Yamagami
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Naoki Shigi
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Koto-ku, Tokyo 135-0064, Japan
| | - Hiroyuki Hori
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Matsuyama, Ehime 790-8577, Japan
| |
Collapse
|
36
|
Stein CB, Field AR, Mimoso CA, Zhao C, Huang KL, Wagner EJ, Adelman K. Integrator endonuclease drives promoter-proximal termination at all RNA polymerase II-transcribed loci. Mol Cell 2022; 82:4232-4245.e11. [PMID: 36309014 PMCID: PMC9680917 DOI: 10.1016/j.molcel.2022.10.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 08/28/2022] [Accepted: 10/04/2022] [Indexed: 11/07/2022]
Abstract
RNA polymerase II (RNAPII) pausing in early elongation is critical for gene regulation. Paused RNAPII can be released into productive elongation by the kinase P-TEFb or targeted for premature termination by the Integrator complex. Integrator comprises endonuclease and phosphatase activities, driving termination by cleavage of nascent RNA and removal of stimulatory phosphorylation. We generated a degron system for rapid Integrator endonuclease (INTS11) depletion to probe the direct consequences of Integrator-mediated RNA cleavage. Degradation of INTS11 elicits nearly universal increases in active early elongation complexes. However, these RNAPII complexes fail to achieve optimal elongation rates and exhibit persistent Integrator phosphatase activity. Thus, only short transcripts are significantly upregulated following INTS11 loss, including transcription factors, signaling regulators, and non-coding RNAs. We propose a uniform molecular function for INTS11 across all RNAPII-transcribed loci, with differential effects on particular genes, pathways, or RNA biotypes reflective of transcript lengths rather than specificity of Integrator activity.
Collapse
Affiliation(s)
- Chad B Stein
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Andrew R Field
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Ludwig Center at Harvard, Boston, MA 02115, USA
| | - Claudia A Mimoso
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - ChenCheng Zhao
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Kai-Lieh Huang
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Eric J Wagner
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Karen Adelman
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Ludwig Center at Harvard, Boston, MA 02115, USA; Broad Institute, Cambridge, MA 02142, USA.
| |
Collapse
|
37
|
Warfield L, Donczew R, Mahendrawada L, Hahn S. Yeast Mediator facilitates transcription initiation at most promoters via a Tail-independent mechanism. Mol Cell 2022; 82:4033-4048.e7. [PMID: 36208626 PMCID: PMC9637718 DOI: 10.1016/j.molcel.2022.09.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 05/12/2022] [Accepted: 09/13/2022] [Indexed: 11/06/2022]
Abstract
Mediator (MED) is a conserved factor with important roles in basal and activated transcription. Here, we investigate the genome-wide roles of yeast MED by rapid depletion of its activator-binding domain (Tail) and monitoring changes in nascent transcription. Rapid Tail depletion surprisingly reduces transcription from only a small subset of genes. At most of these Tail-dependent genes, in unperturbed conditions, MED is detected at both the UASs and promoters. In contrast, at most Tail-independent genes, we find MED primarily at promoters but not at the UASs. These results suggest that MED Tail and activator-mediated MED recruitment regulates only a small subset of genes. Furthermore, we define three classes of genes that differ in PIC assembly pathways and the requirements for MED Tail, SAGA, TFIID, and BET factors Bdf1/2. Our combined results have broad implications for the roles of MED, other coactivators, and mechanisms of transcriptional regulation at different gene classes.
Collapse
Affiliation(s)
- Linda Warfield
- Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Mailstop A1-162, Seattle, WA 98109, USA
| | - Rafal Donczew
- Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Mailstop A1-162, Seattle, WA 98109, USA
| | - Lakshmi Mahendrawada
- Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Mailstop A1-162, Seattle, WA 98109, USA
| | - Steven Hahn
- Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Mailstop A1-162, Seattle, WA 98109, USA.
| |
Collapse
|
38
|
Courvan MCS, Niederer RO, Vock IW, Kiefer L, Gilbert W, Simon M. Internally controlled RNA sequencing comparisons using nucleoside recoding chemistry. Nucleic Acids Res 2022; 50:e110. [PMID: 36018791 PMCID: PMC9638901 DOI: 10.1093/nar/gkac693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/23/2022] [Indexed: 11/30/2022] Open
Abstract
Quantitative comparisons of RNA levels from different samples can lead to new biological understanding if they are able to distinguish biological variation from variable sample preparation. These challenges are pronounced in comparisons that require complex biochemical manipulations (e.g. isolating polysomes to study translation). Here, we present Transcript Regulation Identified by Labeling with Nucleoside Analogues in Cell Culture (TILAC), an internally controlled approach for quantitative comparisons of RNA content. TILAC uses two metabolic labels, 4-thiouridine (s4U) and 6-thioguanosine (s6G), to differentially label RNAs in cells, allowing experimental and control samples to be pooled prior to downstream biochemical manipulations. TILAC leverages nucleoside recoding chemistry to generate characteristic sequencing signatures for each label and uses statistical modeling to compare the abundance of RNA transcripts between samples. We verified the performance of TILAC in transcriptome-scale experiments involving RNA polymerase II inhibition and heat shock. We then applied TILAC to quantify changes in mRNA association with actively translating ribosomes during sodium arsenite stress and discovered a set of transcripts that are translationally upregulated, including MCM2 and DDX5. TILAC is broadly applicable to uncover differences between samples leading to improved biological insights.
Collapse
Affiliation(s)
- Meaghan C S Courvan
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT06536, USA
- Institute of Biomolecular Design and Discovery, Yale University, West Haven, CT06477, USA
| | - Rachel O Niederer
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT06536, USA
| | - Isaac W Vock
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT06536, USA
- Institute of Biomolecular Design and Discovery, Yale University, West Haven, CT06477, USA
| | - Lea Kiefer
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT06536, USA
- Institute of Biomolecular Design and Discovery, Yale University, West Haven, CT06477, USA
| | - Wendy V Gilbert
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT06536, USA
| | - Matthew D Simon
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT06536, USA
- Institute of Biomolecular Design and Discovery, Yale University, West Haven, CT06477, USA
| |
Collapse
|
39
|
Gupta M, Levine SR, Spitale RC. Probing Nascent RNA with Metabolic Incorporation of Modified Nucleosides. Acc Chem Res 2022; 55:2647-2659. [PMID: 36073807 DOI: 10.1021/acs.accounts.2c00347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The discovery of previously unknown functional roles of RNA in biological systems has led to increased interest in revealing novel RNA molecules as therapeutic targets and the development of tools to better understand the role of RNA in cells. RNA metabolic labeling broadens the scope of studying RNA by incorporating of unnatural nucleobases and nucleosides with bioorthogonal handles that can be utilized for chemical modification of newly synthesized cellular RNA. Such labeling of RNA provides access to applications including measurement of the rates of synthesis and decay of RNA, cellular imaging for RNA localization, and selective enrichment of nascent RNA from the total RNA pool. Several unnatural nucleosides and nucleobases have been shown to be incorporated into RNA by endogenous RNA synthesis machinery of the cells. RNA metabolic labeling can also be performed in a cell-specific manner, where only cells expressing an essential enzyme incorporate the unnatural nucleobase into their RNA. Although several discoveries have been enabled by the current RNA metabolic labeling methods, some key challenges still exist: (i) toxicity of unnatural analogues, (ii) lack of RNA-compatible conjugation chemistries, and (iii) background incorporation of modified analogues in cell-specific RNA metabolic labeling. In this Account, we showcase work done in our laboratory to overcome these challenges faced by RNA metabolic labeling.To begin, we discuss the cellular pathways that have been utilized to perform RNA metabolic labeling and study the interaction between nucleosides and nucleoside kinases. Then we discuss the use of vinyl nucleosides for metabolic labeling and demonstrate the low toxicity of 5-vinyluridine (5-VUrd) compared to other widely used nucleosides. Next, we discuss cell-specific RNA metabolic labeling with unnatural nucleobases, which requires the expression of a specific phosphoribosyl transferase (PRT) enzyme for incorporation of the nucleobase into RNA. In the course of this work, we discovered the enzyme uridine monophosphate synthase (UMPS), which is responsible for nonspecific labeling with modified uracil nucleobases. We were able to overcome this background labeling by discovering a mutant uracil PRT (UPRT) that demonstrates highly specific RNA metabolic labeling with 5-vinyluracil (5-VU). Furthermore, we discuss the optimization of inverse-electron-demand Diels-Alder (IEDDA) reactions for performing chemical modification of vinyl nucleosides to achieve covalent conjugation of RNA without transcript degradation. Finally, we highlight our latest endeavor: the development of mutually orthogonal chemical reactions for selective labeling of 5-VUrd and 2-vinyladenosine (2-VAdo), which allows for potential use of multiple vinyl nucleosides for simultaneous investigation of multiple cellular processes involving RNA. We hope that our methods and discoveries encourage scientists studying biological systems to include RNA metabolic labeling in their toolkit for studying RNA and its role in biological systems.
Collapse
|
40
|
Esposito E, Weidemann DE, Rogers JM, Morton CM, Baybay EK, Chen J, Hauf S. Mitotic checkpoint gene expression is tuned by codon usage bias. EMBO J 2022; 41:e107896. [PMID: 35811551 PMCID: PMC9340482 DOI: 10.15252/embj.2021107896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/30/2022] [Accepted: 06/06/2022] [Indexed: 11/09/2022] Open
Abstract
The mitotic checkpoint (also called spindle assembly checkpoint, SAC) is a signaling pathway that safeguards proper chromosome segregation. Correct functioning of the SAC depends on adequate protein concentrations and appropriate stoichiometries between SAC proteins. Yet very little is known about the regulation of SAC gene expression. Here, we show in the fission yeast Schizosaccharomyces pombe that a combination of short mRNA half-lives and long protein half-lives supports stable SAC protein levels. For the SAC genes mad2+ and mad3+ , their short mRNA half-lives are caused, in part, by a high frequency of nonoptimal codons. In contrast, mad1+ mRNA has a short half-life despite a higher frequency of optimal codons, and despite the lack of known RNA-destabilizing motifs. Hence, different SAC genes employ different strategies of expression. We further show that Mad1 homodimers form co-translationally, which may necessitate a certain codon usage pattern. Taken together, we propose that the codon usage of SAC genes is fine-tuned to ensure proper SAC function. Our work shines light on gene expression features that promote spindle assembly checkpoint function and suggests that synonymous mutations may weaken the checkpoint.
Collapse
Affiliation(s)
- Eric Esposito
- Department of Biological SciencesVirginia TechBlacksburgVAUSA
- Fralin Life Sciences InstituteVirginia TechBlacksburgVAUSA
| | - Douglas E Weidemann
- Department of Biological SciencesVirginia TechBlacksburgVAUSA
- Fralin Life Sciences InstituteVirginia TechBlacksburgVAUSA
| | - Jessie M Rogers
- Department of Biological SciencesVirginia TechBlacksburgVAUSA
- Fralin Life Sciences InstituteVirginia TechBlacksburgVAUSA
| | - Claire M Morton
- Department of Biological SciencesVirginia TechBlacksburgVAUSA
- Fralin Life Sciences InstituteVirginia TechBlacksburgVAUSA
| | - Erod Keaton Baybay
- Department of Biological SciencesVirginia TechBlacksburgVAUSA
- Fralin Life Sciences InstituteVirginia TechBlacksburgVAUSA
| | - Jing Chen
- Department of Biological SciencesVirginia TechBlacksburgVAUSA
- Fralin Life Sciences InstituteVirginia TechBlacksburgVAUSA
| | - Silke Hauf
- Department of Biological SciencesVirginia TechBlacksburgVAUSA
- Fralin Life Sciences InstituteVirginia TechBlacksburgVAUSA
| |
Collapse
|
41
|
Staphylococcus aureus Small RNAs Possess Dephospho-CoA 5′-Caps, but No CoAlation Marks. Noncoding RNA 2022; 8:ncrna8040046. [PMID: 35893229 PMCID: PMC9326634 DOI: 10.3390/ncrna8040046] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 11/16/2022] Open
Abstract
Novel features of coenzyme A (CoA) and its precursor, 3′-dephospho-CoA (dpCoA), recently became evident. dpCoA was found to attach to 5′-ends of small ribonucleic acids (dpCoA-RNAs) in two bacterial species (Escherichia coli and Streptomyces venezuelae). Furthermore, CoA serves, in addition to its well-established coenzymatic roles, as a ubiquitous posttranslational protein modification (‘CoAlation’), thought to prevent the irreversible oxidation of cysteines. Here, we first identified and quantified dpCoA-RNAs in the small RNA fraction of the human pathogen Staphylococcus aureus, using a newly developed enzymatic assay. We found that the amount of dpCoA caps was similar to that of the other two bacteria. We furthermore tested the hypothesis that, in the environment of a cell, the free thiol of the dpCoA-RNAs, as well as other sulfur-containing RNA modifications, may be oxidized by disulfide bond formation, e.g., with CoA. While we could not find evidence for such an ‘RNA CoAlation’, we observed that CoA disulfide reductase, the enzyme responsible for reducing CoA homodisulfides in S. aureus, did efficiently reduce several synthetic dpCoA-RNA disulfides to dpCoA-RNAs in vitro. This activity may imply a role in reversing RNA CoAlation.
Collapse
|
42
|
Simeone I, Rubolino C, Noviello T, Farinello D, Cerulo L, Marzi M, Nicassio F. Prediction and pan-cancer analysis of mammalian transcripts involved in target directed miRNA degradation. Nucleic Acids Res 2022; 50:2019-2035. [PMID: 35137158 PMCID: PMC8887481 DOI: 10.1093/nar/gkac057] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 01/14/2022] [Accepted: 01/25/2022] [Indexed: 12/04/2022] Open
Abstract
It is currently unknown how many RNA transcripts are able to induce degradation of microRNAs (miRNA) via the mechanism known as target-directed miRNA degradation (TDMD). We developed TDMDfinder, a computational pipeline that identifies 'high confidence' TDMD interactions in the Human and Mouse transcriptomes by combining sequence alignment and feature selection approaches. Our predictions suggested that TDMD is widespread, with potentially every miRNA controlled by endogenous targets. We experimentally tested 37 TDMDfinder predictions, of which 17 showed TDMD effects as measured by RT-qPCR and small RNA sequencing, linking the miR-17, miR-19, miR-30, miR-221, miR-26 and miR-23 families to novel endogenous TDMDs. In some cases, TDMD was found to affect different members of the same miRNA family selectively. Features like complementarity to the miRNA 3' region, bulge size and hybridization energy appeared to be the main factors determining sensitivity. Computational analyses performed using the multiomic TCGA platform substantiated the involvement of many TDMD transcripts in human cancer and highlighted 36 highly significant interactions, suggesting TDMD as a new potential oncogenic mechanism. In conclusion, TDMDfinder provides the first inventory of bona fide human and mouse TDMDs. Available as a free webtool, TDMDfinder allows users to search for any TDMD interaction of interest by customizing its selection criteria.
Collapse
Affiliation(s)
- Ines Simeone
- Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia (IIT)—Via Adamello 16, 20139 Milan, Italy
| | - Carmela Rubolino
- Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia (IIT)—Via Adamello 16, 20139 Milan, Italy
| | - Teresa Maria Rosaria Noviello
- Department of Electrical Engineering and Information Technology, University of Naples “Federico II”, Via Claudio 21, Naples 80128, Italy
- BioGeM, Institute of Genetic Research “Gaetano Salvatore”, Via Camporeale, Ariano Irpino (AV) 83031, Italy
| | - Diego Farinello
- Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia (IIT)—Via Adamello 16, 20139 Milan, Italy
| | - Luigi Cerulo
- Dep. of Science and Technology, University of Sannio, via de Sanctis, 11, Benevento 82100, Italy
- BioGeM, Institute of Genetic Research “Gaetano Salvatore”, Via Camporeale, Ariano Irpino (AV) 83031, Italy
| | - Matteo Jacopo Marzi
- Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia (IIT)—Via Adamello 16, 20139 Milan, Italy
| | - Francesco Nicassio
- Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia (IIT)—Via Adamello 16, 20139 Milan, Italy
| |
Collapse
|
43
|
Zhou H, Li Y, Gan Y, Wang R. Total RNA Synthesis and its Covalent Labeling Innovation. Top Curr Chem (Cham) 2022; 380:16. [PMID: 35218412 DOI: 10.1007/s41061-022-00371-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/24/2022] [Indexed: 12/16/2022]
Abstract
RNA plays critical roles in a wide range of physiological processes. For example, it is well known that RNA plays an important role in regulating gene expression, cell proliferation, and differentiation, and many other chemical and biological processes. However, the research community still suffers from limited approaches that can be applied to readily visualize a specific RNA-of-interest (ROI). Several methods can be used to track RNAs; these rely mainly on biological properties, namely, hybridization, aptamer, reporter protein, and protein binding. With respect to covalent approaches, very few cases have been reported. Happily, several new methods for efficient labeling studies of ROIs have been demonstrated successfully in recent years. Additionally, methods employed for the detection of ROIs by RNA modifying enzymes have also proved feasible. Several approaches, namely, phosphoramidite chemistry, in vitro transcription reactions, co-transcription reactions, chemical post-modification, RNA modifying enzymes, ligation, and other methods targeted at RNA labeling have been revealed in the past decades. To illustrate the most recent achievements, this review aims to summarize the most recent research in the field of synthesis of RNAs-of-interest bearing a variety of unnatural nucleosides, the subsequent RNA labeling research via biocompatible ligation, and beyond.
Collapse
Affiliation(s)
- Hongling Zhou
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuanyuan Li
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Youfang Gan
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Rui Wang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China. .,Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Huazhong University of Science and Technology, Wuhan, 430030, China. .,Key Laboratory of Natural Product and Resource, Shanghai Institute of Organic Chemistry, Shanghai, 230030, China.
| |
Collapse
|
44
|
Su L, Zhao F, Yu H, Bai M, Xue J, Cao X, Chen F, Zhao Y. A bifunctional chemical signature enabling RNA 4-thiouridine enrichment sequencing with single-base resolution. Chem Commun (Camb) 2022; 58:1322-1325. [PMID: 34985087 DOI: 10.1039/d1cc06080e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Both sequence enrichment and base resolution are essential for accurate sequencing analysis of low-abundance RNA. Yet they are hindered by the lack of molecular tools. Here we report a bifunctional chemical signature for RNA 4-thiouridine (4sU) enrichment sequencing with single-base resolution. This chemical signature is designed for specific 4sU labeling with two functional parts. One part is a distal alkynyl group for the biotin-assisted pulldown enrichment of target molecules via click chemistry crosslinking. The other part is a -NH group proximal to the pyrimidine ring of 4sU. It allows 4sU-to-cytosine transition during the polymerase-catalyzed extension reaction based on altering hydrogen-bonding patterns. Ultimately, the 4sU-containing RNA molecules can be enriched and accurately analyzed by single-base resolution sequencing. The proposed method also holds great potential to investigate transcriptome dynamics integrated with high-throughput sequencing.
Collapse
Affiliation(s)
- Li Su
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xianning West Road, Xi'an, Shaanxi 710049, China.
| | - Fengjiao Zhao
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xianning West Road, Xi'an, Shaanxi 710049, China.
| | - Huahang Yu
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xianning West Road, Xi'an, Shaanxi 710049, China.
| | - Min Bai
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xianning West Road, Xi'an, Shaanxi 710049, China.
| | - Jing Xue
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xianning West Road, Xi'an, Shaanxi 710049, China.
| | - Xiaowen Cao
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xianning West Road, Xi'an, Shaanxi 710049, China.
| | - Feng Chen
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xianning West Road, Xi'an, Shaanxi 710049, China.
| | - Yongxi Zhao
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xianning West Road, Xi'an, Shaanxi 710049, China.
| |
Collapse
|
45
|
Shang J, He L, Wang J, Tong A, Xiang Y. In Situ Visualizing Nascent RNA by Exploring DNA-Templated Oxidative Amination of 4-Thiouridine. Bioconjug Chem 2022; 33:164-171. [PMID: 34910465 DOI: 10.1021/acs.bioconjchem.1c00524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tracking and mapping the nascent RNA molecules in cells is essential for deciphering embryonic development and neuronal differentiation. Here, we utilized 4-thiouridine (s4U) as a metabolic tag to label nascent RNA and developed a fluorescence imaging method based on the DNA-templated oxidative amination (DTOA) reaction of s4U. The DTOA reaction occurred between amine-modified DNA and s4U-containing RNA with high sequence specificity and chemical selectivity. Target nascent mRNAs in HeLa cells, including those encoding green fluorescent proteins (GFPs) and endogenous BAG-1, were thus lit up selectively by DTOA-based fluorescence in situ hybridization (DTOA FISH). We believe the DTOA conjugation chemistry shown in this study could be generally applied to investigate the spatial distribution of nascent transcription dynamics in cellular processes.
Collapse
Affiliation(s)
- Jiachen Shang
- Department of Chemistry, Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Luo He
- Department of Chemistry, Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Jingyi Wang
- Department of Chemistry, Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Aijun Tong
- Department of Chemistry, Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Yu Xiang
- Department of Chemistry, Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| |
Collapse
|
46
|
Braun C, Knüppel R, Perez-Fernandez J, Ferreira-Cerca S. Non-radioactive In Vivo Labeling of RNA with 4-Thiouracil. Methods Mol Biol 2022; 2533:199-213. [PMID: 35796990 PMCID: PMC9761907 DOI: 10.1007/978-1-0716-2501-9_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
RNA molecules and their expression dynamics play essential roles in the establishment of complex cellular phenotypes and/or in the rapid cellular adaption to environmental changes. Accordingly, analyzing RNA expression remains an important step to understand the molecular basis controlling the formation of cellular phenotypes, cellular homeostasis or disease progression. Steady-state RNA levels in the cells are controlled by the sum of highly dynamic molecular processes contributing to RNA expression and can be classified in transcription, maturation and degradation. The main goal of analyzing RNA dynamics is to disentangle the individual contribution of these molecular processes to the life cycle of a given RNA under different physiological conditions. In the recent years, the use of nonradioactive nucleotide/nucleoside analogs and improved chemistry, in combination with time-dependent and high-throughput analysis, have greatly expanded our understanding of RNA metabolism across various cell types, organisms, and growth conditions.In this chapter, we describe a step-by-step protocol allowing pulse labeling of RNA with the nonradioactive nucleotide analog, 4-thiouracil , in the eukaryotic model organism Saccharomyces cerevisiae and the model archaeon Haloferax volcanii .
Collapse
Affiliation(s)
- Christina Braun
- Biochemistry III-Institute for Biochemistry, Genetics and Microbiology, University of Regensburg, Regensburg, Germany
| | - Robert Knüppel
- Biochemistry III-Institute for Biochemistry, Genetics and Microbiology, University of Regensburg, Regensburg, Germany
| | - Jorge Perez-Fernandez
- Biochemistry III-Institute for Biochemistry, Genetics and Microbiology, University of Regensburg, Regensburg, Germany.
- Department of Experimental Biology, University of Jaen, Jaén, Spain.
| | - Sébastien Ferreira-Cerca
- Biochemistry III-Institute for Biochemistry, Genetics and Microbiology, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
47
|
Abstract
The control of mRNA stability is fundamental to gene regulation, and a deeper understanding of this post-transcriptional regulatory step can provide key insights into gene function. Measuring mRNA half-lives directly, however, is challenging. The most common strategies for evaluating mRNA stability and decay involve blocking general transcription and then measuring the decline in mRNA levels over time. The downside of these approaches, however, is that they severely impact cell function and viability, indirectly perturbing gene expression. Here, we describe Roadblock-qPCR, a simple method for measuring mRNA decay kinetics in living cells that is both economical and quick. Cells are first incubated with the nucleoside analog 4-thiouridine (4sU), which is readily incorporated into nascent mRNAs during transcription. RNA is then extracted and treated with N-ethylmaleimide (NEM), a sulfhydryl alkylating agent that selectively modifies 4sU, before proceeding to cDNA synthesis. Because the NEM-modified 4sU creates a chemical "roadblock" that interferes with reverse transcription, this treatment ultimately results in the depletion of the nascent 4sU-containing transcripts from the cDNA pool. As such, the decay rate of the non-4sU-labeled pre-existing mRNAs can be monitored by quantitative PCR (qPCR). In combination with spike-in standards, this approach can be used to efficiently and accurately measure the half-lives of endogenous mRNAs with a wide range of stabilities, while avoiding the artifacts of transcription shutoff strategies. © 2022 Wiley Periodicals LLC. Basic Protocol: Roadblock-qPCR Support Protocol: Synthesis of spike-in mRNA.
Collapse
Affiliation(s)
- Maegan J. Watson
- Department of Cellular and Molecular Physiology, Yale School of Medicine, 333 Cedar St, New Haven, CT 06510
| | - Carson C. Thoreen
- Department of Cellular and Molecular Physiology, Yale School of Medicine, 333 Cedar St, New Haven, CT 06510,To whom correspondence should be addressed.
| |
Collapse
|
48
|
Liu Y, Wu Z, Zhou J, Ramadurai DKA, Mortenson KL, Aguilera-Jimenez E, Yan Y, Yang X, Taylor AM, Varley KE, Gertz J, Choi PS, Cherniack AD, Chen X, Bass AJ, Bailey SD, Zhang X. A predominant enhancer co-amplified with the SOX2 oncogene is necessary and sufficient for its expression in squamous cancer. Nat Commun 2021; 12:7139. [PMID: 34880227 PMCID: PMC8654995 DOI: 10.1038/s41467-021-27055-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 11/01/2021] [Indexed: 02/05/2023] Open
Abstract
Amplification and overexpression of the SOX2 oncogene represent a hallmark of squamous cancers originating from diverse tissue types. Here, we find that squamous cancers selectively amplify a 3' noncoding region together with SOX2, which harbors squamous cancer-specific chromatin accessible regions. We identify a single enhancer e1 that predominantly drives SOX2 expression. Repression of e1 in SOX2-high cells causes collapse of the surrounding enhancers, remarkable reduction in SOX2 expression, and a global transcriptional change reminiscent of SOX2 knockout. The e1 enhancer is driven by a combination of transcription factors including SOX2 itself and the AP-1 complex, which facilitates recruitment of the co-activator BRD4. CRISPR-mediated activation of e1 in SOX2-low cells is sufficient to rebuild the e1-SOX2 loop and activate SOX2 expression. Our study shows that squamous cancers selectively amplify a predominant enhancer to drive SOX2 overexpression, uncovering functional links among enhancer activation, chromatin looping, and lineage-specific copy number amplifications of oncogenes.
Collapse
Affiliation(s)
- Yanli Liu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling, Shanxi, China
| | - Zhong Wu
- Department of Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Jin Zhou
- Department of Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Dinesh K A Ramadurai
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Katelyn L Mortenson
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Estrella Aguilera-Jimenez
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Yifei Yan
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Departments of Surgery and Human Genetics, McGill University, Montreal, QC, Canada
| | - Xiaojun Yang
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling, Shanxi, China
| | - Alison M Taylor
- Department of Pathology and Cell Biology, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Katherine E Varley
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Jason Gertz
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Peter S Choi
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Andrew D Cherniack
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Xingdong Chen
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang, China
| | - Adam J Bass
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Swneke D Bailey
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.
- Departments of Surgery and Human Genetics, McGill University, Montreal, QC, Canada.
| | - Xiaoyang Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China.
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
49
|
Gainetdinov I, Colpan C, Cecchini K, Arif A, Jouravleva K, Albosta P, Vega-Badillo J, Lee Y, Özata DM, Zamore PD. Terminal modification, sequence, length, and PIWI-protein identity determine piRNA stability. Mol Cell 2021; 81:4826-4842.e8. [PMID: 34626567 DOI: 10.1016/j.molcel.2021.09.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 12/15/2022]
Abstract
In animals, PIWI-interacting RNAs (piRNAs) silence transposons, fight viral infections, and regulate gene expression. piRNA biogenesis concludes with 3' terminal trimming and 2'-O-methylation. Both trimming and methylation influence piRNA stability. Our biochemical data show that multiple mechanisms destabilize unmethylated mouse piRNAs, depending on whether the piRNA 5' or 3' sequence is complementary to a trigger RNA. Unlike target-directed degradation of microRNAs, complementarity-dependent destabilization of piRNAs in mice and flies is blocked by 3' terminal 2'-O-methylation and does not require base pairing to both the piRNA seed and the 3' sequence. In flies, 2'-O-methylation also protects small interfering RNAs (siRNAs) from complementarity-dependent destruction. By contrast, pre-piRNA trimming protects mouse piRNAs from a degradation pathway unaffected by trigger complementarity. In testis lysate and in vivo, internal or 3' terminal uridine- or guanine-rich tracts accelerate pre-piRNA decay. Loss of both trimming and 2'-O-methylation causes the mouse piRNA pathway to collapse, demonstrating that these modifications collaborate to stabilize piRNAs.
Collapse
Affiliation(s)
- Ildar Gainetdinov
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA.
| | - Cansu Colpan
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Katharine Cecchini
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Amena Arif
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Karina Jouravleva
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Paul Albosta
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Joel Vega-Badillo
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Yongjin Lee
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Deniz M Özata
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Phillip D Zamore
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA.
| |
Collapse
|
50
|
Su L, Chen F, Yu H, Yan H, Zhao F, Fan C, Zhao Y. Addition-Elimination Mechanism-Activated Nucleotide Transition Sequencing for RNA Dynamics Profiling. Anal Chem 2021; 93:13974-13980. [PMID: 34612623 DOI: 10.1021/acs.analchem.1c03361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Dynamic information of intracellular transcripts is essential to understand their functional roles. Routine RNA-sequencing (RNA-seq) methods only measure RNA species at a steady state and do not provide RNA dynamic information. Here, we develop addition-elimination mechanism-activated nucleotide transition sequencing (AENT-seq) for transcriptome-wide profiling of RNA dynamics. In AENT-seq, nascent transcripts are metabolically labeled with 4-thiouridine (4sU). The total RNA is treated with N2H4·H2O under aqueous conditions. N2H4·H2O is demonstrated to convert 4sU to 4-hydrazino cytosine (C*) based on an addition-elimination chemistry. C* is regarded as cytosine (C) during the DNA extension process. This 4sU-to-C transition marks nascent transcripts, so it enables sequencing analysis of RNA dynamics. We apply our AENT-seq to investigate transcript dynamic information of several genes involved in cancer progression and metastasis. This method uses a simple chemical reaction in aqueous solutions and will be rapidly disseminated with extensive applications.
Collapse
Affiliation(s)
- Li Su
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xianning West Road, Xi'an, Shaanxi 710049, China
| | - Feng Chen
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xianning West Road, Xi'an, Shaanxi 710049, China
| | - Huahang Yu
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xianning West Road, Xi'an, Shaanxi 710049, China
| | - Hao Yan
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xianning West Road, Xi'an, Shaanxi 710049, China
| | - Fengjiao Zhao
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xianning West Road, Xi'an, Shaanxi 710049, China
| | - Chunhai Fan
- Institute of Molecular Medicine, Renji Hospital, School of Medicine and School of Chemistry and Chemical Engineering, Shanghai JiaoTong University, Shanghai 200127, China
| | - Yongxi Zhao
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xianning West Road, Xi'an, Shaanxi 710049, China
| |
Collapse
|