1
|
Lee CS, Sim J, Kim SY, Lee H, Roh TY, Hwang CS. Formyl-methionine-mediated eukaryotic ribosome quality control pathway for cold adaptation. Mol Cell 2024:S1097-2765(24)00990-0. [PMID: 39721582 DOI: 10.1016/j.molcel.2024.11.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 09/30/2024] [Accepted: 11/26/2024] [Indexed: 12/28/2024]
Abstract
Protein synthesis in the eukaryotic cytosol can start using both conventional methionine and formyl-methionine (fMet). However, a mechanism, if such exists, for detecting and regulating the incorporation of fMet (instead of Met) during translation, thereby preventing cellular toxicity of nascent fMet-bearing (fMet-) polypeptides, remains unknown. Here, we describe the fMet-mediated ribosome quality control (fMet-RQC) pathway in Saccharomyces cerevisiae. A eukaryotic translation initiation factor 3 subunit c, Nip1, specifically recognizes N-terminal fMet in nascent polypeptides, recruiting a small GTPase, Arf1, to induce ribosome stalling, largely with 41-residue fMet-peptidyl tRNAs. This leads to ribosome dissociation and subsequent stress granule formation. Loss of the fMet-RQC pathway causes the continued synthesis of fMet polypeptides, which inhibits essential N-terminal Met modifications and promotes their coaggregation with ribosomes. This fMet-RQC pathway is important for the adaptation of yeast cells to cold stress by promoting stress granule formation and preventing a buildup of toxic fMet polypeptides.
Collapse
Affiliation(s)
- Chang-Seok Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Gyeongbuk, Republic of Korea
| | - Jaehwan Sim
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Sang-Yoon Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Gyeongbuk, Republic of Korea
| | - Hyeonji Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Gyeongbuk, Republic of Korea
| | - Tae-Young Roh
- Department of Life Sciences, Ewha Womans University, Seoul 03760, Republic of Korea.
| | - Cheol-Sang Hwang
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
2
|
Patel R, Park AY, Marchi E, Gropman AL, Whitehead MT, Lyon GJ. Ophthalmic manifestations of NAA10-related and NAA15-related neurodevelopmental syndromes: Analysis of cortical visual impairment and refractive errors. Am J Med Genet A 2024; 194:e63821. [PMID: 39012200 DOI: 10.1002/ajmg.a.63821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/02/2024] [Accepted: 07/07/2024] [Indexed: 07/17/2024]
Abstract
NAA10-related (Ogden syndrome) and NAA15-related neurodevelopmental syndrome are known to present with varying degrees of intellectual disability, hypotonia, congenital cardiac abnormalities, seizures, and delayed speech and motor development. However, the ophthalmic manifestations of NAA10 and NAA15 variants are not yet fully characterized or understood. This study analyzed the prevalence of six ophthalmic conditions (cortical visual impairment, myopia, hyperopia, strabismus, nystagmus, and astigmatism) in 67 patients with pathogenic (P) or likely pathogenic (LP) variants in the NAA10 cohort (54 inherited, 10 de novo; 65 missense, 2 frameshift) and 19 patients with (L)P variants in the NAA15 cohort (18 de novo; 8 frameshift, 4 missense, 4 nonsense, and 1 splice site). Patients were interviewed virtually or in-person to collect a comprehensive medical history verified by medical records. These records were then analyzed to calculate the prevalence of these ophthalmic manifestations in each cohort. Analysis revealed a higher prevalence of ophthalmic conditions in our NAA10 cohort compared to existing literature (myopia 25.4% vs. 4.7%; astigmatism 37.3% vs. 13.2%; strabismus 28.4% vs. 3.8%; CVI 22.4% vs. 8.5%, respectively). No statistically significant differences were identified in the prevalence of these conditions between the NAA10 and NAA15 variants. Our study includes novel neuroimaging of 13 NAA10 and 5 NAA15 probands, which provides no clear correlation between globe size and severity of comorbid ophthalmic disease. Finally, anecdotal evidence was compiled to underscore the importance of early ophthalmologic evaluations and therapeutic interventions.
Collapse
Affiliation(s)
- Rahi Patel
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, USA
| | - Agnes Y Park
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, USA
| | - Elaine Marchi
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, USA
| | - Andrea L Gropman
- Department of Neurology, George Washington University, Washington, DC, USA
- Division of Neuroradiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Matthew T Whitehead
- Department of Radiology Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Division of Neurogenetics and Developmental Pediatrics, Children's National Health System, Washington, DC, USA
| | - Gholson J Lyon
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, USA
- George A. Jervis Clinic, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, USA
- Biology PhD Program, The Graduate Center, The City University of New York, New York, New York, USA
| |
Collapse
|
3
|
Saha S, Jain BP, Ghosh DK, Ranjan A. Conformational plasticity links structural instability of NAA10 F128I and NAA10 F128L mutants to their catalytic deregulation. Comput Struct Biotechnol J 2024; 23:4047-4063. [PMID: 39610905 PMCID: PMC11603127 DOI: 10.1016/j.csbj.2024.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/05/2024] [Accepted: 11/05/2024] [Indexed: 11/30/2024] Open
Abstract
The acetylation of proteins' N-terminal amino groups by the N-acetyltransferase complexes plays a crucial role in modulating the spatial stability and functional activities of diverse human proteins. Mutations disrupting the stability and function of NAA10 result in X-linked rare genetic disorders. In this study, we conducted a global analysis of the impact of fifteen disease-associated missense mutations in NAA10. The analyses revealed that mutations in specific residues, such as Y43, V107, V111, and F128, predictably disrupted interactions essential for NAA10 stability, while most mutations (except R79C, A111W, Q129P, and N178K) expectedly led to structural destabilization. Mutations in many conserved residues within short linear motifs and post-translational modification sites were predicted to affect NAA10 functionality and regulation. All mutations were classified as pathogenic, with F128I and F128L identified as the most destabilizing mutations. The findings show that the F128L and F128I mutations employ different mechanisms for the loss of catalytic activities of NAA10F128L and NAA10F128I due to their structural instability. These two mutations induce distinct folding energy states that differentially modulate the structures of different regions of NAA10F128L and NAA10F128I. Specifically, the predicted instability caused by the F128I mutation results in decreased flexibility within the substrate-binding region, impairing the substrate peptide binding ability of NAA10F128I. Conversely, F128L is predicted to reduce the flexibility of the region containing the acetyl-CoA binding residues in NAA10F128L. Our study provides insights into the mechanism of catalytic inactivation of mutants of NAA10, particularly elucidating the mechanistic features of the structural and functional pathogenicity of the F128L and F128I mutations.
Collapse
Affiliation(s)
- Smita Saha
- Computational and Functional Genomics Group, BRIC-Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, India
- Graduate Studies, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Buddhi Prakash Jain
- Department of Zoology, Mahatma Gandhi Central University, Motihari, Bihar, India
| | - Debasish Kumar Ghosh
- Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Akash Ranjan
- Computational and Functional Genomics Group, BRIC-Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, India
| |
Collapse
|
4
|
Ree R, Lin SJ, Sti Dahl LO, Huang K, Petree C, Varshney GK, Arnesen T. Naa80 is required for actin N-terminal acetylation and normal hearing in zebrafish. Life Sci Alliance 2024; 7:e202402795. [PMID: 39384430 PMCID: PMC11465159 DOI: 10.26508/lsa.202402795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/27/2024] [Accepted: 09/27/2024] [Indexed: 10/11/2024] Open
Abstract
Actin is a critical component of the eukaryotic cytoskeleton. In animals, actins undergo unique N-terminal processing by dedicated enzymes resulting in mature acidic and acetylated forms. The final step, N-terminal acetylation, is catalyzed by NAA80 in humans. N-terminal acetylation of actin is crucial for maintaining normal cytoskeletal dynamics and cell motility in human cell lines. However, the physiological impact of actin N-terminal acetylation remains to be fully understood. We developed a zebrafish naa80 knockout model and demonstrated that Naa80 acetylates both muscle and non-muscle actins in vivo. Assays with purified Naa80 revealed a preference for acetylating actin N-termini. Zebrafish lacking actin N-terminal acetylation exhibited normal development, morphology, and behavior. In contrast, humans with pathogenic actin variants can present with hypotonia and hearing impairment. Whereas zebrafish lacking naa80 showed no obvious muscle defects or abnormalities, we observed abnormal inner ear development, small otoliths, and impaired response to sound. In conclusion, we have established that zebrafish Naa80 N-terminally acetylates actins in vitro and in vivo, and that actin N-terminal acetylation is essential for normal hearing.
Collapse
Affiliation(s)
- Rasmus Ree
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Sheng-Jia Lin
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | | | - Kevin Huang
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Cassidy Petree
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Gaurav K Varshney
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Thomas Arnesen
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Department of Surgery, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
5
|
He X, Liu Y, Gao X, Tang F, Tian Y, Gong S, Shen J, Wang A, Sun L, Wei W, Weng L. N-terminal acetylation of transcription factor LIP induces immune therapy resistance via suppression of PD-L1 expression in non-small cell lung cancer. J Immunother Cancer 2024; 12:e009905. [PMID: 39615895 PMCID: PMC11624798 DOI: 10.1136/jitc-2024-009905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 11/05/2024] [Indexed: 12/09/2024] Open
Abstract
BACKGROUND Programmed death-1 (PD-1) checkpoint blockade has revolutionized cancer therapy, yet its clinical success is confined to a subset of patients, underscoring the urgent need to understand the molecular underpinnings of programmed cell death ligand 1 (PD-L1) expression to combat immunotherapy resistance. METHODS Employing CRISPR/Cas9 screening, we identified key regulators of PD-L1 in non-small cell lung cancer (NSCLC) cells, focusing on the transcription factor CEBPB and its isoform liver-enriched inhibitory protein (LIP). Through chromatin immunoprecipitation (ChIP) and luciferase reporter assays, we explored the interaction between LIP and basic-helix-loop-helix E22 (BHLHE22) in controlling PD-L1 transcription. We also used immunofluorescence and NBD-CI assays to examine how N-terminal acetylation affects LIP's subcellular localization. The impact of LIP on tumor growth was assessed via subcutaneous tumorigenicity assays, while immunohistochemistry and immunofluorescence were used to analyze LIP-induced alterations in the tumor immune microenvironment. RESULTS Our research indicates that CEBPB, particularly its LIP isoform, significantly suppresses PD-L1 expression in NSCLC cells. This suppression is contingent on LIP's N-terminal acetylation by the N-terminal acetyltransferase A complex, which facilitates LIP's nuclear entry and interaction with BHLHE22. This interaction leads to the formation of a co-repressor complex at the PD-L1 promoter, effectively reducing PD-L1 expression and enhancing the tumor immune response. CONCLUSIONS Identifying CEBPB, especially the LIP isoform, as a pivotal regulator of PD-L1 expression sheds light on the mechanisms behind PD-1 blockade resistance in NSCLC. Our findings suggest that modulating LIP's function or its molecular interactions might offer a novel approach to boosting the efficacy of immunotherapies.
Collapse
Affiliation(s)
- Xiang He
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Xiangya Cancer Center, Xiangya Hospital Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, China
| | - Yongshuo Liu
- Department of Pathology and Lab Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xing Gao
- Department of Stomatology, Xiangya Hospital Central South University, Changsha, Hunan, China
- Center of Oral and Maxillofacial Cancer (COMAC), Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Feiyu Tang
- Center for Biotherapy, Sun Yat-Sen University, Guangzhou, China
| | - Yuxi Tian
- Department of Geriatric Respiratory and Critical Care Medicine, Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Siyuan Gong
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Xiangya Cancer Center, Xiangya Hospital Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, China
| | - Jia Shen
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Xiangya Cancer Center, Xiangya Hospital Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, China
| | - Aimin Wang
- Department of Emergency, Xiangya Hospital Central South University, Changsha, China
| | - Lunquan Sun
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Xiangya Cancer Center, Xiangya Hospital Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, China
| | - Wensheng Wei
- Biomedical Pioneering Innovation Center, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, Peking University School of Life Sciences, Beijing, China
- Changping Laboratory, Beijing, China
| | - Liang Weng
- Department of Pathology, School of Basic Medical Sciences, Peking University Third Hospital, Peking University Health Science Center, Beijing, China
| |
Collapse
|
6
|
Larsen SK, Bekkelund ÅK, Glomnes N, Arnesen T, Aksnes H. Assessing N-terminal acetylation status of cellular proteins via an antibody specific for acetylated methionine. Biochimie 2024; 226:113-120. [PMID: 39038730 DOI: 10.1016/j.biochi.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 07/01/2024] [Accepted: 07/16/2024] [Indexed: 07/24/2024]
Abstract
N-terminal acetylation is being recognized as a factor affecting protein lifetime and proteostasis. It is a modification where an acetyl group is added to the N-terminus of proteins, and this occurs in 80 % of the human proteome. N-terminal acetylation is catalyzed by enzymes called N-terminal acetyltransferases (NATs). The various NATs acetylate different N-terminal amino acids, and methionine is a known target for some of the NATs. Currently, the acetylation status of most proteins can only be assessed with a limited number of methods, including mass spectrometry, which although powerful and robust, remains laborious and can only survey a fraction of the proteome. We here present testing of an antibody that was developed to specifically recognize Nt-acetylated methionine-starting proteins. We have used dot blots with synthetic acetylated and non-acetylated peptides in addition to protein analysis of lysates from NAT knockout cell lines to assess the specificity and application of this anti-Nt-acetylated methionine antibody (anti-NtAc-Met). Our results demonstrate that this antibody is indeed NtAc-specific and further show that it has selectivity for some subtypes of methionine-starting N-termini, specifically potential substrates of the NatC, NatE and NatF enzymes. We propose that this antibody may be a powerful tool to identify NAT substrates or to analyse changes in N-terminal acetylation for specific cellular proteins of interest.
Collapse
Affiliation(s)
| | - Åse K Bekkelund
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Nina Glomnes
- Department of Biomedicine, University of Bergen, Bergen, Norway; Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Thomas Arnesen
- Department of Biomedicine, University of Bergen, Bergen, Norway; Department of Surgery, Haukeland University Hospital, Bergen, Norway
| | - Henriette Aksnes
- Department of Biomedicine, University of Bergen, Bergen, Norway.
| |
Collapse
|
7
|
Hassanzadeh K, Liu J, Maddila S, Mouradian MM. Posttranslational Modifications of α-Synuclein, Their Therapeutic Potential, and Crosstalk in Health and Neurodegenerative Diseases. Pharmacol Rev 2024; 76:1254-1290. [PMID: 39164116 PMCID: PMC11549938 DOI: 10.1124/pharmrev.123.001111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 07/28/2024] [Accepted: 08/09/2024] [Indexed: 08/22/2024] Open
Abstract
α-Synuclein (α-Syn) aggregation in Lewy bodies and Lewy neurites has emerged as a key pathogenetic feature in Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy. Various factors, including posttranslational modifications (PTMs), can influence the propensity of α-Syn to misfold and aggregate. PTMs are biochemical modifications of a protein that occur during or after translation and are typically mediated by enzymes. PTMs modulate several characteristics of proteins including their structure, activity, localization, and stability. α-Syn undergoes various posttranslational modifications, including phosphorylation, ubiquitination, SUMOylation, acetylation, glycation, O-GlcNAcylation, nitration, oxidation, polyamination, arginylation, and truncation. Different PTMs of a protein can physically interact with one another or work together to influence a particular physiological or pathological feature in a process known as PTMs crosstalk. The development of detection techniques for the cooccurrence of PTMs in recent years has uncovered previously unappreciated mechanisms of their crosstalk. This has led to the emergence of evidence supporting an association between α-Syn PTMs crosstalk and synucleinopathies. In this review, we provide a comprehensive evaluation of α-Syn PTMs, their impact on misfolding and pathogenicity, the pharmacological means of targeting them, and their potential as biomarkers of disease. We also highlight the importance of the crosstalk between these PTMs in α-Syn function and aggregation. Insight into these PTMS and the complexities of their crosstalk can improve our understanding of the pathogenesis of synucleinopathies and identify novel targets of therapeutic potential. SIGNIFICANCE STATEMENT: α-Synuclein is a key pathogenic protein in Parkinson's disease and other synucleinopathies, making it a leading therapeutic target for disease modification. Multiple posttranslational modifications occur at various sites in α-Synuclein and alter its biophysical and pathological properties, some interacting with one another to add to the complexity of the pathogenicity of this protein. This review details these modifications, their implications in disease, and potential therapeutic opportunities.
Collapse
Affiliation(s)
- Kambiz Hassanzadeh
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics, and Department of Neurology, Rutgers Biomedical and Health Sciences, Piscataway, New Jersey
| | - Jun Liu
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics, and Department of Neurology, Rutgers Biomedical and Health Sciences, Piscataway, New Jersey
| | - Santhosh Maddila
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics, and Department of Neurology, Rutgers Biomedical and Health Sciences, Piscataway, New Jersey
| | - M Maral Mouradian
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics, and Department of Neurology, Rutgers Biomedical and Health Sciences, Piscataway, New Jersey
| |
Collapse
|
8
|
Yang J, Kim SY, Hwang CS. Delineation of the substrate recognition domain of MARCHF6 E3 ubiquitin ligase in the Ac/N-degron pathway and its regulatory role in ferroptosis. J Biol Chem 2024; 300:107731. [PMID: 39216628 PMCID: PMC11460463 DOI: 10.1016/j.jbc.2024.107731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/05/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
Nα-terminal acetylation in eukaryotic proteins creates specific degradation signals (Ac/N-degrons) targeted for ubiquitin-mediated proteolysis via the Ac/N-degron pathway. Despite the identification of key components of the Ac/N-degron pathway over the past 15 years, the precise recognition domain (Ac/N domain) remains unclear. Here, we defined the Ac/N domain of the endoplasmic reticulum MARCHF6 E3 ubiquitin ligase through a systematic analysis of its cytosol-facing regions using alanine-stretch mutagenesis, chemical crosslinking-based co-immunoprecipitation-immunoblotting, and split-ubiquitin assays in human and yeast cells. The Ac/N domain of MARCHF6 exhibits preferential binding specificity to Nα-terminally acetylated proteins and peptides over their unacetylated counterparts, mediating the degradation of Ac/N-degron-bearing proteins, such as the G-protein regulator RGS2 and the lipid droplet protein PLIN2. Furthermore, abolishing the recognition of Ac/N-degrons by MARCHF6 stabilized RGS2 and PLIN2, thereby increasing the resistance to ferroptosis, an iron-dependent lipid peroxidation-mediated cell death. These findings provide mechanistic and functional insights into how MARCHF6 serves as a rheostatic modulator of ferroptosis by recognizing Ac/N-degron substrates via its Ac/N domain and non-Ac/N-degron substrates via distinct recognition sites.
Collapse
Affiliation(s)
- Jihye Yang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, South Korea
| | - Sang-Yoon Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, South Korea
| | - Cheol-Sang Hwang
- Department of Life Sciences, Korea University, Seoul, South Korea.
| |
Collapse
|
9
|
Constantinou M, Charidemou E, Shanlitourk I, Strati K, Kirmizis A. Yeast Nat4 regulates DNA damage checkpoint signaling through its N-terminal acetyltransferase activity on histone H4. PLoS Genet 2024; 20:e1011433. [PMID: 39356727 PMCID: PMC11472955 DOI: 10.1371/journal.pgen.1011433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 10/14/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024] Open
Abstract
The DNA damage response (DDR) constitutes a vital cellular process that safeguards genome integrity. This biological process involves substantial alterations in chromatin structure, commonly orchestrated by epigenetic enzymes. Here, we show that the epigenetic modifier N-terminal acetyltransferase 4 (Nat4), known to acetylate the alpha-amino group of serine 1 on histones H4 and H2A, is implicated in the response to DNA damage in S. cerevisiae. Initially, we demonstrate that yeast cells lacking Nat4 have an increased sensitivity to DNA damage and accumulate more DNA breaks than wild-type cells. Accordingly, upon DNA damage, NAT4 gene expression is elevated, and the enzyme is specifically recruited at double-strand breaks. Delving deeper into its effects on the DNA damage signaling cascade, nat4-deleted cells exhibit lower levels of the damage-induced modification H2AS129ph (γH2A), accompanied by diminished binding of the checkpoint control protein Rad9 surrounding the double-strand break. Consistently, Mec1 kinase recruitment at double-strand breaks, critical for H2AS129ph deposition and Rad9 retention, is significantly impaired in nat4Δ cells. Consequently, Mec1-dependent phosphorylation of downstream effector kinase Rad53, indicative of DNA damage checkpoint activation, is reduced. Importantly, we found that the effects of Nat4 in regulating the checkpoint signaling cascade are mediated by its N-terminal acetyltransferase activity targeted specifically towards histone H4. Overall, this study points towards a novel functional link between histone N-terminal acetyltransferase Nat4 and the DDR, associating a new histone-modifying activity in the maintenance of genome integrity.
Collapse
Affiliation(s)
| | - Evelina Charidemou
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Izge Shanlitourk
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Katerina Strati
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Antonis Kirmizis
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
10
|
Wesely J, Rusielewicz T, Chen YR, Hartley B, McKenzie D, Yim MK, Maguire C, Bia R, Franklin S, Makwana R, Marchi E, Nikte M, Patil S, Sapar M, Moroziewicz D, Bauer L, Lee JT, Monsma FJ, Paull D, Lyon GJ. A repository of Ogden syndrome patient derived iPSC lines and isogenic pairs by X-chromosome screening and genome-editing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.28.615067. [PMID: 39386428 PMCID: PMC11463393 DOI: 10.1101/2024.09.28.615067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Amino-terminal (Nt-) acetylation (NTA) is a common protein modification, affecting 80% of cytosolic proteins in humans. The human essential gene, NAA10, encodes the enzyme NAA10, as the catalytic subunit for the N-terminal acetyltransferase A (NatA) complex, including the accessory protein, NAA15. The first human disease directly involving NAA10 was discovered in 2011, and it was named Ogden syndrome (OS), after the location of the first affected family residing in Ogden, Utah, USA. Since that time, other variants have been found in NAA10 and NAA15. Here we describe the generation of 31 iPSC lines, with 16 from females and 15 from males. This cohort includes CRISPR-mediated correction to the wild-type genotype in 4 male lines, along with editing one female line to generate homozygous wild-type or mutant clones. Following the monoclonalizaiton and screening for X-chromosome activation status in female lines, 3 additional pairs of female lines, in which either the wild type allele is on the active X chromosome (Xa) or the pathogenic variant allele is on Xa, have been generated. Subsets of this cohort have been successfully used to make cardiomyocytes and neural progenitor cells (NPCs). These cell lines are made available to the community via the NYSCF Repository.
Collapse
Affiliation(s)
- Josephine Wesely
- The New York Stem Cell Foundation Research Institute, New York, NY, United States of America
| | - Tom Rusielewicz
- The New York Stem Cell Foundation Research Institute, New York, NY, United States of America
| | - Yu-Ren Chen
- The New York Stem Cell Foundation Research Institute, New York, NY, United States of America
| | - Brigham Hartley
- The New York Stem Cell Foundation Research Institute, New York, NY, United States of America
| | - Dayna McKenzie
- The New York Stem Cell Foundation Research Institute, New York, NY, United States of America
| | - Matthew K Yim
- Roseman University, South Jordan, Utah, United States of America
- Clinical & Translational Research Core, Utah Clinical & Translational Research Institute, Salt Lake City, UT, United States of America
| | - Colin Maguire
- Clinical & Translational Research Core, Utah Clinical & Translational Research Institute, Salt Lake City, UT, United States of America
| | - Ryan Bia
- Nora Eccles Harrison Cardiovascular Research and Training Institute (K.D., M.W.S., J.S.W., S.F.), University of Utah, Salt Lake City
| | - Sarah Franklin
- Nora Eccles Harrison Cardiovascular Research and Training Institute (K.D., M.W.S., J.S.W., S.F.), University of Utah, Salt Lake City
| | - Rikhil Makwana
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, United States of America
| | - Elaine Marchi
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, United States of America
| | - Manali Nikte
- The New York Stem Cell Foundation Research Institute, New York, NY, United States of America
| | - Soha Patil
- The New York Stem Cell Foundation Research Institute, New York, NY, United States of America
| | - Maria Sapar
- The New York Stem Cell Foundation Research Institute, New York, NY, United States of America
| | - Dorota Moroziewicz
- The New York Stem Cell Foundation Research Institute, New York, NY, United States of America
| | - Lauren Bauer
- The New York Stem Cell Foundation Research Institute, New York, NY, United States of America
| | - Jeannie T Lee
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Department of Genetics, The Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Frederick J Monsma
- The New York Stem Cell Foundation Research Institute, New York, NY, United States of America
| | - Daniel Paull
- The New York Stem Cell Foundation Research Institute, New York, NY, United States of America
| | - Gholson J Lyon
- Roseman University, South Jordan, Utah, United States of America
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, United States of America
- George A. Jervis Clinic, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, United States of America
- Biology PhD Program, The Graduate Center, The City University of New York, New York, United States of America
| |
Collapse
|
11
|
Brünje A, Füßl M, Eirich J, Boyer JB, Heinkow P, Neumann U, Konert M, Ivanauskaite A, Seidel J, Ozawa SI, Sakamoto W, Meinnel T, Schwarzer D, Mulo P, Giglione C, Finkemeier I. The Plastidial Protein Acetyltransferase GNAT1 Forms a Complex With GNAT2, yet Their Interaction Is Dispensable for State Transitions. Mol Cell Proteomics 2024; 23:100850. [PMID: 39349166 PMCID: PMC11585782 DOI: 10.1016/j.mcpro.2024.100850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/12/2024] [Accepted: 08/18/2024] [Indexed: 10/02/2024] Open
Abstract
Protein N-acetylation is one of the most abundant co- and post-translational modifications in eukaryotes, extending its occurrence to chloroplasts within vascular plants. Recently, a novel plastidial enzyme family comprising eight acetyltransferases that exhibit dual lysine and N-terminus acetylation activities was unveiled in Arabidopsis. Among these, GNAT1, GNAT2, and GNAT3 reveal notable phylogenetic proximity, forming a subgroup termed NAA90. Our study focused on characterizing GNAT1, closely related to the state transition acetyltransferase GNAT2. In contrast to GNAT2, GNAT1 did not prove essential for state transitions and displayed no discernible phenotypic difference compared to the wild type under high light conditions, while gnat2 mutants were severely affected. However, gnat1 mutants exhibited a tighter packing of the thylakoid membranes akin to gnat2 mutants. In vitro studies with recombinant GNAT1 demonstrated robust N-terminus acetylation activity on synthetic substrate peptides. This activity was confirmed in vivo through N-terminal acetylome profiling in two independent gnat1 knockout lines. This attributed several acetylation sites on plastidial proteins to GNAT1, reflecting a subset of GNAT2's substrate spectrum. Moreover, co-immunoprecipitation coupled with mass spectrometry revealed a robust interaction between GNAT1 and GNAT2, as well as a significant association of GNAT2 with GNAT3 - the third acetyltransferase within the NAA90 subfamily. This study unveils the existence of at least two acetyltransferase complexes within chloroplasts, whereby complex formation might have a critical effect on the fine-tuning of the overall acetyltransferase activities. These findings introduce a novel layer of regulation in acetylation-dependent adjustments in plastidial metabolism.
Collapse
Affiliation(s)
- Annika Brünje
- Plant Physiology, Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Münster, Germany
| | - Magdalena Füßl
- Plant Physiology, Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Münster, Germany
| | - Jürgen Eirich
- Plant Physiology, Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Münster, Germany
| | - Jean-Baptiste Boyer
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Paulina Heinkow
- Plant Physiology, Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Münster, Germany
| | - Ulla Neumann
- Central Microscopy, Max Planck Institute for Plant Breeding Research, Köln, Germany
| | - Minna Konert
- Department of Life Technologies, Molecular Plant Biology, University of Turku, Turku, Finland
| | - Aiste Ivanauskaite
- Department of Life Technologies, Molecular Plant Biology, University of Turku, Turku, Finland
| | - Julian Seidel
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Shin-Ichiro Ozawa
- Institute of Plant Science and Resources (IPSR) Okayama University, Kurashiki, Okayama, Japan
| | - Wataru Sakamoto
- Institute of Plant Science and Resources (IPSR) Okayama University, Kurashiki, Okayama, Japan
| | - Thierry Meinnel
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Dirk Schwarzer
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Paula Mulo
- Department of Life Technologies, Molecular Plant Biology, University of Turku, Turku, Finland
| | - Carmela Giglione
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Iris Finkemeier
- Plant Physiology, Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Münster, Germany.
| |
Collapse
|
12
|
Varshavsky A. N-degron pathways. Proc Natl Acad Sci U S A 2024; 121:e2408697121. [PMID: 39264755 PMCID: PMC11441550 DOI: 10.1073/pnas.2408697121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024] Open
Abstract
An N-degron is a degradation signal whose main determinant is a "destabilizing" N-terminal residue of a protein. Specific N-degrons, discovered in 1986, were the first identified degradation signals in short-lived intracellular proteins. These N-degrons are recognized by a ubiquitin-dependent proteolytic system called the Arg/N-degron pathway. Although bacteria lack the ubiquitin system, they also have N-degron pathways. Studies after 1986 have shown that all 20 amino acids of the genetic code can act, in specific sequence contexts, as destabilizing N-terminal residues. Eukaryotic proteins are targeted for the conditional or constitutive degradation by at least five N-degron systems that differ both functionally and mechanistically: the Arg/N-degron pathway, the Ac/N-degron pathway, the Pro/N-degron pathway, the fMet/N-degron pathway, and the newly named, in this perspective, GASTC/N-degron pathway (GASTC = Gly, Ala, Ser, Thr, Cys). I discuss these systems and the expanded terminology that now encompasses the entire gamut of known N-degron pathways.
Collapse
Affiliation(s)
- Alexander Varshavsky
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| |
Collapse
|
13
|
Eckardt NA, Avin-Wittenberg T, Bassham DC, Chen P, Chen Q, Fang J, Genschik P, Ghifari AS, Guercio AM, Gibbs DJ, Heese M, Jarvis RP, Michaeli S, Murcha MW, Mursalimov S, Noir S, Palayam M, Peixoto B, Rodriguez PL, Schaller A, Schnittger A, Serino G, Shabek N, Stintzi A, Theodoulou FL, Üstün S, van Wijk KJ, Wei N, Xie Q, Yu F, Zhang H. The lowdown on breakdown: Open questions in plant proteolysis. THE PLANT CELL 2024; 36:2931-2975. [PMID: 38980154 PMCID: PMC11371169 DOI: 10.1093/plcell/koae193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/16/2024] [Accepted: 06/19/2024] [Indexed: 07/10/2024]
Abstract
Proteolysis, including post-translational proteolytic processing as well as protein degradation and amino acid recycling, is an essential component of the growth and development of living organisms. In this article, experts in plant proteolysis pose and discuss compelling open questions in their areas of research. Topics covered include the role of proteolysis in the cell cycle, DNA damage response, mitochondrial function, the generation of N-terminal signals (degrons) that mark many proteins for degradation (N-terminal acetylation, the Arg/N-degron pathway, and the chloroplast N-degron pathway), developmental and metabolic signaling (photomorphogenesis, abscisic acid and strigolactone signaling, sugar metabolism, and postharvest regulation), plant responses to environmental signals (endoplasmic-reticulum-associated degradation, chloroplast-associated degradation, drought tolerance, and the growth-defense trade-off), and the functional diversification of peptidases. We hope these thought-provoking discussions help to stimulate further research.
Collapse
Affiliation(s)
| | - Tamar Avin-Wittenberg
- Department of Plant and Environmental Sciences, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Diane C Bassham
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Poyu Chen
- School of Biological Science and Technology, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Qian Chen
- Ministry of Agriculture and Rural Affairs Key Laboratory for Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Jun Fang
- Section of Molecular Plant Biology, Department of Biology, University of Oxford, Oxford OX1 3RB, UK
| | - Pascal Genschik
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, 12, rue du Général Zimmer, Strasbourg 67084, France
| | - Abi S Ghifari
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Angelica M Guercio
- Department of Plant Biology, College of Biological Sciences, University of California-Davis, Davis, CA 95616, USA
| | - Daniel J Gibbs
- School of Biosciences, University of Birmingham, Edgbaston B1 2RU, UK
| | - Maren Heese
- Department of Developmental Biology, University of Hamburg, Ohnhorststr. 18, Hamburg 22609, Germany
| | - R Paul Jarvis
- Section of Molecular Plant Biology, Department of Biology, University of Oxford, Oxford OX1 3RB, UK
| | - Simon Michaeli
- Department of Postharvest Sciences, Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZion 7505101, Israel
| | - Monika W Murcha
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Sergey Mursalimov
- Department of Postharvest Sciences, Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZion 7505101, Israel
| | - Sandra Noir
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, 12, rue du Général Zimmer, Strasbourg 67084, France
| | - Malathy Palayam
- Department of Plant Biology, College of Biological Sciences, University of California-Davis, Davis, CA 95616, USA
| | - Bruno Peixoto
- Section of Molecular Plant Biology, Department of Biology, University of Oxford, Oxford OX1 3RB, UK
| | - Pedro L Rodriguez
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Cientificas-Universidad Politecnica de Valencia, Valencia ES-46022, Spain
| | - Andreas Schaller
- Department of Plant Physiology and Biochemistry, Institute of Biology, University of Hohenheim, Stuttgart 70599, Germany
| | - Arp Schnittger
- Department of Developmental Biology, University of Hamburg, Ohnhorststr. 18, Hamburg 22609, Germany
| | - Giovanna Serino
- Department of Biology and Biotechnology, Sapienza Universita’ di Roma, p.le A. Moro 5, Rome 00185, Italy
| | - Nitzan Shabek
- Department of Plant Biology, College of Biological Sciences, University of California-Davis, Davis, CA 95616, USA
| | - Annick Stintzi
- Department of Plant Physiology and Biochemistry, Institute of Biology, University of Hohenheim, Stuttgart 70599, Germany
| | | | - Suayib Üstün
- Faculty of Biology and Biotechnology, Ruhr-University of Bochum, Bochum 44780, Germany
| | - Klaas J van Wijk
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, NY 14853, USA
| | - Ning Wei
- School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Qi Xie
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feifei Yu
- College of Grassland Science and Technology, China Agricultural University, Beijing 100083, China
| | - Hongtao Zhang
- Plant Sciences and the Bioeconomy, Rothamsted Research, Harpenden AL5 2JQ, UK
| |
Collapse
|
14
|
Klavaris A, Kouma M, Ozdemir C, Nicolaidou V, Miller KM, Koufaris C, Kirmizis A. Biochemical Characterisation of the Short Isoform of Histone N-Terminal Acetyltransferase NAA40. Biomolecules 2024; 14:1100. [PMID: 39334865 PMCID: PMC11430322 DOI: 10.3390/biom14091100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/21/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024] Open
Abstract
N-alpha-acetyltransferase 40 (NAA40) is an evolutionarily conserved N-terminal acetyltransferase (NAT) linked to oncogenesis and chemoresistance. A recent study reported the generation of a second, shorter NAA40 isoform (NAA40S) through alternative translation, which we proceeded to further characterise. Notably, recombinant NAA40S had a greater in vitro enzymatic activity and affinity towards its histone H2A/H4 substrates compared to full-length NAA40 (NAA40L). Within cells, NAA40S was enzymatically active, based on its ability to suppress the H2A/H4S1Ph antagonistic mark in CRISPR-generated NAA40 knockout cells. Finally, we show that in addition to alternative translation, the NAA40S isoform could be derived from a primate and testis-specific transcript, which may align with the "out-of-testis" origin of recently evolved genes and isoforms. To summarise, our data reveal an even greater functional divergence between the two NAA40 isoforms than had been previously recognised.
Collapse
Affiliation(s)
- Ariel Klavaris
- Epigenetics and Gene Regulation Laboratory, Department of Biological Sciences, University of Cyprus, Nicosia 2109, Cyprus
| | - Maria Kouma
- Epigenetics and Gene Regulation Laboratory, Department of Biological Sciences, University of Cyprus, Nicosia 2109, Cyprus
| | - Cem Ozdemir
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Vicky Nicolaidou
- Department of Life Sciences, University of Nicosia, Nicosia 2417, Cyprus
| | - Kyle M Miller
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Costas Koufaris
- Epigenetics and Gene Regulation Laboratory, Department of Biological Sciences, University of Cyprus, Nicosia 2109, Cyprus
- Cyprus Cancer Research Institute, Nicosia 2109, Cyprus
| | - Antonis Kirmizis
- Epigenetics and Gene Regulation Laboratory, Department of Biological Sciences, University of Cyprus, Nicosia 2109, Cyprus
| |
Collapse
|
15
|
Morikawa K, Nishida H, Imami K, Ishihama Y. One-step N-Terminomics Based on Isolation of Protein N-Terminal Peptides From LysargiNase Digests by Tip-Based Strong Cation Exchange Chromatography. Mol Cell Proteomics 2024; 23:100820. [PMID: 39069075 PMCID: PMC11382313 DOI: 10.1016/j.mcpro.2024.100820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 07/21/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024] Open
Abstract
We have developed a one-step isolation method for protein N-terminal peptides from LysargiNase digests by pipette tip-based strong cation exchange (SCX) chromatography. This CHAMP-N (CHromatographic AMplification of Protein N-terminal peptides) method using disposable and parallel-processable SCX tips instead of conventional HPLC SCX columns facilitates simple, sensitive, reproducible, and high-throughput N-terminomic profiling without sacrificing the high identification numbers and selectivity achieved by the HPLC-based method. By applying the CHAMP-N method to HEK293T cells, we identified novel cleavage sites for signal and transit peptides and non-canonical translation initiation sites. Finally, for proteome-wide terminomics, we present a simple and comprehensive N- and C-terminomics platform employing three different tip-based approaches, including CHAMP-N, in which protease digestion and one-step isolation by tip LC are commonly used to achieve complementary terminome coverages.
Collapse
Affiliation(s)
- Kazuya Morikawa
- Department of Molecular Systems BioAnalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Hiroshi Nishida
- Department of Molecular Systems BioAnalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Koshi Imami
- Department of Molecular Systems BioAnalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan; Proteome Homeostasis Research Unit, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Yasushi Ishihama
- Department of Molecular Systems BioAnalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan; Laboratory of Clinical and Analytical Chemistry, National Institute of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan.
| |
Collapse
|
16
|
Guedes JP, Boyer JB, Elurbide J, Carte B, Redeker V, Sago L, Meinnel T, Côrte-Real M, Giglione C, Aldabe R. NatB Protects Procaspase-8 from UBR4-Mediated Degradation and Is Required for Full Induction of the Extrinsic Apoptosis Pathway. Mol Cell Biol 2024; 44:358-371. [PMID: 39099191 PMCID: PMC11376409 DOI: 10.1080/10985549.2024.2382453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 08/06/2024] Open
Abstract
N-terminal acetyltransferase B (NatB) is a major contributor to the N-terminal acetylome and is implicated in several key cellular processes including apoptosis and proteostasis. However, the molecular mechanisms linking NatB-mediated N-terminal acetylation to apoptosis and its relationship with protein homeostasis remain elusive. In this study, we generated mouse embryonic fibroblasts (MEFs) with an inactivated catalytic subunit of NatB (Naa20-/-) to investigate the impact of NatB deficiency on apoptosis regulation. Through quantitative N-terminomics, label-free quantification, and targeted proteomics, we demonstrated that NatB does not influence the proteostasis of all its substrates. Instead, our focus on putative NatB-dependent apoptotic factors revealed that NatB serves as a protective shield against UBR4 and UBR1 Arg/N-recognin-mediated degradation. Notably, Naa20-/- MEFs exhibited reduced responsiveness to an extrinsic pro-apoptotic stimulus, a phenotype that was partially reversible upon UBR4 Arg/N-recognin silencing and consequent inhibition of procaspase-8 degradation. Collectively, our results shed light on how the interplay between NatB-mediated acetylation and the Arg/N-degron pathway appears to impact apoptosis regulation, providing new perspectives in the field including in therapeutic interventions.
Collapse
Affiliation(s)
- Joana P. Guedes
- CBMA/UM – Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Braga, Portugal
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Braga, Portugal
- CIMA/UNAV – Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain
| | - Jean Baptiste Boyer
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Jasmine Elurbide
- CIMA/UNAV – Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain
| | - Beatriz Carte
- CIMA/UNAV – Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain
| | - Virginie Redeker
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Laila Sago
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Thierry Meinnel
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Manuela Côrte-Real
- CBMA/UM – Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Braga, Portugal
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Braga, Portugal
| | - Carmela Giglione
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Rafael Aldabe
- CIMA/UNAV – Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain
| |
Collapse
|
17
|
Armbruster L, Pożoga M, Wu Z, Eirich J, Thulasi Devendrakumar K, De La Torre C, Miklánková P, Huber M, Bradic F, Poschet G, Weidenhausen J, Merker S, Ruppert T, Sticht C, Sinning I, Finkemeier I, Li X, Hell R, Wirtz M. Nα-acetyltransferase NAA50 mediates plant immunity independent of the Nα-acetyltransferase A complex. PLANT PHYSIOLOGY 2024; 195:3097-3118. [PMID: 38588051 DOI: 10.1093/plphys/kiae200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 04/10/2024]
Abstract
In humans and plants, 40% of the proteome is cotranslationally acetylated at the N-terminus by a single Nα-acetyltransferase (Nat) termed NatA. The core NatA complex is comprised of the catalytic subunit Nα-acetyltransferase 10 (NAA10) and the ribosome-anchoring subunit NAA15. The regulatory subunit Huntingtin Yeast Partner K (HYPK) and the acetyltransferase NAA50 join this complex in humans. Even though both are conserved in Arabidopsis (Arabidopsis thaliana), only AtHYPK is known to interact with AtNatA. Here we uncover the AtNAA50 interactome and provide evidence for the association of AtNAA50 with NatA at ribosomes. In agreement with the latter, a split-luciferase approach demonstrated close proximity of AtNAA50 and AtNatA in planta. Despite their interaction, AtNatA/HYPK and AtNAA50 exerted different functions in vivo. Unlike NatA/HYPK, AtNAA50 did not modulate drought tolerance or promote protein stability. Instead, transcriptome and proteome analyses of a novel AtNAA50-depleted mutant (amiNAA50) implied that AtNAA50 negatively regulates plant immunity. Indeed, amiNAA50 plants exhibited enhanced resistance to oomycetes and bacterial pathogens. In contrast to what was observed in NatA-depleted mutants, this resistance was independent of an accumulation of salicylic acid prior to pathogen exposure. Our study dissects the in vivo function of the NatA interactors HYPK and NAA50 and uncovers NatA-independent roles for NAA50 in plants.
Collapse
Affiliation(s)
- Laura Armbruster
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Marlena Pożoga
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Zhongshou Wu
- Michael Smith Laboratories, University of British Columbia, V6T1Z4 Vancouver, BC, Canada
| | - Jürgen Eirich
- Institute of Plant Biology and Biotechnology, University of Münster, 48149 Münster, Germany
| | | | - Carolina De La Torre
- NGS Core Facility, Medical Faculty Mannheim of Heidelberg University, 68167 Mannheim, Germany
| | - Pavlina Miklánková
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Monika Huber
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Fabian Bradic
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Gernot Poschet
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Jonas Weidenhausen
- Structural Biology, Heidelberg University Biochemistry Center, 69120 Heidelberg, Germany
| | - Sabine Merker
- Core Facility for Mass Spectrometry and Proteomics, Center for Molecular Biology of Heidelberg University, 69120 Heidelberg, Germany
| | - Thomas Ruppert
- Core Facility for Mass Spectrometry and Proteomics, Center for Molecular Biology of Heidelberg University, 69120 Heidelberg, Germany
| | - Carsten Sticht
- NGS Core Facility, Medical Faculty Mannheim of Heidelberg University, 68167 Mannheim, Germany
| | - Irmgard Sinning
- Structural Biology, Heidelberg University Biochemistry Center, 69120 Heidelberg, Germany
| | - Iris Finkemeier
- Institute of Plant Biology and Biotechnology, University of Münster, 48149 Münster, Germany
| | - Xin Li
- Michael Smith Laboratories, University of British Columbia, V6T1Z4 Vancouver, BC, Canada
| | - Rüdiger Hell
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Markus Wirtz
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| |
Collapse
|
18
|
Heathcote KC, Keeley TP, Myllykoski M, Lundekvam M, McTiernan N, Akter S, Masson N, Ratcliffe PJ, Arnesen T, Flashman E. N-terminal cysteine acetylation and oxidation patterns may define protein stability. Nat Commun 2024; 15:5360. [PMID: 38918375 PMCID: PMC11199558 DOI: 10.1038/s41467-024-49489-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 06/05/2024] [Indexed: 06/27/2024] Open
Abstract
Oxygen homeostasis is maintained in plants and animals by O2-sensing enzymes initiating adaptive responses to low O2 (hypoxia). Recently, the O2-sensitive enzyme ADO was shown to initiate degradation of target proteins RGS4/5 and IL32 via the Cysteine/Arginine N-degron pathway. ADO functions by catalysing oxidation of N-terminal cysteine residues, but despite multiple proteins in the human proteome having an N-terminal cysteine, other endogenous ADO substrates have not yet been identified. This could be because alternative modifications of N-terminal cysteine residues, including acetylation, prevent ADO-catalysed oxidation. Here we investigate the relationship between ADO-catalysed oxidation and NatA-catalysed acetylation of a broad range of protein sequences with N-terminal cysteines. We present evidence that human NatA catalyses N-terminal cysteine acetylation in vitro and in vivo. We then show that sequences downstream of the N-terminal cysteine dictate whether this residue is oxidised or acetylated, with ADO preferring basic and aromatic amino acids and NatA preferring acidic or polar residues. In vitro, the two modifications appear to be mutually exclusive, suggesting that distinct pools of N-terminal cysteine proteins may be acetylated or oxidised. These results reveal the sequence determinants that contribute to N-terminal cysteine protein modifications, with implications for O2-dependent protein stability and the hypoxic response.
Collapse
Affiliation(s)
- Karen C Heathcote
- Department of Chemistry, University of Oxford, OX1 3TA, Oxford, UK
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, OX3 7FZ, Oxford, UK
- The Francis Crick Institute, 1 Midland Road, NW1 1AT, London, UK
| | - Thomas P Keeley
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, OX3 7FZ, Oxford, UK
| | - Matti Myllykoski
- Department of Biomedicine, University of Bergen, 5020, Bergen, Norway
| | - Malin Lundekvam
- Department of Biomedicine, University of Bergen, 5020, Bergen, Norway
| | - Nina McTiernan
- Department of Biomedicine, University of Bergen, 5020, Bergen, Norway
| | - Salma Akter
- Department of Chemistry, University of Oxford, OX1 3TA, Oxford, UK
| | - Norma Masson
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, OX3 7FZ, Oxford, UK
| | - Peter J Ratcliffe
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, OX3 7FZ, Oxford, UK.
- The Francis Crick Institute, 1 Midland Road, NW1 1AT, London, UK.
| | - Thomas Arnesen
- Department of Biomedicine, University of Bergen, 5020, Bergen, Norway.
- Department of Surgery, Haukeland University Hospital, 5021, Bergen, Norway.
| | - Emily Flashman
- Department of Biology, University of Oxford, OX1 3RB, Oxford, UK.
| |
Collapse
|
19
|
Calis S, Gevaert K. The role of Nα-terminal acetylation in protein conformation. FEBS J 2024. [PMID: 38923676 DOI: 10.1111/febs.17209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024]
Abstract
Especially in higher eukaryotes, the N termini of proteins are subject to enzymatic modifications, with the acetylation of the alpha-amino group of nascent polypeptides being a prominent one. In recent years, the specificities and substrates of the enzymes responsible for this modification, the Nα-terminal acetyltransferases, have been mapped in several proteomic studies. Aberrant expression of, and mutations in these enzymes were found to be associated with several human diseases, explaining the growing interest in protein Nα-terminal acetylation. With some enzymes, such as the Nα-terminal acetyltransferase A complex having thousands of possible substrates, researchers are now trying to decipher the functional outcome of Nα-terminal protein acetylation. In this review, we zoom in on one possible functional consequence of Nα-terminal protein acetylation; its effect on protein folding. Using selected examples of proteins associated with human diseases such as alpha-synuclein and huntingtin, here, we discuss the sometimes contradictory findings of the effects of Nα-terminal protein acetylation on protein (mis)folding and aggregation.
Collapse
Affiliation(s)
- Sam Calis
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Belgium
| | - Kris Gevaert
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Belgium
| |
Collapse
|
20
|
Koufaris C, Demetriadou C, Nicolaidou V, Kirmizis A. Bioinformatic Analysis Reveals the Association of Human N-Terminal Acetyltransferase Complexes with Distinct Transcriptional and Post-Transcriptional Processes. Biochem Genet 2024:10.1007/s10528-024-10860-z. [PMID: 38864963 DOI: 10.1007/s10528-024-10860-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/05/2024] [Indexed: 06/13/2024]
Abstract
N-terminal acetyltransferases (NAT) are the protein complexes that deposit the abundant N-terminal acetylation (Nt-Ac) on eukaryotic proteins, with seven human complexes currently identified. Despite the increasing recognition of their biological and clinical importance, NAT regulation remains elusive. In this study, we performed a bioinformatic investigation to identify transcriptional and post-transcriptional processes that could be involved in the regulation of human NAT complexes. First, co-expression analysis of independent transcriptomic datasets revealed divergent pathway associations for human NAT, which are potentially connected to their distinct cellular functions. One interesting connection uncovered was the coordinated regulation of the NatA and proteasomal genes in cancer and immune cells, confirmed by analysis of multiple datasets and in isolated primary T cells. Another distinctive association was of NAA40 (NatD) with DNA replication, in cancer and non-cancer settings. The link between NAA40 transcription and DNA replication is potentially mediated through E2F1, which we have experimentally shown to bind the promoter of this NAT. Second, the coupled examination of transcriptomic and proteomic datasets revealed a much greater intra-complex concordance of NAT subunits at the protein compared to the transcript level, indicating the predominance of post-transcriptional processes for achieving their coordination. In agreement with this concept, we also found that the effects of somatic copy number alterations affecting NAT genes are attenuated post-transcriptionally. In conclusion, this study provides novel insights into the regulation of human NAT complexes.
Collapse
Affiliation(s)
- C Koufaris
- Epigenetics and Gene Regulation Laboratory, Department of Biological Sciences, University of Cyprus, 2109, Nicosia, Cyprus
| | - C Demetriadou
- Epigenetics and Gene Regulation Laboratory, Department of Biological Sciences, University of Cyprus, 2109, Nicosia, Cyprus
| | - V Nicolaidou
- Department of Life Sciences, University of Nicosia, Nicosia, Cyprus
| | - A Kirmizis
- Epigenetics and Gene Regulation Laboratory, Department of Biological Sciences, University of Cyprus, 2109, Nicosia, Cyprus.
| |
Collapse
|
21
|
Lyon GJ, Longo J, Garcia A, Inusa F, Marchi E, Shi D, Dörfel M, Arnesen T, Aldabe R, Lyons S, Nashat MA, Bolton D. Evaluating possible maternal effect lethality and genetic background effects in Naa10 knockout mice. PLoS One 2024; 19:e0301328. [PMID: 38713657 PMCID: PMC11075865 DOI: 10.1371/journal.pone.0301328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 03/14/2024] [Indexed: 05/09/2024] Open
Abstract
Amino-terminal (Nt-) acetylation (NTA) is a common protein modification, affecting approximately 80% of all human proteins. The human essential X-linked gene, NAA10, encodes for the enzyme NAA10, which is the catalytic subunit in the N-terminal acetyltransferase A (NatA) complex. There is extensive genetic variation in humans with missense, splice-site, and C-terminal frameshift variants in NAA10. In mice, Naa10 is not an essential gene, as there exists a paralogous gene, Naa12, that substantially rescues Naa10 knockout mice from embryonic lethality, whereas double knockouts (Naa10-/Y Naa12-/-) are embryonic lethal. However, the phenotypic variability in the mice is nonetheless quite extensive, including piebaldism, skeletal defects, small size, hydrocephaly, hydronephrosis, and neonatal lethality. Here we replicate these phenotypes with new genetic alleles in mice, but we demonstrate their modulation by genetic background and environmental effects. We cannot replicate a prior report of "maternal effect lethality" for heterozygous Naa10-/X female mice, but we do observe a small amount of embryonic lethality in the Naa10-/y male mice on the inbred genetic background in this different animal facility.
Collapse
Affiliation(s)
- Gholson J. Lyon
- Human Genetics Department, New York State Institute for Basic Research (IBR) in Developmental Disabilities, Staten Island, New York, United States of America
- Biology PhD Program, The Graduate Center, The City University of New York, New York, NY, United States of America
| | - Joseph Longo
- Human Genetics Department, New York State Institute for Basic Research (IBR) in Developmental Disabilities, Staten Island, New York, United States of America
| | - Andrew Garcia
- Human Genetics Department, New York State Institute for Basic Research (IBR) in Developmental Disabilities, Staten Island, New York, United States of America
- Biology PhD Program, The Graduate Center, The City University of New York, New York, NY, United States of America
| | - Fatima Inusa
- Human Genetics Department, New York State Institute for Basic Research (IBR) in Developmental Disabilities, Staten Island, New York, United States of America
| | - Elaine Marchi
- Human Genetics Department, New York State Institute for Basic Research (IBR) in Developmental Disabilities, Staten Island, New York, United States of America
| | - Daniel Shi
- Human Genetics Department, New York State Institute for Basic Research (IBR) in Developmental Disabilities, Staten Island, New York, United States of America
| | - Max Dörfel
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Woodbury, New York, United States of America
| | - Thomas Arnesen
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Department of Biological Sciences, University of Bergen, Bergen, Norway
- Department of Surgery, Haukeland University Hospital, Bergen, Norway
| | - Rafael Aldabe
- Division of Gene Therapy and Regulation of Gene Expression, CIMA, University of Navarra, Pamplona, Spain
| | - Scott Lyons
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Woodbury, New York, United States of America
| | - Melissa A. Nashat
- Human Genetics Department, New York State Institute for Basic Research (IBR) in Developmental Disabilities, Staten Island, New York, United States of America
| | - David Bolton
- Molecular Biology Department, New York State Institute for Basic Research (IBR) in Developmental Disabilities, Staten Island, New York, United States of America
| |
Collapse
|
22
|
Arnesen T, Kjosås I, McTiernan N. Protein N-terminal acetylation is entering the degradation end game. Nat Rev Mol Cell Biol 2024:10.1038/s41580-024-00723-1. [PMID: 38519774 DOI: 10.1038/s41580-024-00723-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2024]
Affiliation(s)
- Thomas Arnesen
- Department of Biomedicine, University of Bergen, Bergen, Norway.
- Department of Surgery, Haukeland University Hospital, Bergen, Norway.
| | - Ine Kjosås
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Nina McTiernan
- Department of Biomedicine, University of Bergen, Bergen, Norway.
| |
Collapse
|
23
|
Chelban V, Aksnes H, Maroofian R, LaMonica LC, Seabra L, Siggervåg A, Devic P, Shamseldin HE, Vandrovcova J, Murphy D, Richard AC, Quenez O, Bonnevalle A, Zanetti MN, Kaiyrzhanov R, Salpietro V, Efthymiou S, Schottlaender LV, Morsy H, Scardamaglia A, Tariq A, Pagnamenta AT, Pennavaria A, Krogstad LS, Bekkelund ÅK, Caiella A, Glomnes N, Brønstad KM, Tury S, Moreno De Luca A, Boland-Auge A, Olaso R, Deleuze JF, Anheim M, Cretin B, Vona B, Alajlan F, Abdulwahab F, Battini JL, İpek R, Bauer P, Zifarelli G, Gungor S, Kurul SH, Lochmuller H, Da'as SI, Fakhro KA, Gómez-Pascual A, Botía JA, Wood NW, Horvath R, Ernst AM, Rothman JE, McEntagart M, Crow YJ, Alkuraya FS, Nicolas G, Arnesen T, Houlden H. Biallelic NAA60 variants with impaired n-terminal acetylation capacity cause autosomal recessive primary familial brain calcifications. Nat Commun 2024; 15:2269. [PMID: 38480682 PMCID: PMC10937998 DOI: 10.1038/s41467-024-46354-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/23/2024] [Indexed: 03/17/2024] Open
Abstract
Primary familial brain calcification (PFBC) is characterized by calcium deposition in the brain, causing progressive movement disorders, psychiatric symptoms, and cognitive decline. PFBC is a heterogeneous disorder currently linked to variants in six different genes, but most patients remain genetically undiagnosed. Here, we identify biallelic NAA60 variants in ten individuals from seven families with autosomal recessive PFBC. The NAA60 variants lead to loss-of-function with lack of protein N-terminal (Nt)-acetylation activity. We show that the phosphate importer SLC20A2 is a substrate of NAA60 in vitro. In cells, loss of NAA60 caused reduced surface levels of SLC20A2 and a reduction in extracellular phosphate uptake. This study establishes NAA60 as a causal gene for PFBC, provides a possible biochemical explanation of its disease-causing mechanisms and underscores NAA60-mediated Nt-acetylation of transmembrane proteins as a fundamental process for healthy neurobiological functioning.
Collapse
Affiliation(s)
- Viorica Chelban
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK.
- Neurobiology and Medical Genetics Laboratory, "Nicolae Testemitanu" State University of Medicine and Pharmacy, 165, Stefan cel Mare si Sfant Boulevard, MD, 2004, Chisinau, Republic of Moldova.
| | - Henriette Aksnes
- Department of Biomedicine, University of Bergen, Bergen, Norway.
| | - Reza Maroofian
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Lauren C LaMonica
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA
| | - Luis Seabra
- Université Paris Cité, Imagine Institute, Laboratory of Neurogenetics and Neuroinflammation, INSERM UMR 1163, Paris, France
| | | | - Perrine Devic
- Hospices Civils de Lyon, Groupement Hospitalier Sud, Service d'Explorations Fonctionnelles Neurologiques, Lyon, France
| | - Hanan E Shamseldin
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Jana Vandrovcova
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - David Murphy
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Anne-Claire Richard
- Univ Rouen Normandie, Inserm U1245, CHU Rouen, Department of Genetics and CNRMAJ, F-76000, Rouen, France
| | - Olivier Quenez
- Univ Rouen Normandie, Inserm U1245, CHU Rouen, Department of Genetics and CNRMAJ, F-76000, Rouen, France
| | - Antoine Bonnevalle
- Univ Rouen Normandie, Inserm U1245, CHU Rouen, Department of Genetics and CNRMAJ, F-76000, Rouen, France
| | - M Natalia Zanetti
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Rauan Kaiyrzhanov
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
- South Kazakhstan Medical Academy Shymkent, Shymkent, 160019, Kazakhstan
| | - Vincenzo Salpietro
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Stephanie Efthymiou
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Lucia V Schottlaender
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
- Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Universidad Austral, Av. Juan Domingo Perón 1500, B1629AHJ, Pilar, Argentina
- Instituto de medicina genómica (IMeG), Hospital Universitario Austral, Universidad Austral, Av. Juan Domingo Perón 1500, B1629AHJ, Pilar, Argentina
| | - Heba Morsy
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
- Department of Human Genetics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Annarita Scardamaglia
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Ambreen Tariq
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Alistair T Pagnamenta
- Oxford NIHR Biomedical Research Centre, Wellcome Centre for Human Genetics, Oxford, United Kingdom
| | - Ajia Pennavaria
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Liv S Krogstad
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Åse K Bekkelund
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Alessia Caiella
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Nina Glomnes
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Department of Clinical Science, University of Bergen, 5020, Bergen, Norway
| | | | - Sandrine Tury
- Institut de Recherche en Infectiologie de Montpellier, Université de Montpellier, CNRS, Montpellier, France
| | - Andrés Moreno De Luca
- Department of Radiology, Autism & Developmental Medicine Institute, Geisinger, Lewisburg, PA, USA
- Department of Radiology, Neuroradiology Section, Kingston Health Sciences Centre, Queen's University Faculty of Health Sciences, Kingston, Ontario, Canada
| | - Anne Boland-Auge
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine (CNRGH), 91057, Evry, France
| | - Robert Olaso
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine (CNRGH), 91057, Evry, France
| | - Jean-François Deleuze
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine (CNRGH), 91057, Evry, France
| | - Mathieu Anheim
- Neurology Department, Strasbourg University Hospital, Strasbourg, France
- Strasbourg Federation of Translational Medicine (FMTS), Strasbourg University, Strasbourg, France
- INSERM-U964; CNRS-UMR7104, University of Strasbourg, Illkirch-Graffenstaden, France
| | - Benjamin Cretin
- Neurology Department, Strasbourg University Hospital, Strasbourg, France
- Strasbourg Federation of Translational Medicine (FMTS), Strasbourg University, Strasbourg, France
- INSERM-U964; CNRS-UMR7104, University of Strasbourg, Illkirch-Graffenstaden, France
| | - Barbara Vona
- Institute of Human Genetics, University Medical Center Göttingen, 37073, Göttingen, Germany
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Fahad Alajlan
- Department of Neuroscience Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Firdous Abdulwahab
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Jean-Luc Battini
- Institut de Recherche en Infectiologie de Montpellier, Université de Montpellier, CNRS, Montpellier, France
| | - Rojan İpek
- Paediatric Neurology, Faculty of Medicine, Dicle University, Diyarbakır, Turkey
| | - Peter Bauer
- Centogene GmbH, Am Strande 7, 18055, Rostock, Germany
| | | | - Serdal Gungor
- Inonu University, Faculty of Medicine, Turgut Ozal Research Center, Department of Pediatrics, Division of Pediatric Neurology, Malatya, Turkey
| | - Semra Hiz Kurul
- Dokuz Eylul University, School of Medicine, Department of Paediatric Neurology, Izmir, Turkey
| | - Hanns Lochmuller
- Children's Hospital of Eastern Ontario Research Institute and Division of Neurology, Department of Medicine, The Ottawa Hospital, Ottawa, Canada
- Brain and Mind Research Institute, University of Ottawa, Ottawa, Canada
- Department of Neuropediatrics and Muscle Disorders, Medical Center-University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Sahar I Da'as
- Department of Human Genetics, Sidra Medicine, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Khalid A Fakhro
- Department of Human Genetics, Sidra Medicine, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
- Weill Cornell Medical College, Doha, Qatar
| | - Alicia Gómez-Pascual
- Department of Information and Communications Engineering, University of Murcia, Campus Espinardo, 30100, Murcia, Spain
| | - Juan A Botía
- Department of Information and Communications Engineering, University of Murcia, Campus Espinardo, 30100, Murcia, Spain
| | - Nicholas W Wood
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
- Neurogenetics Laboratory, The National Hospital for Neurology and Neurosurgery, London, WC1N 3BG, UK
| | - Rita Horvath
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Andreas M Ernst
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA
| | - James E Rothman
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Meriel McEntagart
- Medical Genetics Department, St George's University Hospitals, London, SWI7 0RE, UK
| | - Yanick J Crow
- Université Paris Cité, Imagine Institute, Laboratory of Neurogenetics and Neuroinflammation, INSERM UMR 1163, Paris, France
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Fowzan S Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
- Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Gaël Nicolas
- Univ Rouen Normandie, Inserm U1245, CHU Rouen, Department of Genetics and CNRMAJ, F-76000, Rouen, France
| | - Thomas Arnesen
- Department of Biomedicine, University of Bergen, Bergen, Norway.
- Department of Surgery, Haukeland University Hospital, Bergen, Norway.
| | - Henry Houlden
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK.
- Neurogenetics Laboratory, The National Hospital for Neurology and Neurosurgery, London, WC1N 3BG, UK.
| |
Collapse
|
24
|
Gong X, Boyer JB, Gierlich S, Pożoga M, Weidenhausen J, Sinning I, Meinnel T, Giglione C, Wang Y, Hell R, Wirtz M. HYPK controls stability and catalytic activity of the N-terminal acetyltransferase A in Arabidopsis thaliana. Cell Rep 2024; 43:113768. [PMID: 38363676 DOI: 10.1016/j.celrep.2024.113768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/12/2023] [Accepted: 01/25/2024] [Indexed: 02/18/2024] Open
Abstract
The ribosome-tethered N-terminal acetyltransferase A (NatA) acetylates 52% of soluble proteins in Arabidopsis thaliana. This co-translational modification of the N terminus stabilizes diverse cytosolic plant proteins. The evolutionary conserved Huntingtin yeast partner K (HYPK) facilitates NatA activity in planta, but in vitro, its N-terminal helix α1 inhibits human NatA activity. To dissect the regulatory function of HYPK protein domains in vivo, we genetically engineer CRISPR-Cas9 mutants expressing a HYPK fragment lacking all functional domains (hypk-cr1) or an internally deleted HYPK variant truncating helix α1 but retaining the C-terminal ubiquitin-associated (UBA) domain (hypk-cr2). We find that the UBA domain of HYPK is vital for stabilizing the NatA complex in an organ-specific manner. The N terminus of HYPK, including helix α1, is critical for promoting NatA activity on substrates starting with various amino acids. Consequently, deleting only 42 amino acids inside the HYPK N terminus causes substantial destabilization of the plant proteome and higher tolerance toward drought stress.
Collapse
Affiliation(s)
- Xiaodi Gong
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Jean-Baptiste Boyer
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Simone Gierlich
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Marlena Pożoga
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | | | - Irmgard Sinning
- Heidelberg University Biochemistry Center, 69120 Heidelberg, Germany
| | - Thierry Meinnel
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Carmela Giglione
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Yonghong Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, 271018 Tai'an, China
| | - Rüdiger Hell
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Markus Wirtz
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany.
| |
Collapse
|
25
|
Yang H, Fan T, Xun M, Wu B, Guo S, Li X, Zhao X, Yao H, Wang H. N-terminal acetyltransferase 6 facilitates enterovirus 71 replication by regulating PI4KB expression and replication organelle biogenesis. J Virol 2024; 98:e0174923. [PMID: 38189249 PMCID: PMC10878262 DOI: 10.1128/jvi.01749-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/07/2023] [Indexed: 01/09/2024] Open
Abstract
Enterovirus 71 (EV71) is one of the major pathogens causing hand, foot, and mouth disease in children under 5 years old, which can result in severe neurological complications and even death. Due to limited treatments for EV71 infection, the identification of novel host factors and elucidation of mechanisms involved will help to counter this viral infection. N-terminal acetyltransferase 6 (NAT6) was identified as an essential host factor for EV71 infection with genome-wide CRISPR/Cas9 screening. NAT6 facilitates EV71 viral replication depending on its acetyltransferase activity but has little effect on viral release. In addition, NAT6 is also required for Echovirus 7 and coxsackievirus B5 infection, suggesting it might be a pan-enterovirus host factor. We further demonstrated that NAT6 is required for Golgi integrity and viral replication organelle (RO) biogenesis. NAT6 knockout significantly inhibited phosphatidylinositol 4-kinase IIIβ (PI4KB) expression and PI4P production, both of which are key host factors for enterovirus infection and RO biogenesis. Further mechanism studies confirmed that NAT6 formed a complex with its substrate actin and one of the PI4KB recruiters-acyl-coenzyme A binding domain containing 3 (ACBD3). Through modulating actin dynamics, NAT6 maintained the integrity of the Golgi and the stability of ACBD3, thereby enhancing EV71 infection. Collectively, these results uncovered a novel mechanism of N-acetyltransferase supporting EV71 infection.IMPORTANCEEnterovirus 71 (EV71) is an important pathogen for children under the age of five, and currently, no effective treatment is available. Elucidating the mechanism of novel host factors supporting viral infection will reveal potential antiviral targets and aid antiviral development. Here, we demonstrated that a novel N-acetyltransferase, NAT6, is an essential host factor for EV71 replication. NAT6 could promote viral replication organelle (RO) formation to enhance viral replication. The formation of enterovirus ROs requires numerous host factors, including acyl-coenzyme A binding domain containing 3 (ACBD3) and phosphatidylinositol 4-kinase IIIβ (PI4KB). NAT6 could stabilize the PI4KB recruiter, ACBD3, by inhibiting the autophagy degradation pathway. This study provides a fresh insight into the relationship between N-acetyltransferase and viral infection.
Collapse
Affiliation(s)
- Hang Yang
- Department of Pathogen Biology and Immunology, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Tingting Fan
- Department of Pathogen Biology and Immunology, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Meng Xun
- Department of Pathogen Biology and Immunology, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Bo Wu
- Department of Pathogen Biology and Immunology, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Shangrui Guo
- Department of Pathogen Biology and Immunology, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Xinyu Li
- Department of Pathogen Biology and Immunology, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Xiaohui Zhao
- Department of Pathogen Biology and Immunology, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Haoyan Yao
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi’an, China
| | - Hongliang Wang
- Department of Pathogen Biology and Immunology, Xi’an Jiaotong University Health Science Center, Xi’an, China
- Department of Infectious Diseases, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
26
|
Xing M, Yao B, Xu J, Lu P, Li Q, Wu D, Chen B, Wei J, Su L, Zhao Q. NatD epigenetically activates FOXA2 expression to promote breast cancer progression by facilitating MMP14 expression. iScience 2024; 27:108840. [PMID: 38303717 PMCID: PMC10830889 DOI: 10.1016/j.isci.2024.108840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/09/2023] [Accepted: 01/03/2024] [Indexed: 02/03/2024] Open
Abstract
N-α-acetyltransferase D (NatD) mediates N-α-terminal acetylation of histone H4 (Nt-Ac-H4), but its role in breast cancer metastasis remains unknown. Here, we show that depletion of NatD directly represses the expression of FOXA2, and is accompanied by a significant reduction in Nt-Ac-H4 enrichment at the FOXA2 promoter. We show that NatD is commonly upregulated in primary breast cancer tissues, where its expression level correlates with FOXA2 expression, enhanced invasiveness, and poor clinical outcomes. Furthermore, we show that FOXA2 promotes the migration and invasion of breast cancer cells by activating MMP14 expression. MMP14 is also upregulated in breast cancer tissues, where its expression level correlates with FOXA2 expression and poor clinical prognosis. Our study shows that the NatD-FOXA2-MMP14 axis functions as a key signaling pathway to promote the migratory and invasive capabilities of breast cancer cells, suggesting that NatD is a critical epigenetic modulator of cell invasion during breast cancer progression.
Collapse
Affiliation(s)
- Mengying Xing
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology and General Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, Nanjing 210046, China
| | - Bing Yao
- National Experimental Teaching Center of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Jiaxuan Xu
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology and General Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, Nanjing 210046, China
| | - Peifen Lu
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology and General Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, Nanjing 210046, China
| | - Qixiang Li
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology and General Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, Nanjing 210046, China
| | - Dongliang Wu
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology and General Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, Nanjing 210046, China
| | - Bing Chen
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology and General Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, Nanjing 210046, China
| | - Jiwu Wei
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Lei Su
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology and General Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, Nanjing 210046, China
| | - Quan Zhao
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology and General Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, Nanjing 210046, China
| |
Collapse
|
27
|
Santhosh Kumar S, Naseri NN, Pather SR, Hallacli E, Ndayisaba A, Buenaventura C, Acosta K, Roof J, Fazelinia H, Spruce LA, Luk K, Khurana V, Rhoades E, Shalem O. Sequential CRISPR screening reveals partial NatB inhibition as a strategy to mitigate alpha-synuclein levels in human neurons. SCIENCE ADVANCES 2024; 10:eadj4767. [PMID: 38335281 PMCID: PMC10857481 DOI: 10.1126/sciadv.adj4767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 01/11/2024] [Indexed: 02/12/2024]
Abstract
Alpha-synuclein (αSyn) protein levels correlate with the risk and severity of Parkinson's disease and related neurodegenerative diseases. Lowering αSyn is being actively investigated as a therapeutic modality. Here, we systematically map the regulatory network that controls endogenous αSyn using sequential CRISPR-knockout and -interference screens in an αSyn gene (SNCA)-tagged cell line and induced pluripotent stem cell-derived neurons (iNeurons). We uncover αSyn modifiers at multiple regulatory layers, with amino-terminal acetyltransferase B (NatB) enzymes being the most potent endogenous αSyn modifiers in both cell lines. Amino-terminal acetylation protects the cytosolic αSyn from rapid degradation by the proteasome in a Ube2w-dependent manner. Moreover, we show that pharmacological inhibition of methionyl-aminopeptidase 2, a regulator of NatB complex formation, attenuates endogenous αSyn in iNeurons carrying SNCA triplication. Together, our study reveals several gene networks that control endogenous αSyn, identifies mechanisms mediating the degradation of nonacetylated αSyn, and illustrates potential therapeutic pathways for decreasing αSyn levels in synucleinopathies.
Collapse
Affiliation(s)
- Saranya Santhosh Kumar
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
- Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Nima N. Naseri
- Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - Sarshan R. Pather
- Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Erinc Hallacli
- Division of Movement Disorders and Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Alain Ndayisaba
- Division of Movement Disorders and Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Chris Buenaventura
- Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Karen Acosta
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - Jennifer Roof
- Proteomics Core Facility, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Hossein Fazelinia
- Proteomics Core Facility, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Biomedical and Health Informatics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Lynn A. Spruce
- Proteomics Core Facility, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kelvin Luk
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Vikram Khurana
- Division of Movement Disorders and Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Elizabeth Rhoades
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - Ophir Shalem
- Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
28
|
Patel R, Park AY, Marchi E, Gropman AL, Whitehead MT, Lyon GJ. Ophthalmic Manifestations of NAA10-Related and NAA15-Related Neurodevelopmental Syndrome: Analysis of Cortical Visual Impairment and Refractive Errors. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.01.24302161. [PMID: 38352572 PMCID: PMC10862986 DOI: 10.1101/2024.02.01.24302161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/19/2024]
Abstract
NAA10-related and NAA15-related neurodevelopmental syndrome, otherwise known as Ogden Syndrome, is known to present with varying degrees of intellectual disability, hypotonia, congenital cardiac abnormalities, seizures, and delayed speech and motor development. However, the ophthalmic manifestations of NAA10 and NAA15 mutations are not yet fully characterized or understood. This study analyzed the prevalence of six ophthalmic conditions (cortical visual impairment, myopia, hyperopia, strabismus, nystagmus, and astigmatism) in 67 patients with pathogenic mutations in the NAA10 cohort (54 inherited, 10 de novo; 65 missense, 2 frameshift) and 19 patients with pathogenic mutations in the NAA15 cohort (18 de novo; 8 frameshift, 4 missense, 4 nonsense, and 1 splice site). Patients were interviewed virtually or in-person to collect a comprehensive medical history verified by medical records. These records were then analyzed to calculate the prevalence of these ophthalmic manifestations in each cohort. Analysis revealed a higher prevalence of ophthalmic conditions in our NAA10 cohort compared to existing literature (myopia 25.4% vs. 4.7%; astigmatism 37.3% vs. 13.2%; strabismus 28.4% vs. 3.8%; CVI 22.4% vs. 8.5%, respectively). No statistically significant differences were identified between the NAA10 and NAA15 mutations. Our study includes novel neuroimaging of 13 NAA10 and 5 NAA15 probands, which provides no clear correlation between globe size and severity of comorbid ophthalmic disease. Finally, anecdotal evidence was compiled to underscore the importance of early ophthalmologic evaluations and therapeutic interventions.
Collapse
Affiliation(s)
- Rahi Patel
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, United States of America
| | - Agnes Y. Park
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, United States of America
| | - Elaine Marchi
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, United States of America
| | - Andrea L. Gropman
- Division of Neurogenetics and Developmental Pediatrics, Children’s National Health System, Washington, DC, USA
- Department of Neurology, George Washington University, Washington, DC, US
| | - Matthew T. Whitehead
- Division of Neuroradiology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Radiology Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gholson J. Lyon
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, United States of America
- George A. Jervis Clinic, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, United States of America
- Biology PhD Program, The Graduate Center, The City University of New York, New York, United States of America
| |
Collapse
|
29
|
Ma J, Yan L, Yang J, He Y, Wu L. Effect of Modification Strategies on the Biological Activity of Peptides/Proteins. Chembiochem 2024; 25:e202300481. [PMID: 38009768 DOI: 10.1002/cbic.202300481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/20/2023] [Accepted: 11/26/2023] [Indexed: 11/29/2023]
Abstract
Covalent attachment of biologically active peptides/proteins with functional moieties is an effective strategy to control their biodistribution, pharmacokinetics, enzymatic digestion, and toxicity. This review focuses on the characteristics of different modification strategies and their effects on the biological activity of peptides/proteins and illustrates their relevant applications and potential.
Collapse
Affiliation(s)
- Jian Ma
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liang Yan
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingkui Yang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yujian He
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Li Wu
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| |
Collapse
|
30
|
Zhu R, Chen M, Luo Y, Cheng H, Zhao Z, Zhang M. The role of N-acetyltransferases in cancers. Gene 2024; 892:147866. [PMID: 37783298 DOI: 10.1016/j.gene.2023.147866] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/25/2023] [Accepted: 09/29/2023] [Indexed: 10/04/2023]
Abstract
Cancer is a major global health problem that disrupts the balance of normal cellular growth and behavior. Mounting evidence has shown that epigenetic modification, specifically N-terminal acetylation, play a crucial role in the regulation of cell growth and function. Acetylation is a co- or post-translational modification to regulate important cellular progresses such as cell proliferation, cell cycle progress, and energy metabolism. Recently, N-acetyltransferases (NATs), enzymes responsible for acetylation, regulate signal transduction pathway in various cancers including hepatocellular carcinoma, breast cancer, lung cancer, colorectal cancer and prostate cancer. In this review, we clarify the regulatory role of NATs in cancer progression, such as cell proliferation, metastasis, cell apoptosis, autophagy, cell cycle arrest and energy metabolism. Furthermore, the mechanism of NATs on cancer remains to be further studied, and few drugs have been developed. This provides us with a new idea that targeting acetylation, especially NAT-mediated acetylation, may be an attractive way for inhibiting cancer progression.
Collapse
Affiliation(s)
- Rongrong Zhu
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Department of Bioinformatics and Medical Big Data, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China
| | - Mengjiao Chen
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Department of Bioinformatics and Medical Big Data, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China
| | - Yongjia Luo
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Department of Bioinformatics and Medical Big Data, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China; Department of Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China
| | - Haipeng Cheng
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Zhenwang Zhao
- Department of Pathology and Pathophysiology, School of Basic Medicine, Health Science Center, Hubei University of Arts and Science, Xiangyang, Hubei 441053, PR China.
| | - Min Zhang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Department of Bioinformatics and Medical Big Data, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China.
| |
Collapse
|
31
|
Husain M. Influenza A Virus and Acetylation: The Picture Is Becoming Clearer. Viruses 2024; 16:131. [PMID: 38257831 PMCID: PMC10820114 DOI: 10.3390/v16010131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
Influenza A virus (IAV) is one of the most circulated human pathogens, and influenza disease, commonly known as the flu, remains one of the most recurring and prevalent infectious human diseases globally. IAV continues to challenge existing vaccines and antiviral drugs via its ability to evolve constantly. It is critical to identify the molecular determinants of IAV pathogenesis to understand the basis of flu severity in different populations and design improved antiviral strategies. In recent years, acetylation has been identified as one of the determinants of IAV pathogenesis. Acetylation was originally discovered as an epigenetic protein modification of histones. But, it is now known to be one of the ubiquitous protein modifications of both histones and non-histone proteins and a determinant of proteome complexity. Since our first observation in 2007, significant progress has been made in understanding the role of acetylation during IAV infection. Now, it is becoming clearer that acetylation plays a pro-IAV function via at least three mechanisms: (1) by reducing the host's sensing of IAV infection, (2) by dampening the host's innate antiviral response against IAV, and (3) by aiding the stability and function of viral and host proteins during IAV infection. In turn, IAV antagonizes the host deacetylases, which erase acetylation, to facilitate its replication. This review provides an overview of the research progress made on this subject so far and outlines research prospects for the significance of IAV-acetylation interplay.
Collapse
Affiliation(s)
- Matloob Husain
- Department of Microbiology and Immunology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| |
Collapse
|
32
|
Lyon GJ, Longo J, Garcia A, Inusa F, Marchi E, Shi D, Dörfel M, Arnesen T, Aldabe R, Lyons S, Nashat MA, Bolton D. Evaluating possible maternal effect lethality and genetic background effects in Naa10 knockout mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.04.27.538618. [PMID: 37163119 PMCID: PMC10168333 DOI: 10.1101/2023.04.27.538618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Amino-terminal (Nt-) acetylation (NTA) is a common protein modification, affecting approximately 80% of all human proteins. The human essential X-linked gene, NAA10, encodes for the enzyme NAA10, which is the catalytic subunit in the N-terminal acetyltransferase A (NatA) complex. There is extensive genetic variation in humans with missense, splice-site, and C-terminal frameshift variants in NAA10. In mice, Naa10 is not an essential gene, as there exists a paralogous gene, Naa12, that substantially rescues Naa10 knockout mice from embryonic lethality, whereas double knockouts (Naa10-/Y Naa12-/-) are embryonic lethal. However, the phenotypic variability in the mice is nonetheless quite extensive, including piebaldism, skeletal defects, small size, hydrocephaly, hydronephrosis, and neonatal lethality. Here we replicate these phenotypes with new genetic alleles in mice, but we demonstrate their modulation by genetic background and environmental effects. We cannot replicate a prior report of "maternal effect lethality" for heterozygous Naa10-/X female mice, but we do observe a small amount of embryonic lethality in the Naa10-/Y male mice on the inbred genetic background in this different animal facility.
Collapse
Affiliation(s)
- Gholson J. Lyon
- Human Genetics Department, New York State Institute for Basic Research (IBR) in Developmental Disabilities, Staten Island, New York, USA
- Biology PhD Program, The Graduate Center, The City University of New York, New York, USA
| | - Joseph Longo
- Human Genetics Department, New York State Institute for Basic Research (IBR) in Developmental Disabilities, Staten Island, New York, USA
| | - Andrew Garcia
- Human Genetics Department, New York State Institute for Basic Research (IBR) in Developmental Disabilities, Staten Island, New York, USA
- Biology PhD Program, The Graduate Center, The City University of New York, New York, USA
| | - Fatima Inusa
- Human Genetics Department, New York State Institute for Basic Research (IBR) in Developmental Disabilities, Staten Island, New York, USA
| | - Elaine Marchi
- Human Genetics Department, New York State Institute for Basic Research (IBR) in Developmental Disabilities, Staten Island, New York, USA
| | - Daniel Shi
- Human Genetics Department, New York State Institute for Basic Research (IBR) in Developmental Disabilities, Staten Island, New York, USA
| | - Max Dörfel
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Woodbury, New York, USA
| | - Thomas Arnesen
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Department of Biological Sciences, University of Bergen, Bergen, Norway
- Department of Surgery, Haukeland University Hospital, Bergen, Norway
| | - Rafael Aldabe
- Division of Gene Therapy and Regulation of Gene Expression, CIMA, University of Navarra, Pamplona, Spain
| | - Scott Lyons
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Woodbury, New York, USA
| | - Melissa A. Nashat
- Human Genetics Department, New York State Institute for Basic Research (IBR) in Developmental Disabilities, Staten Island, New York, USA
| | - David Bolton
- Molecular Biology Department, New York State Institute for Basic Research (IBR) in Developmental Disabilities, Staten Island, New York, USA
| |
Collapse
|
33
|
Li Z, Dang Q, Wang P, Zhao F, Huang J, Wang C, Liu X, Min W. Food-Derived Peptides: Beneficial CNS Effects and Cross-BBB Transmission Strategies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20453-20478. [PMID: 38085598 DOI: 10.1021/acs.jafc.3c06518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Food-derived peptides, as dietary supplements, have significant effects on promoting brain health and relieving central nervous system (CNS) diseases. However, the blood-brain barrier (BBB) greatly limits their in-brain bioavailability. Thus, overcoming the BBB to target the CNS is a major challenge for bioactive peptides in the prevention and treatment of CNS diseases. This review discusses improvement in the neuroprotective function of food-derived active peptides in CNS diseases, as well as the source of BBB penetrating peptides (BBB-shuttles) and the mechanism of transmembrane transport. Notably, this review also discusses various peptide modification methods to overcome the low permeability and stability of the BBB. Lipification, glycosylation, introduction of disulfide bonds, and cyclization are effective strategies for improving the penetration efficiency of peptides through the BBB. This review provides a new prospective for improving their neuroprotective function and developing treatments to delay or even prevent CNS diseases.
Collapse
Affiliation(s)
- Zehui Li
- College of Food and Health, Zhejiang A&F University, Hangzhou, Zhejiang 311300, P.R. China
- College of Food Science and Engineering, Jilin Agricultural University, ChangChun, Jilin 130118, P.R. China
| | - Qiao Dang
- College of Food Science and Engineering, Jilin Agricultural University, ChangChun, Jilin 130118, P.R. China
| | - Peng Wang
- College of Food and Health, Zhejiang A&F University, Hangzhou, Zhejiang 311300, P.R. China
| | - Fanrui Zhao
- College of Food and Health, Zhejiang A&F University, Hangzhou, Zhejiang 311300, P.R. China
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, P.R. China
| | - Jianqin Huang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, P.R. China
| | - Chongchong Wang
- College of Food and Health, Zhejiang A&F University, Hangzhou, Zhejiang 311300, P.R. China
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, P.R. China
| | - Xingquan Liu
- College of Food and Health, Zhejiang A&F University, Hangzhou, Zhejiang 311300, P.R. China
| | - Weihong Min
- College of Food and Health, Zhejiang A&F University, Hangzhou, Zhejiang 311300, P.R. China
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, P.R. China
| |
Collapse
|
34
|
Raghul Kannan S, Tamizhselvi R. N-acetyltransferase and inflammation: Bridging an unexplored niche. Gene 2023; 887:147730. [PMID: 37625560 DOI: 10.1016/j.gene.2023.147730] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/07/2023] [Accepted: 08/21/2023] [Indexed: 08/27/2023]
Abstract
Protein N-terminal (Nt) acetylation is an essential post-translational process catalysed by N-acetyltransferases or N-terminal acetyltransferases (NATs). Over the past several decades, several types of NATs (NatA- NatH) have been identified along with their substrates, explaining their significance in eukaryotes. It affects protein stability, protein degradation, protein translocation, and protein-protein interaction. NATs have recently drawn attention as they are associated with the pathogenesis of human diseases. In particular, NAT-induced epigenetic modifications play an important role in the control of mitochondrial function, which may lead to inflammatory diseases. NatC knockdown causes a marked reduction in mitochondrial membrane proteins, impairing their functions, and NatA affects mitophagy via reduced phosphorylation and transcription of the autophagy receptor. However, the NAT-mediated mitochondrial epigenetic mechanisms involved in the inflammatory process remain unexplored. The current review will impart an overview of the biological functions and aberrations of various NAT, which may provide a novel therapeutic strategy for inflammatory disorders.
Collapse
Affiliation(s)
- Sampath Raghul Kannan
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Ramasamy Tamizhselvi
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| |
Collapse
|
35
|
Qiao L, Dong C, Jia W, Ma B. NAA20 recruits Rin2 and promotes triple-negative breast cancer progression by regulating Rab5A-mediated activation of EGFR signaling. Cell Signal 2023; 112:110922. [PMID: 37827343 DOI: 10.1016/j.cellsig.2023.110922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/25/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype with poor prognosis and high mortality. To improve the prognosis and survival of TNBC patients, it is necessary to explore new targets and signaling pathways to develop novel therapies for TNBC treatment. N-α-acetyltransferase 20 (NAA20) is one of the catalytic subunits of N-terminal acetyltransferase (NatB). It has been reported that NAA20 played a critical role in cancer progression. In this study, we found that NAA20 expression was markedly higher in TNBC tissues than in paracancerous normal tissues using The Cancer Genome Atlas (TCGA) analysis. This result was further confirmed by qRT-PCR and immunohistochemistry (IHC). Knockdown of NAA20 significantly inhibited TNBC cell viability by CCK8 and colony formation assays and cell migration and invasion by Transwell assays. Additionally, NAA20 knockdown decreased the expression of EGFR in TNBC cells. Upon stimulation with EGF and knockdown of NAA20, EGFR internalization and degradation were observed by confocal microscopy. The western blot results showed that NAA20 knockdown down-regulated PI3K, AKT, and mTOR phosphorylation. Next, we further explored the underlying molecular mechanisms of NAA20 by co-immunoprecipitation (Co-IP). The results suggested that there was an interacting relationship between NAA20 and Rab5A. Over-expression of NAA20 could potentiate the expression of Rab5A. Furthermore, the knockdown of Rab5A inhibited EGFR expression and the phosphorylation of downstream signaling targets. NAA20 over-expression offset the knockdown effect of Rab5A and activated EGFR signaling. Finally, we constructed a xenograft mouse model transfected TNBC cells to investigate the role of NAA20 in vivo. NAA20 knockdown markedly suppressed tumor growth and decreased tumor volume and weight. In conclusion, our study demonstrated that NAA20, a novel target of TNBC, could promote TNBC progression by regulating Rab5A-mediated activation of EGFR signaling.
Collapse
Affiliation(s)
- Lei Qiao
- Department of Breast and Thyroid Surgery, Xinjiang Medical University affiliated Tumor Hospital, Urumqi, Xinjiang Uygur Autonomous Region 830000, China
| | - Chao Dong
- Department of Breast and Thyroid Surgery, Xinjiang Medical University affiliated Tumor Hospital, Urumqi, Xinjiang Uygur Autonomous Region 830000, China
| | - Wenlei Jia
- Department of Breast and Thyroid Surgery, Xinjiang Medical University affiliated Tumor Hospital, Urumqi, Xinjiang Uygur Autonomous Region 830000, China
| | - Binlin Ma
- Department of Breast and Thyroid Surgery, Xinjiang Medical University affiliated Tumor Hospital, Urumqi, Xinjiang Uygur Autonomous Region 830000, China.
| |
Collapse
|
36
|
Yang J, Lee Y, Hwang CS. The ubiquitin-proteasome system links NADPH metabolism to ferroptosis. Trends Cell Biol 2023; 33:1088-1103. [PMID: 37558595 DOI: 10.1016/j.tcb.2023.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 08/11/2023]
Abstract
Ferroptosis is the type of cell death arising from uncontrolled and excessive lipid peroxidation. NADPH is essential for ferroptosis regulation because it supplies reducing equivalents for antioxidant defense systems and contributes to the generation of reactive oxygen species. Moreover, NADPH level serves as a biomarker for predicting the sensitivity of cells to ferroptosis. The ubiquitin-proteasome system governs the stability of many ferroptosis effectors. Recent research has revealed MARCHF6, the endoplasmic reticulum ubiquitin ligase, as an unprecedented NADPH sensor in the ubiquitin system and a critical regulator of ferroptosis involved in tumorigenesis and fetal development. This review summarizes the current understanding of NADPH metabolism and the ubiquitin-proteasome system in regulating ferroptosis and highlights the emerging importance of MARCHF6 as a vital connector between NADPH metabolism and ferroptosis.
Collapse
Affiliation(s)
- Jihye Yang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Yoontae Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Cheol-Sang Hwang
- Department of Life Sciences, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
37
|
Ho KH, Pan KF, Cheng TY, Chien MH, Hua KT. Multiple impacts of Naa10p on cancer progression: Molecular functions and clinical prospects. Biochim Biophys Acta Rev Cancer 2023; 1878:188973. [PMID: 37659460 DOI: 10.1016/j.bbcan.2023.188973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 09/04/2023]
Abstract
Nα-acetyltransferase 10 protein (Naa10p) is known as the catalytic subunit of N-terminal acetyltransferases A (NatA) complex, associating with Naa15p to acetylate N-termini of the human proteome. Recent investigations have unveiled additional functions for Naa10p, encompassing lysine ε-acetylation and acetyltransferase-independent activities. Its pleiotropic roles have been implicated in diverse physiological and pathological contexts. Emerging evidence has implicated Naa10p in cancer progression, demonstrating dual attributes as an oncogene or a tumor suppressor contingent on the cancer type and acetyltransferase activity context. In this comprehensive review, we present a pan-cancer analysis aimed at elucidating the intricacies underlying Naa10p dysregulation in cancer. Our findings propose the potential involvement of c-Myc as a modulatory factor influencing Naa10p expression. Moreover, we provide a consolidated summary of recent advancements in understanding the intricate molecular underpinnings through which Naa10p contributes to cancer cell proliferation and metastasis. Furthermore, we delve into the multifaceted nature of Naa10p's roles in regulating cancer behaviors, potentially attributed to its interactions with a repertoire of partner proteins. Through an exhaustive exploration of Naa10p's functions, spanning its acetylation activity and acetyltransferase-independent functionalities, this review offers novel insights with implications for targeted therapeutic strategies involving this pivotal protein in the realm of cancer therapeutics.
Collapse
Affiliation(s)
- Kuo-Hao Ho
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Ke-Fan Pan
- Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Division of General Surgery, Department of Surgery, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Division of Colorectal Surgery, Department of Surgery, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| | - Tsu-Yao Cheng
- Department of Laboratory Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan; Division of Gastroenterology, Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.
| | - Ming-Hsien Chien
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan; Pulmonary Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei, Taiwan.
| | - Kuo-Tai Hua
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.
| |
Collapse
|
38
|
Collars OA, Jones BS, Hu DD, Weaver SD, Sherman TA, Champion MM, Champion PA. An N-acetyltransferase required for ESAT-6 N-terminal acetylation and virulence in Mycobacterium marinum. mBio 2023; 14:e0098723. [PMID: 37772840 PMCID: PMC10653941 DOI: 10.1128/mbio.00987-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/09/2023] [Indexed: 09/30/2023] Open
Abstract
IMPORTANCE N-terminal acetylation is a protein modification that broadly impacts basic cellular function and disease in higher organisms. Although bacterial proteins are N-terminally acetylated, little is understood how N-terminal acetylation impacts bacterial physiology and pathogenesis. Mycobacterial pathogens cause acute and chronic disease in humans and in animals. Approximately 15% of mycobacterial proteins are N-terminally acetylated, but the responsible enzymes are largely unknown. We identified a conserved mycobacterial protein required for the N-terminal acetylation of 23 mycobacterial proteins including the EsxA virulence factor. Loss of this enzyme from M. marinum reduced macrophage killing and spread of M. marinum to new host cells. Defining the acetyltransferases responsible for the N-terminal protein acetylation of essential virulence factors could lead to new targets for therapeutics against mycobacteria.
Collapse
Affiliation(s)
- Owen A. Collars
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
- Eck Institute for Global Health, University of Note Dame, Notre Dame, Indiana, USA
| | - Bradley S. Jones
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
- Eck Institute for Global Health, University of Note Dame, Notre Dame, Indiana, USA
| | - Daniel D. Hu
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Simon D. Weaver
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Taylor A. Sherman
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Matthew M. Champion
- Eck Institute for Global Health, University of Note Dame, Notre Dame, Indiana, USA
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Patricia A. Champion
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
- Eck Institute for Global Health, University of Note Dame, Notre Dame, Indiana, USA
| |
Collapse
|
39
|
Varland S, Silva RD, Kjosås I, Faustino A, Bogaert A, Billmann M, Boukhatmi H, Kellen B, Costanzo M, Drazic A, Osberg C, Chan K, Zhang X, Tong AHY, Andreazza S, Lee JJ, Nedyalkova L, Ušaj M, Whitworth AJ, Andrews BJ, Moffat J, Myers CL, Gevaert K, Boone C, Martinho RG, Arnesen T. N-terminal acetylation shields proteins from degradation and promotes age-dependent motility and longevity. Nat Commun 2023; 14:6774. [PMID: 37891180 PMCID: PMC10611716 DOI: 10.1038/s41467-023-42342-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
Most eukaryotic proteins are N-terminally acetylated, but the functional impact on a global scale has remained obscure. Using genome-wide CRISPR knockout screens in human cells, we reveal a strong genetic dependency between a major N-terminal acetyltransferase and specific ubiquitin ligases. Biochemical analyses uncover that both the ubiquitin ligase complex UBR4-KCMF1 and the acetyltransferase NatC recognize proteins bearing an unacetylated N-terminal methionine followed by a hydrophobic residue. NatC KO-induced protein degradation and phenotypes are reversed by UBR knockdown, demonstrating the central cellular role of this interplay. We reveal that loss of Drosophila NatC is associated with male sterility, reduced longevity, and age-dependent loss of motility due to developmental muscle defects. Remarkably, muscle-specific overexpression of UbcE2M, one of the proteins targeted for NatC KO-mediated degradation, suppresses defects of NatC deletion. In conclusion, NatC-mediated N-terminal acetylation acts as a protective mechanism against protein degradation, which is relevant for increased longevity and motility.
Collapse
Affiliation(s)
- Sylvia Varland
- Department of Biomedicine, University of Bergen, N-5021, Bergen, Norway.
- Department of Biological Sciences, University of Bergen, N-5006, Bergen, Norway.
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada.
| | - Rui Duarte Silva
- Algarve Biomedical Center Research Institute, Universidade do Algarve, 8005-139, Faro, Portugal.
- Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve, 8005-139, Faro, Portugal.
| | - Ine Kjosås
- Department of Biomedicine, University of Bergen, N-5021, Bergen, Norway
| | - Alexandra Faustino
- Algarve Biomedical Center Research Institute, Universidade do Algarve, 8005-139, Faro, Portugal
| | - Annelies Bogaert
- VIB-UGent Center for Medical Biotechnology, B-9052, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, B-9052, Ghent, Belgium
| | - Maximilian Billmann
- Department of Computer Science and Engineering, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, D-53127, Bonn, Germany
| | - Hadi Boukhatmi
- Institut de Génétique et Développement de Rennes (IGDR), Université de Rennes 1, CNRS, UMR6290, 35065, Rennes, France
| | - Barbara Kellen
- Algarve Biomedical Center Research Institute, Universidade do Algarve, 8005-139, Faro, Portugal
| | - Michael Costanzo
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Adrian Drazic
- Department of Biomedicine, University of Bergen, N-5021, Bergen, Norway
| | - Camilla Osberg
- Department of Biomedicine, University of Bergen, N-5021, Bergen, Norway
| | - Katherine Chan
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Xiang Zhang
- Department of Computer Science and Engineering, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA
| | - Amy Hin Yan Tong
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Simonetta Andreazza
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Juliette J Lee
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Lyudmila Nedyalkova
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Matej Ušaj
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | | | - Brenda J Andrews
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Jason Moffat
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Program in Genetics & Genome Biology, The Hospital for Sick Children, Toronto, ON, M5G 1×8, Canada
| | - Chad L Myers
- Department of Computer Science and Engineering, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA
- Bioinformatics and Computational Biology Graduate Program, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA
| | - Kris Gevaert
- VIB-UGent Center for Medical Biotechnology, B-9052, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, B-9052, Ghent, Belgium
| | - Charles Boone
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 3E1, Canada
- RIKEN Centre for Sustainable Resource Science, Wako, Saitama, 351-0106, Japan
| | - Rui Gonçalo Martinho
- Algarve Biomedical Center Research Institute, Universidade do Algarve, 8005-139, Faro, Portugal.
- Departmento de Ciências Médicas, Universidade de Aveiro, 3810-193, Aveiro, Portugal.
- iBiMED - Institute of Biomedicine, Universidade de Aveiro, 3810-193, Aveiro, Portugal.
| | - Thomas Arnesen
- Department of Biomedicine, University of Bergen, N-5021, Bergen, Norway.
- Department of Biological Sciences, University of Bergen, N-5006, Bergen, Norway.
- Department of Surgery, Haukeland University Hospital, N-5021, Bergen, Norway.
| |
Collapse
|
40
|
Etherington RD, Bailey M, Boyer JB, Armbruster L, Cao X, Coates JC, Meinnel T, Wirtz M, Giglione C, Gibbs DJ. Nt-acetylation-independent turnover of SQUALENE EPOXIDASE 1 by Arabidopsis DOA10-like E3 ligases. PLANT PHYSIOLOGY 2023; 193:2086-2104. [PMID: 37427787 PMCID: PMC10602611 DOI: 10.1093/plphys/kiad406] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 07/11/2023]
Abstract
The acetylation-dependent (Ac/)N-degron pathway degrades proteins through recognition of their acetylated N-termini (Nt) by E3 ligases called Ac/N-recognins. To date, specific Ac/N-recognins have not been defined in plants. Here we used molecular, genetic, and multiomics approaches to characterize potential roles for Arabidopsis (Arabidopsis thaliana) DEGRADATION OF ALPHA2 10 (DOA10)-like E3 ligases in the Nt-acetylation-(NTA)-dependent turnover of proteins at global- and protein-specific scales. Arabidopsis has two endoplasmic reticulum (ER)-localized DOA10-like proteins. AtDOA10A, but not the Brassicaceae-specific AtDOA10B, can compensate for loss of yeast (Saccharomyces cerevisiae) ScDOA10 function. Transcriptome and Nt-acetylome profiling of an Atdoa10a/b RNAi mutant revealed no obvious differences in the global NTA profile compared to wild type, suggesting that AtDOA10s do not regulate the bulk turnover of NTA substrates. Using protein steady-state and cycloheximide-chase degradation assays in yeast and Arabidopsis, we showed that turnover of ER-localized SQUALENE EPOXIDASE 1 (AtSQE1), a critical sterol biosynthesis enzyme, is mediated by AtDOA10s. Degradation of AtSQE1 in planta did not depend on NTA, but Nt-acetyltransferases indirectly impacted its turnover in yeast, indicating kingdom-specific differences in NTA and cellular proteostasis. Our work suggests that, in contrast to yeast and mammals, targeting of Nt-acetylated proteins is not a major function of DOA10-like E3 ligases in Arabidopsis and provides further insight into plant ERAD and the conservation of regulatory mechanisms controlling sterol biosynthesis in eukaryotes.
Collapse
Affiliation(s)
- Ross D Etherington
- School of Biosciences, University of Birmingham, Edgbaston, West Midlands, B15 2TT, UK
| | - Mark Bailey
- School of Biosciences, University of Birmingham, Edgbaston, West Midlands, B15 2TT, UK
| | - Jean-Baptiste Boyer
- CEA, CNRS, Université Paris-Saclay, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, 91198, France
| | - Laura Armbruster
- Centre for Organismal Studies Heidelberg, Heidelberg University, Heidelberg, 69120, Germany
| | - Xulyu Cao
- School of Biosciences, University of Birmingham, Edgbaston, West Midlands, B15 2TT, UK
| | - Juliet C Coates
- School of Biosciences, University of Birmingham, Edgbaston, West Midlands, B15 2TT, UK
| | - Thierry Meinnel
- CEA, CNRS, Université Paris-Saclay, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, 91198, France
| | - Markus Wirtz
- Centre for Organismal Studies Heidelberg, Heidelberg University, Heidelberg, 69120, Germany
| | - Carmela Giglione
- CEA, CNRS, Université Paris-Saclay, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, 91198, France
| | - Daniel J Gibbs
- School of Biosciences, University of Birmingham, Edgbaston, West Midlands, B15 2TT, UK
| |
Collapse
|
41
|
François CM, Pihl T, Dunoyer de Segonzac M, Hérault C, Hudry B. Metabolic regulation of proteome stability via N-terminal acetylation controls male germline stem cell differentiation and reproduction. Nat Commun 2023; 14:6737. [PMID: 37872135 PMCID: PMC10593830 DOI: 10.1038/s41467-023-42496-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 10/12/2023] [Indexed: 10/25/2023] Open
Abstract
The molecular mechanisms connecting cellular metabolism with differentiation remain poorly understood. Here, we find that metabolic signals contribute to stem cell differentiation and germline homeostasis during Drosophila melanogaster spermatogenesis. We discovered that external citrate, originating outside the gonad, fuels the production of Acetyl-coenzyme A by germline ATP-citrate lyase (dACLY). We show that this pathway is essential during the final spermatogenic stages, where a high Acetyl-coenzyme A level promotes NatB-dependent N-terminal protein acetylation. Using genetic and biochemical experiments, we establish that N-terminal acetylation shields key target proteins, essential for spermatid differentiation, from proteasomal degradation by the ubiquitin ligase dUBR1. Our work uncovers crosstalk between metabolism and proteome stability that is mediated via protein post-translational modification. We propose that this system coordinates the metabolic state of the organism with gamete production. More broadly, modulation of proteome turnover by circulating metabolites may be a conserved regulatory mechanism to control cell functions.
Collapse
Affiliation(s)
- Charlotte M François
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, 06108, France
| | - Thomas Pihl
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, 06108, France
| | | | - Chloé Hérault
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, 06108, France
| | - Bruno Hudry
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, 06108, France.
| |
Collapse
|
42
|
Sugaya N, Tanaka S, Keyamura K, Noda S, Akanuma G, Hishida T. N-terminal acetyltransferase NatB regulates Rad51-dependent repair of double-strand breaks in Saccharomyces cerevisiae. Genes Genet Syst 2023; 98:61-72. [PMID: 37331807 DOI: 10.1266/ggs.23-00013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023] Open
Abstract
Homologous recombination (HR) is a highly accurate mechanism for repairing DNA double-strand breaks (DSBs) that arise from various genotoxic insults and blocked replication forks. Defects in HR and unscheduled HR can interfere with other cellular processes such as DNA replication and chromosome segregation, leading to genome instability and cell death. Therefore, the HR process has to be tightly controlled. Protein N-terminal acetylation is one of the most common modifications in eukaryotic organisms. Studies in budding yeast implicate a role for NatB acetyltransferase in HR repair, but precisely how this modification regulates HR repair and genome integrity is unknown. In this study, we show that cells lacking NatB, a dimeric complex composed of Nat3 and Mdm2, are sensitive to the DNA alkylating agent methyl methanesulfonate (MMS), and that overexpression of Rad51 suppresses the MMS sensitivity of nat3Δ cells. Nat3-deficient cells have increased levels of Rad52-yellow fluorescent protein foci and fail to repair DSBs after release from MMS exposure. We also found that Nat3 is required for HR-dependent gene conversion and gene targeting. Importantly, we observed that nat3Δ mutation partially suppressed MMS sensitivity in srs2Δ cells and the synthetic sickness of srs2Δ sgs1Δ cells. Altogether, our results indicate that NatB functions upstream of Srs2 to activate the Rad51-dependent HR pathway for DSB repair.
Collapse
Affiliation(s)
- Natsuki Sugaya
- Department of Molecular Biology, Graduate School of Science, Gakushuin University
| | - Shion Tanaka
- Department of Molecular Biology, Graduate School of Science, Gakushuin University
| | - Kenji Keyamura
- Department of Molecular Biology, Graduate School of Science, Gakushuin University
| | - Shunsuke Noda
- Department of Molecular Biology, Graduate School of Science, Gakushuin University
| | - Genki Akanuma
- Department of Molecular Biology, Graduate School of Science, Gakushuin University
| | - Takashi Hishida
- Department of Molecular Biology, Graduate School of Science, Gakushuin University
| |
Collapse
|
43
|
Varland S, Brønstad KM, Skinner SJ, Arnesen T. A nonsense variant in the N-terminal acetyltransferase NAA30 may be associated with global developmental delay and tracheal cleft. Am J Med Genet A 2023; 191:2402-2410. [PMID: 37387332 DOI: 10.1002/ajmg.a.63338] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/03/2023] [Accepted: 06/13/2023] [Indexed: 07/01/2023]
Abstract
Most human proteins are N-terminally acetylated by N-terminal acetyltransferases (NATs), which play crucial roles in many cellular functions. The NatC complex, comprising the catalytic subunit NAA30 and the auxiliary subunits NAA35 and NAA38, is estimated to acetylate up to 20% of the human proteome in a co-translational manner. Several NAT enzymes have been linked to rare genetic diseases, causing developmental delay, intellectual disability, and heart disease. Here, we report a de novo heterozygous NAA30 nonsense variant c.244C>T (p.Q82*) (NM_001011713.2), which was identified by whole exome sequencing in a 5-year-old boy presenting with global development delay, autism spectrum disorder, hypotonia, tracheal cleft, and recurrent respiratory infections. Biochemical studies were performed to assess the functional impact of the premature stop codon on NAA30's catalytic activity. We find that NAA30-Q82* completely disrupts the N-terminal acetyltransferase activity toward a classical NatC substrate using an in vitro acetylation assay. This finding corresponds with structural modeling showing that the truncated NAA30 variant lacks the entire GNAT domain, which is required for catalytic activity. This study suggests that defective NatC-mediated N-terminal acetylation can cause disease, thus expanding the spectrum of NAT variants linked to genetic disease.
Collapse
Affiliation(s)
- Sylvia Varland
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Department of Surgery, Haukeland University Hospital, Bergen, Norway
| | | | - Stephanie J Skinner
- Department of Pediatrics, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Thomas Arnesen
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Department of Surgery, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
44
|
Nashed S, El Barbry H, Benchouaia M, Dijoux-Maréchal A, Delaveau T, Ruiz-Gutierrez N, Gaulier L, Tribouillard-Tanvier D, Chevreux G, Le Crom S, Palancade B, Devaux F, Laine E, Garcia M. Functional mapping of N-terminal residues in the yeast proteome uncovers novel determinants for mitochondrial protein import. PLoS Genet 2023; 19:e1010848. [PMID: 37585488 PMCID: PMC10482271 DOI: 10.1371/journal.pgen.1010848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 09/06/2023] [Accepted: 06/29/2023] [Indexed: 08/18/2023] Open
Abstract
N-terminal ends of polypeptides are critical for the selective co-translational recruitment of N-terminal modification enzymes. However, it is unknown whether specific N-terminal signatures differentially regulate protein fate according to their cellular functions. In this work, we developed an in-silico approach to detect functional preferences in cellular N-terminomes, and identified in S. cerevisiae more than 200 Gene Ontology terms with specific N-terminal signatures. In particular, we discovered that Mitochondrial Targeting Sequences (MTS) show a strong and specific over-representation at position 2 of hydrophobic residues known to define potential substrates of the N-terminal acetyltransferase NatC. We validated mitochondrial precursors as co-translational targets of NatC by selective purification of translating ribosomes, and found that their N-terminal signature is conserved in Saccharomycotina yeasts. Finally, systematic mutagenesis of the position 2 in a prototypal yeast mitochondrial protein confirmed its critical role in mitochondrial protein import. Our work highlights the hydrophobicity of MTS N-terminal residues and their targeting by NatC as important features for the definition of the mitochondrial proteome, providing a molecular explanation for mitochondrial defects observed in yeast or human NatC-depleted cells. Functional mapping of N-terminal residues thus has the potential to support the discovery of novel mechanisms of protein regulation or targeting.
Collapse
Affiliation(s)
- Salomé Nashed
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative, Paris, France
| | - Houssam El Barbry
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative, Paris, France
| | - Médine Benchouaia
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative, Paris, France
| | - Angélie Dijoux-Maréchal
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative, Paris, France
| | - Thierry Delaveau
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative, Paris, France
| | - Nadia Ruiz-Gutierrez
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative, Paris, France
| | - Lucie Gaulier
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative, Paris, France
| | | | | | - Stéphane Le Crom
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative, Paris, France
| | | | - Frédéric Devaux
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative, Paris, France
| | - Elodie Laine
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative, Paris, France
| | - Mathilde Garcia
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative, Paris, France
| |
Collapse
|
45
|
Guzman UH, Aksnes H, Ree R, Krogh N, Jakobsson ME, Jensen LJ, Arnesen T, Olsen JV. Loss of N-terminal acetyltransferase A activity induces thermally unstable ribosomal proteins and increases their turnover in Saccharomyces cerevisiae. Nat Commun 2023; 14:4517. [PMID: 37500638 PMCID: PMC10374663 DOI: 10.1038/s41467-023-40224-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 07/14/2023] [Indexed: 07/29/2023] Open
Abstract
Protein N-terminal (Nt) acetylation is one of the most abundant modifications in eukaryotes, covering ~50-80 % of the proteome, depending on species. Cells with defective Nt-acetylation display a wide array of phenotypes such as impaired growth, mating defects and increased stress sensitivity. However, the pleiotropic nature of these effects has hampered our understanding of the functional impact of protein Nt-acetylation. The main enzyme responsible for Nt-acetylation throughout the eukaryotic kingdom is the N-terminal acetyltransferase NatA. Here we employ a multi-dimensional proteomics approach to analyze Saccharomyces cerevisiae lacking NatA activity, which causes global proteome remodeling. Pulsed-SILAC experiments reveals that NatA-deficient strains consistently increase degradation of ribosomal proteins compared to wild type. Explaining this phenomenon, thermal proteome profiling uncovers decreased thermostability of ribosomes in NatA-knockouts. Our data are in agreement with a role for Nt-acetylation in promoting stability for parts of the proteome by enhancing the avidity of protein-protein interactions and folding.
Collapse
Affiliation(s)
- Ulises H Guzman
- Novo Nordisk Foundation Center for Protein Research, Proteomics Program, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Rasmus Ree
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Nicolai Krogh
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Magnus E Jakobsson
- Novo Nordisk Foundation Center for Protein Research, Proteomics Program, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Immunotechnology, Lund University, Lund, Sweden
| | - Lars J Jensen
- Novo Nordisk Foundation Center for Protein Research, Proteomics Program, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Arnesen
- Department of Biomedicine, University of Bergen, Bergen, Norway.
- Department of Biosciences, University of Bergen, Bergen, Norway.
- Department of Surgery, Haukeland University Hospital, Bergen, Norway.
| | - Jesper V Olsen
- Novo Nordisk Foundation Center for Protein Research, Proteomics Program, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
46
|
Chang YH. Impact of Protein N α-Modifications on Cellular Functions and Human Health. Life (Basel) 2023; 13:1613. [PMID: 37511988 PMCID: PMC10381334 DOI: 10.3390/life13071613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Most human proteins are modified by enzymes that act on the α-amino group of a newly synthesized polypeptide. Methionine aminopeptidases can remove the initiator methionine and expose the second amino acid for further modification by enzymes responsible for myristoylation, acetylation, methylation, or other chemical reactions. Specific acetyltransferases can also modify the initiator methionine and sometimes the acetylated methionine can be removed, followed by further modifications. These modifications at the protein N-termini play critical roles in cellular protein localization, protein-protein interaction, protein-DNA interaction, and protein stability. Consequently, the dysregulation of these modifications could significantly change the development and progression status of certain human diseases. The focus of this review is to highlight recent progress in our understanding of the roles of these modifications in regulating protein functions and how these enzymes have been used as potential novel therapeutic targets for various human diseases.
Collapse
Affiliation(s)
- Yie-Hwa Chang
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University Medical School, Saint Louis, MO 63104, USA
| |
Collapse
|
47
|
Abstract
Most proteins receive an acetyl group at the N terminus while in their nascency as the result of modification by co-translationally acting N-terminal acetyltransferases (NATs). The N-terminal acetyl group can influence several aspects of protein functionality. From studies of NAT-lacking cells, it is evident that several cellular processes are affected by this modification. More recently, an increasing number of genetic cases have demonstrated that N-terminal acetylation has crucial roles in human physiology and pathology. In this Cell Science at a Glance and the accompanying poster, we provide an overview of the human NAT enzymes and their properties, substrate coverage, cellular roles and connections to human disease.
Collapse
Affiliation(s)
- Henriette Aksnes
- Department of Biomedicine, University of Bergen, 5009 Bergen, Norway
| | - Nina McTiernan
- Department of Biomedicine, University of Bergen, 5009 Bergen, Norway
| | - Thomas Arnesen
- Department of Biomedicine, University of Bergen, 5009 Bergen, Norway
- Department of Biological Sciences, University of Bergen, 5009 Bergen, Norway
- Department of Surgery, Haukeland University Hospital, 5009 Bergen, Norway
| |
Collapse
|
48
|
Lange PF, Schilling O, Huesgen PF. Positional proteomics: is the technology ready to study clinical cohorts? Expert Rev Proteomics 2023; 20:309-318. [PMID: 37869791 DOI: 10.1080/14789450.2023.2272046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/22/2023] [Indexed: 10/24/2023]
Abstract
INTRODUCTION Positional proteomics provides proteome-wide information on protein termini and their modifications, uniquely enabling unambiguous identification of site-specific, limited proteolysis. Such proteolytic cleavage irreversibly modifies protein sequences resulting in new proteoforms with distinct protease-generated neo-N and C-termini and altered localization and activity. Misregulated proteolysis is implicated in a wide variety of human diseases. Protein termini, therefore, constitute a huge, largely unexplored source of specific analytes that provides a deep view into the functional proteome and a treasure trove for biomarkers. AREAS COVERED We briefly review principal approaches to define protein termini and discuss recent advances in method development. We further highlight the potential of positional proteomics to identify and trace specific proteoforms, with a focus on proteolytic processes altered in disease. Lastly, we discuss current challenges and potential for applying positional proteomics in biomarker and pre-clinical research. EXPERT OPINION Recent developments in positional proteomics have provided significant advances in sensitivity and throughput. In-depth analysis of proteolytic processes in clinical cohorts thus appears feasible in the near future. We argue that this will provide insights into the functional state of the proteome and offer new opportunities to utilize proteolytic processes altered or targeted in disease as specific diagnostic, prognostic and companion biomarkers.
Collapse
Affiliation(s)
- Philipp F Lange
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital Research Institute, Vancouver, BC, Canada
- Department of Molecular Oncology, BC Cancer Research Centre, Vancouver, BC, Canada
| | - Oliver Schilling
- Institute of Surgical Pathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Pitter F Huesgen
- Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Jülich, Germany
- Cologne Excellence Cluster on Stress Responses in Ageing-Associated Diseases, CECAD, Medical Faculty and University Hospital, University of Cologne, Cologne, Germany
- Institute of Biochemistry, Department for Chemistry, University of Cologne, Cologne, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| |
Collapse
|
49
|
Lyon GJ, Vedaie M, Beisheim T, Park A, Marchi E, Gottlieb L, Hsieh TC, Klinkhammer H, Sandomirsky K, Cheng H, Starr LJ, Preddy I, Tseng M, Li Q, Hu Y, Wang K, Carvalho A, Martinez F, Caro-Llopis A, Gavin M, Amble K, Krawitz P, Marmorstein R, Herr-Israel E. Expanding the phenotypic spectrum of NAA10-related neurodevelopmental syndrome and NAA15-related neurodevelopmental syndrome. Eur J Hum Genet 2023; 31:824-833. [PMID: 37130971 PMCID: PMC10325952 DOI: 10.1038/s41431-023-01368-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/11/2023] [Accepted: 04/17/2023] [Indexed: 05/04/2023] Open
Abstract
Amino-terminal (Nt-) acetylation (NTA) is a common protein modification, affecting 80% of cytosolic proteins in humans. The human essential gene, NAA10, encodes for the enzyme NAA10, which is the catalytic subunit in the N-terminal acetyltransferase A (NatA) complex, also including the accessory protein, NAA15. The full spectrum of human genetic variation in this pathway is currently unknown. Here we reveal the genetic landscape of variation in NAA10 and NAA15 in humans. Through a genotype-first approach, one clinician interviewed the parents of 56 individuals with NAA10 variants and 19 individuals with NAA15 variants, which were added to all known cases (N = 106 for NAA10 and N = 66 for NAA15). Although there is clinical overlap between the two syndromes, functional assessment demonstrates that the overall level of functioning for the probands with NAA10 variants is significantly lower than the probands with NAA15 variants. The phenotypic spectrum includes variable levels of intellectual disability, delayed milestones, autism spectrum disorder, craniofacial dysmorphology, cardiac anomalies, seizures, and visual abnormalities (including cortical visual impairment and microphthalmia). One female with the p.Arg83Cys variant and one female with an NAA15 frameshift variant both have microphthalmia. The frameshift variants located toward the C-terminal end of NAA10 have much less impact on overall functioning, whereas the females with the p.Arg83Cys missense in NAA10 have substantial impairment. The overall data are consistent with a phenotypic spectrum for these alleles, involving multiple organ systems, thus revealing the widespread effect of alterations of the NTA pathway in humans.
Collapse
Affiliation(s)
- Gholson J Lyon
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA.
- George A. Jervis Clinic, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA.
- Biology PhD Program, The Graduate Center, The City University of New York, New York, NY, USA.
| | - Marall Vedaie
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Travis Beisheim
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Agnes Park
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Elaine Marchi
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Leah Gottlieb
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tzung-Chien Hsieh
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Hannah Klinkhammer
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
- Institute for Medical Biometry, Informatics and Epidemiology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Katherine Sandomirsky
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | | | - Lois J Starr
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, USA
| | - Isabelle Preddy
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Marcellus Tseng
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Quan Li
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, M5G2C1, Canada
| | - Yu Hu
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Kai Wang
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Ana Carvalho
- Department of Medical Genetics, Pediatric Hospital, Coimbra Hospital and University Centre, Coimbra, Portugal
| | - Francisco Martinez
- Unidad de Genetica, Hospital Universitario y Politecnico La Fe, 46026, Valencia, Spain
| | - Alfonso Caro-Llopis
- Grupo de Investigacion Traslacional en Genetica, Instituto de Investigacion Sanitaria La Fe, 46026, Valencia, Spain
| | - Maureen Gavin
- George A. Jervis Clinic, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Karen Amble
- George A. Jervis Clinic, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Peter Krawitz
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Ronen Marmorstein
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ellen Herr-Israel
- George A. Jervis Clinic, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| |
Collapse
|
50
|
Pan B, Gardner SM, Schultz K, Perez RM, Deng S, Shimogawa M, Sato K, Rhoades E, Marmorstein R, Petersson EJ. Semi-Synthetic CoA-α-Synuclein Constructs Trap N-Terminal Acetyltransferase NatB for Binding Mechanism Studies. J Am Chem Soc 2023; 145:14019-14030. [PMID: 37319422 PMCID: PMC10728591 DOI: 10.1021/jacs.3c03887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
N-terminal acetylation is a chemical modification carried out by N-terminal acetyltransferases. A major member of this enzyme family, NatB, acts on much of the human proteome, including α-synuclein (αS), a synaptic protein that mediates vesicle trafficking. NatB acetylation of αS modulates its lipid vesicle binding properties and amyloid fibril formation, which underlies its role in the pathogenesis of Parkinson's disease. Although the molecular details of the interaction between human NatB (hNatB) and the N-terminus of αS have been resolved, whether the remainder of the protein plays a role in interacting with the enzyme is unknown. Here, we execute the first synthesis, by native chemical ligation, of a bisubstrate inhibitor of NatB consisting of coenzyme A and full-length human αS, additionally incorporating two fluorescent probes for studies of conformational dynamics. We use cryo-electron microscopy (cryo-EM) to characterize the structural features of the hNatB/inhibitor complex and show that, beyond the first few residues, αS remains disordered when in complex with hNatB. We further probe changes in the αS conformation by single molecule Förster resonance energy transfer (smFRET) to reveal that the C-terminus expands when bound to hNatB. Computational models based on the cryo-EM and smFRET data help to explain the conformational changes as well as their implications for hNatB substrate recognition and specific inhibition of the interaction with αS. Beyond the study of αS and NatB, these experiments illustrate valuable strategies for the study of challenging structural biology targets through a combination of protein semi-synthesis, cryo-EM, smFRET, and computational modeling.
Collapse
Affiliation(s)
- Buyan Pan
- Department of Chemistry; University of Pennsylvania; 231 South 34th Street; Philadelphia, PA 19104, USA
| | - Sarah M. Gardner
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA 19104, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kollin Schultz
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA 19104, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ryann M. Perez
- Department of Chemistry; University of Pennsylvania; 231 South 34th Street; Philadelphia, PA 19104, USA
| | - Sunbin Deng
- Department of Chemistry; University of Pennsylvania; 231 South 34th Street; Philadelphia, PA 19104, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marie Shimogawa
- Department of Chemistry; University of Pennsylvania; 231 South 34th Street; Philadelphia, PA 19104, USA
| | - Kohei Sato
- Department of Chemistry; University of Pennsylvania; 231 South 34th Street; Philadelphia, PA 19104, USA
- Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka 432-8561, Japan
| | - Elizabeth Rhoades
- Department of Chemistry; University of Pennsylvania; 231 South 34th Street; Philadelphia, PA 19104, USA
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA 19104, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Ronen Marmorstein
- Department of Chemistry; University of Pennsylvania; 231 South 34th Street; Philadelphia, PA 19104, USA
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA 19104, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| | - E. James Petersson
- Department of Chemistry; University of Pennsylvania; 231 South 34th Street; Philadelphia, PA 19104, USA
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA 19104, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| |
Collapse
|