1
|
Liu T, Bao L, Wang Y. The Thermodynamic and Kinetic Properties of the dA-rU DNA-RNA Hybrid Base Pair Investigated via Molecular Dynamics Simulations. Molecules 2024; 29:4920. [PMID: 39459288 PMCID: PMC11510705 DOI: 10.3390/molecules29204920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/11/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
DNA-RNA hybrid duplexes play essential roles during the reverse transcription of RNA viruses and DNA replication. The opening and conformation changes of individual base pairs are critical to their biological functions. However, the microscopic mechanisms governing base pair closing and opening at the atomic level remain poorly understood. In this study, we investigated the thermodynamic and kinetic parameters of the dA-rU base pair in a DNA-RNA hybrid duplex using 4 μs all-atom molecular dynamics (MD) simulations at different temperatures. Our results showed that the thermodynamic parameters of the dA-rU base pair aligned with the predictions of the nearest-neighbor model and were close to those of the AU base pair in RNA. The temperature dependence of the average lifetimes of both the open and the closed states, as well as the transition path times, were obtained. The free-energy barrier for a single base pair opening and closing arises from an increase in enthalpy due to the disruption of the base-stacking interactions and hydrogen bonding, along with an entropy loss attributed to the accompanying restrictions, such as torsional angle constraints and solvent viscosity.
Collapse
Affiliation(s)
- Taigang Liu
- School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, China;
| | - Lei Bao
- School of Public Health, Hubei University of Medicine, Shiyan 442000, China;
| | - Yujie Wang
- Department of Physics and Telecommunication Engineering, Zhoukou Normal University, Zhoukou 466000, China
| |
Collapse
|
2
|
Liu S, Hua Y, Wang J, Li L, Yuan J, Zhang B, Wang Z, Ji J, Kong D. RNA polymerase III is required for the repair of DNA double-strand breaks by homologous recombination. Cell 2021; 184:1314-1329.e10. [PMID: 33626331 DOI: 10.1016/j.cell.2021.01.048] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 09/24/2020] [Accepted: 01/26/2021] [Indexed: 12/22/2022]
Abstract
End resection in homologous recombination (HR) and HR-mediated repair of DNA double-strand breaks (DSBs) removes several kilobases from 5' strands of DSBs, but 3' strands are exempted from degradation. The mechanism by which the 3' overhangs are protected has not been determined. Here, we established that the protection of 3' overhangs is achieved through the transient formation of RNA-DNA hybrids. The DNA strand in the hybrids is the 3' ssDNA overhang, while the RNA strand is newly synthesized. RNA polymerase III (RNAPIII) is responsible for synthesizing the RNA strand. Furthermore, RNAPIII is actively recruited to DSBs by the MRN complex. CtIP and MRN nuclease activity is required for initiating the RNAPIII-mediated RNA synthesis at DSBs. A reduced level of RNAPIII suppressed HR, and genetic loss > 30 bp increased at DSBs. Thus, RNAPIII is an essential HR factor, and the RNA-DNA hybrid is an essential repair intermediate for protecting the 3' overhangs in DSB repair.
Collapse
Affiliation(s)
- Sijie Liu
- Peking-Tsinghua Center for Life Sciences, The National Laboratory of Protein and Plant Gene research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Yu Hua
- Peking-Tsinghua Center for Life Sciences, The National Laboratory of Protein and Plant Gene research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Jingna Wang
- Peking-Tsinghua Center for Life Sciences, The National Laboratory of Protein and Plant Gene research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Lingyan Li
- Peking-Tsinghua Center for Life Sciences, The National Laboratory of Protein and Plant Gene research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Junjie Yuan
- Peking-Tsinghua Center for Life Sciences, The National Laboratory of Protein and Plant Gene research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Bo Zhang
- Peking-Tsinghua Center for Life Sciences, The National Laboratory of Protein and Plant Gene research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Ziyang Wang
- Peking-Tsinghua Center for Life Sciences, The National Laboratory of Protein and Plant Gene research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Jianguo Ji
- Peking-Tsinghua Center for Life Sciences, The National Laboratory of Protein and Plant Gene research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Daochun Kong
- Peking-Tsinghua Center for Life Sciences, The National Laboratory of Protein and Plant Gene research, College of Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
3
|
Zhang C, Fu H, Yang Y, Zhou E, Tan Z, You H, Zhang X. The Mechanical Properties of RNA-DNA Hybrid Duplex Stretched by Magnetic Tweezers. Biophys J 2018; 116:196-204. [PMID: 30635125 DOI: 10.1016/j.bpj.2018.12.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 12/05/2018] [Accepted: 12/07/2018] [Indexed: 12/25/2022] Open
Abstract
RNA can anneal to its DNA template to generate an RNA-DNA hybrid (RDH) duplex and a displaced DNA strand, termed R-loop. RDH duplex occupies up to 5% of the mammalian genome and plays important roles in many biological processes. The functions of RDH duplex are affected by its mechanical properties, including the elasticity and the conformation transitions. The mechanical properties of RDH duplex, however, are still unclear. In this work, we studied the mechanical properties of RDH duplex using magnetic tweezers in comparison with those of DNA and RNA duplexes with the same sequences. We report that the contour length of RDH duplex is ∼0.30 nm/bp, and the stretching modulus of RDH duplex is ∼660 pN, neither of which is sensitive to NaCl concentration. The persistence length of RDH duplex depends on NaCl concentration, decreasing from ∼63 nm at 1 mM NaCl to ∼49 nm at 500 mM NaCl. Under high tension of ∼60 pN, the end-opened RDH duplex undergoes two distinct overstretching transitions; at high salt in which the basepairs are stable, it undergoes the nonhysteretic transition, leading to a basepaired elongated structure, whereas at low salt, it undergoes a hysteretic peeling transition, leading to the single-stranded DNA strand under force and the single-stranded RNA strand coils. The peeled RDH is difficult to reanneal back to the duplex conformation, which may be due to the secondary structures formed in the coiled single-stranded RNA strand. These results help us understand the full picture of the structures and mechanical properties of nucleic acid duplexes in solution and provide a baseline for studying the interaction of RDH with proteins at the single-molecule level.
Collapse
Affiliation(s)
- Chen Zhang
- College of Life Sciences, the Institute for Advanced Studies, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan, China
| | - Hang Fu
- College of Life Sciences, the Institute for Advanced Studies, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan, China
| | - Yajun Yang
- College of Life Sciences, the Institute for Advanced Studies, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan, China
| | - Erchi Zhou
- College of Life Sciences, the Institute for Advanced Studies, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan, China
| | - Zhijie Tan
- School of Physics and Technology, Wuhan University, Wuhan, China
| | - Huijuan You
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinghua Zhang
- College of Life Sciences, the Institute for Advanced Studies, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan, China.
| |
Collapse
|
4
|
Toubiana S, Selig S. DNA:RNA hybrids at telomeres - when it is better to be out of the (R) loop. FEBS J 2018; 285:2552-2566. [PMID: 29637701 DOI: 10.1111/febs.14464] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/11/2018] [Accepted: 04/03/2018] [Indexed: 01/31/2023]
Abstract
R-loops (RLs) are three-stranded nucleic acid structures that contain a DNA:RNA hybrid and a displaced DNA strand. Genomic regions with GC skew and a G-rich transcript are particularly prone to form RLs. RLs play important physiological roles in cells; however, when present at abnormally high levels, they may threaten genome stability. The perfect GC skew of telomeric repeats and the discovery of telomeric repeat-containing RNA (TERRA), a long noncoding transcript that consists of the G-rich telomeric sequence, make telomeric sequences the perfect candidates for generating RLs. Indeed, in the past 5 years, telomere R-loops (TRLs) have been demonstrated in Saccharomyces cerevisiae, Trypanosoma brucei, and human cells. The presence of TRLs in normal human cells that transcribe low levels of TERRA, suggests a physiological role for these nucleic structures in telomere maintenance. Abnormally enhanced TERRA transcription, as found in several human pathological conditions, leads to high TRL levels and various cellular outcomes, depending on the recombinogenic capabilities of the cells. Study of TRLs in various organisms highlights the necessity for tight regulation of these structures, which can switch from beneficial to detrimental under different conditions. Here, we review the current state of knowledge on TRLs, describe several means by which TRLs are regulated, and discuss how findings from yeast are relevant to human pathological scenarios in which TRLs are deregulated.
Collapse
Affiliation(s)
- Shir Toubiana
- Molecular Medicine Laboratory, Rappaport Faculty of Medicine, Rambam Health Care Campus, Technion, Haifa, Israel
| | - Sara Selig
- Molecular Medicine Laboratory, Rappaport Faculty of Medicine, Rambam Health Care Campus, Technion, Haifa, Israel
| |
Collapse
|
5
|
Ozdemir AY, Rusanov T, Kent T, Siddique LA, Pomerantz RT. Polymerase θ-helicase efficiently unwinds DNA and RNA-DNA hybrids. J Biol Chem 2018; 293:5259-5269. [PMID: 29444826 PMCID: PMC5892577 DOI: 10.1074/jbc.ra117.000565] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 02/07/2018] [Indexed: 11/06/2022] Open
Abstract
POLQ is a unique multifunctional replication and repair gene that encodes for a N-terminal superfamily 2 helicase and a C-terminal A-family polymerase. Although the function of the polymerase domain has been investigated, little is understood regarding the helicase domain. Multiple studies have reported that polymerase θ-helicase (Polθ-helicase) is unable to unwind DNA. However, it exhibits ATPase activity that is stimulated by single-stranded DNA, which presents a biochemical conundrum. In contrast to previous reports, we demonstrate that Polθ-helicase (residues 1-894) efficiently unwinds DNA with 3'-5' polarity, including DNA with 3' or 5' overhangs, blunt-ended DNA, and replication forks. Polθ-helicase also efficiently unwinds RNA-DNA hybrids and exhibits a preference for unwinding the lagging strand at replication forks, similar to related HELQ helicase. Finally, we find that Polθ-helicase can facilitate strand displacement synthesis by Polθ-polymerase, suggesting a plausible function for the helicase domain. Taken together, these findings indicate nucleic acid unwinding as a relevant activity for Polθ in replication repair.
Collapse
Affiliation(s)
- Ahmet Y Ozdemir
- From the Fels Institute for Cancer Research, Department of Medical Genetics and Molecular Biochemistry, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, 19140
| | - Timur Rusanov
- From the Fels Institute for Cancer Research, Department of Medical Genetics and Molecular Biochemistry, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, 19140
| | - Tatiana Kent
- From the Fels Institute for Cancer Research, Department of Medical Genetics and Molecular Biochemistry, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, 19140
| | - Labiba A Siddique
- From the Fels Institute for Cancer Research, Department of Medical Genetics and Molecular Biochemistry, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, 19140
| | - Richard T Pomerantz
- From the Fels Institute for Cancer Research, Department of Medical Genetics and Molecular Biochemistry, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, 19140
| |
Collapse
|
6
|
Mazina OM, Keskin H, Hanamshet K, Storici F, Mazin AV. Rad52 Inverse Strand Exchange Drives RNA-Templated DNA Double-Strand Break Repair. Mol Cell 2017; 67:19-29.e3. [PMID: 28602639 DOI: 10.1016/j.molcel.2017.05.019] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 05/09/2017] [Accepted: 05/19/2017] [Indexed: 12/20/2022]
Abstract
RNA can serve as a template for DNA double-strand break repair in yeast cells, and Rad52, a member of the homologous recombination pathway, emerged as an important player in this process. However, the exact mechanism of how Rad52 contributes to RNA-dependent DSB repair remained unknown. Here, we report an unanticipated activity of yeast and human Rad52: inverse strand exchange, in which Rad52 forms a complex with dsDNA and promotes strand exchange with homologous ssRNA or ssDNA. We show that in eukaryotes, inverse strand exchange between homologous dsDNA and RNA is a distinctive activity of Rad52; neither Rad51 recombinase nor the yeast Rad52 paralog Rad59 has this activity. In accord with our in vitro results, our experiments in budding yeast provide evidence that Rad52 inverse strand exchange plays an important role in RNA-templated DSB repair in vivo.
Collapse
Affiliation(s)
- Olga M Mazina
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Havva Keskin
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Kritika Hanamshet
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Francesca Storici
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | - Alexander V Mazin
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA.
| |
Collapse
|