1
|
Banoo S, Yadav Y, Tyagi R, Manna A, Sagar R. Recent efforts in the development of glycoconjugate vaccine and available treatment for tuberculosis. Bioorg Chem 2024; 150:107610. [PMID: 38991488 DOI: 10.1016/j.bioorg.2024.107610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/23/2024] [Accepted: 06/30/2024] [Indexed: 07/13/2024]
Abstract
Tuberculosis (TB) continues to pose a grave threat to global health, despite relentless eradication efforts. In 1882, Robert Koch discovered that Mycobacterium tuberculosis (Mtb) is the bacterium responsible for causing tuberculosis. It is a fact that tuberculosis has claimed the lives of more than one billion people in the last few decades. It is imperative that we must take immediate and effective action to increase resources for TB research and treatment. Effective TB treatments demand an extensive investment of both time and finances, often requiring 6-9 months of rigorous antibiotic therapy. The most efficient way to control tuberculosis is by receiving a childhood Bacillus Calmette-Guérin (BCG) vaccination. Despite years of research on vaccine development, we still do not have any new approved vaccine for tuberculosis, except BCG, which is partially effective in young children. This review discusses briefly the available treatment for tuberculosis and remarkable advancements in glycoconjugate-based TB vaccine developments in recent years (2013-2024) and offers valuable direction for future research priorities.
Collapse
Affiliation(s)
- Sajida Banoo
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Yogesh Yadav
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Rajdeep Tyagi
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Arunava Manna
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India.
| | - Ram Sagar
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India; Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
2
|
Kelly SD, Duong NH, Nothof JT, Lowary TL, Whitfield C. Three-component systems represent a common pathway for extracytoplasmic addition of pentofuranose sugars into bacterial glycans. Proc Natl Acad Sci U S A 2024; 121:e2402554121. [PMID: 38748580 PMCID: PMC11127046 DOI: 10.1073/pnas.2402554121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/18/2024] [Indexed: 05/27/2024] Open
Abstract
Cell surface glycans are major drivers of antigenic diversity in bacteria. The biochemistry and molecular biology underpinning their synthesis are important in understanding host-pathogen interactions and for vaccine development with emerging chemoenzymatic and glycoengineering approaches. Structural diversity in glycostructures arises from the action of glycosyltransferases (GTs) that use an immense catalog of activated sugar donors to build the repeating unit and modifying enzymes that add further heterogeneity. Classical Leloir GTs incorporate α- or β-linked sugars by inverting or retaining mechanisms, depending on the nucleotide sugar donor. In contrast, the mechanism of known ribofuranosyltransferases is confined to β-linkages, so the existence of α-linked ribofuranose in some glycans dictates an alternative strategy. Here, we use Citrobacter youngae O1 and O2 lipopolysaccharide O antigens as prototypes to describe a widespread, versatile pathway for incorporating side-chain α-linked pentofuranoses by extracytoplasmic postpolymerization glycosylation. The pathway requires a polyprenyl phosphoribose synthase to generate a lipid-linked donor, a MATE-family flippase to transport the donor to the periplasm, and a GT-C type GT (founding the GT136 family) that performs the final glycosylation reaction. The characterized system shares similarities, but also fundamental differences, with both cell wall arabinan biosynthesis in mycobacteria, and periplasmic glucosylation of O antigens first discovered in Salmonella and Shigella. The participation of auxiliary epimerases allows the diversification of incorporated pentofuranoses. The results offer insight into a broad concept in microbial glycobiology and provide prototype systems and bioinformatic guides that facilitate discovery of further examples from diverse species, some in currently unknown glycans.
Collapse
Affiliation(s)
- Steven D. Kelly
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ONN1G 2W1, Canada
| | - Nam Ha Duong
- Institute of Biological Chemistry, Academia Sinica, Nangang, Taipei11529, Taiwan
- Chemical Biology and Molecular Biophysics, Taiwan International Graduate Program, Academia Sinica, Nangang, Taipei11529, Taiwan
- Department of Chemistry, National Tsing Hua University, Hsinchu300044, Taiwan
| | - Jeremy T. Nothof
- Department of Chemistry, University of Alberta, Edmonton, ABT6G 2G2, Canada
| | - Todd L. Lowary
- Institute of Biological Chemistry, Academia Sinica, Nangang, Taipei11529, Taiwan
- Department of Chemistry, University of Alberta, Edmonton, ABT6G 2G2, Canada
- Institute of Biochemical Sciences, National Taiwan University, Taipei10617, Taiwan
| | - Chris Whitfield
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ONN1G 2W1, Canada
| |
Collapse
|
3
|
Gao S, Wu F, Gurcha SS, Batt SM, Besra GS, Rao Z, Zhang L. Structural analysis of phosphoribosyltransferase-mediated cell wall precursor synthesis in Mycobacterium tuberculosis. Nat Microbiol 2024; 9:976-987. [PMID: 38491273 PMCID: PMC10994848 DOI: 10.1038/s41564-024-01643-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 02/07/2024] [Indexed: 03/18/2024]
Abstract
In Mycobacterium tuberculosis, Rv3806c is a membrane-bound phosphoribosyltransferase (PRTase) involved in cell wall precursor production. It catalyses pentosyl phosphate transfer from phosphoribosyl pyrophosphate to decaprenyl phosphate, to generate 5-phospho-β-ribosyl-1-phosphoryldecaprenol. Despite Rv3806c being an attractive drug target, structural and molecular mechanistic insight into this PRTase is lacking. Here we report cryogenic electron microscopy structures for Rv3806c in the donor- and acceptor-bound states. In a lipidic environment, Rv3806c is trimeric, creating a UbiA-like fold. Each protomer forms two helical bundles, which, alongside the bound lipids, are required for PRTase activity in vitro. Mutational and functional analyses reveal that decaprenyl phosphate and phosphoribosyl pyrophosphate bind the intramembrane and extramembrane cavities of Rv3806c, respectively, in a distinct manner to that of UbiA superfamily enzymes. Our data suggest a model for Rv3806c-catalysed phosphoribose transfer through an inverting mechanism. These findings provide a structural basis for cell wall precursor biosynthesis that could have potential for anti-tuberculosis drug development.
Collapse
Affiliation(s)
- Shan Gao
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, College of Pharmacy, Nankai University, Tianjin, China
- Shanghai Institute for Advanced Immunochemical Studies, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Fangyu Wu
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, College of Pharmacy, Nankai University, Tianjin, China
- Shanghai Institute for Advanced Immunochemical Studies, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Sudagar S Gurcha
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Sarah M Batt
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Gurdyal S Besra
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK.
| | - Zihe Rao
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, College of Pharmacy, Nankai University, Tianjin, China.
- Shanghai Institute for Advanced Immunochemical Studies, School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- Laboratory of Structural Biology, Tsinghua University, Beijing, China.
| | - Lu Zhang
- Shanghai Institute for Advanced Immunochemical Studies, School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- Shanghai Clinical Research and Trial Center, Shanghai, China.
| |
Collapse
|
4
|
Hodgeman R, Mann R, Djitro N, Savin K, Rochfort S, Rodoni B. The pan-genome of Mycobacterium avium subsp. paratuberculosis (Map) confirms ancestral lineage and reveals gene rearrangements within Map Type S. BMC Genomics 2023; 24:656. [PMID: 37907856 PMCID: PMC10619280 DOI: 10.1186/s12864-023-09752-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/18/2023] [Indexed: 11/02/2023] Open
Abstract
BACKGROUND To date genomic studies on Map have concentrated on Type C strains with only a few Type S strains included for comparison. In this study the entire pan-genome of 261 Map genomes (205 Type C, 52 Type S and 4 Type B) and 7 Mycobacterium avium complex (Mac) genomes were analysed to identify genomic similarities and differences between the strains and provide more insight into the evolutionary relationship within this Mycobacterial species. RESULTS Our analysis of the core genome of all the Map isolates identified two distinct lineages, Type S and Type C Map that is consistent with previous phylogenetic studies of Map. Pan-genome analysis revealed that Map has a larger accessory genome than Mycobacterium avium subsp. avium (Maa) and Type C Map has a larger accessory genome than Type S Map. In addition, we found large rearrangements within Type S strains of Map and little to none in Type C and Type B strains. There were 50 core genes identified that were unique to Type S Map and there were no unique core genes identified between Type B and Type C Map strains. In Type C Map we identified an additional CE10 CAZyme class which was identified as an alpha/beta hydrolase and an additional polyketide and non-ribosomal peptide synthetase cluster. Consistent with previous analysis no plasmids and only incomplete prophages were identified in the genomes of Map. There were 45 hypothetical CRISPR elements identified with no associated cas genes. CONCLUSION This is the most comprehensive comparison of the genomic content of Map isolates to date and included the closing of eight Map genomes. The analysis revealed that there is greater variation in gene synteny within Type S strains when compared to Type C indicating that the Type C Map strain emerged after Type S. Further analysis of Type C and Type B genomes revealed that they are structurally similar with little to no genetic variation and that Type B Map may be a distinct clade within Type C Map and not a different strain type of Map. The evolutionary lineage of Maa and Map was confirmed as emerging after M. hominissuis.
Collapse
Affiliation(s)
- Rachel Hodgeman
- Agriculture Victoria, AgriBio, La Trobe University, Bundoora, VIC, Australia.
- School of Applied Systems Biology, AgriBio, La Trobe University, Bundoora, VIC, Australia.
| | - Rachel Mann
- Agriculture Victoria, AgriBio, La Trobe University, Bundoora, VIC, Australia
| | - Noel Djitro
- School of Applied Systems Biology, AgriBio, La Trobe University, Bundoora, VIC, Australia
| | - Keith Savin
- Agriculture Victoria, AgriBio, La Trobe University, Bundoora, VIC, Australia
| | - Simone Rochfort
- Agriculture Victoria, AgriBio, La Trobe University, Bundoora, VIC, Australia
- School of Applied Systems Biology, AgriBio, La Trobe University, Bundoora, VIC, Australia
| | - Brendan Rodoni
- Agriculture Victoria, AgriBio, La Trobe University, Bundoora, VIC, Australia
- School of Applied Systems Biology, AgriBio, La Trobe University, Bundoora, VIC, Australia
| |
Collapse
|
5
|
Zhang L, Rao Z. Structural biology and inhibition of the Mtb cell wall glycoconjugates biosynthesis on the membrane. Curr Opin Struct Biol 2023; 82:102670. [PMID: 37542906 DOI: 10.1016/j.sbi.2023.102670] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/08/2023] [Accepted: 07/10/2023] [Indexed: 08/07/2023]
Abstract
Glycoconjugates are the dominant components of the Mycobacterium tuberculosis cell wall. These glycoconjugates are essential for the viability of Mtb and attribute to drug resistance and virulence during infection. The assembly and maturation of the cell wall largely relies on the Mtb plasma membrane. A significant number of membrane-bound glycosyltransferases (GTs) and transporters play pivotal roles in forming the complex glycoconjugates and are targeted by the first-line anti-TB drug and potent drug candidates. Here we summarize the latest structural biology of mycobacterial GTs and transporters, and describe the modes of action of drug and drug candidates that are of substantial clinical value in anti-TB chemotherapeutics.
Collapse
Affiliation(s)
- Lu Zhang
- Shanghai Institute for Advanced Immunochemical Studies, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| | - Zihe Rao
- Laboratory of Structural Biology, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
6
|
Bloch JS, John A, Mao R, Mukherjee S, Boilevin J, Irobalieva RN, Darbre T, Scott NE, Reymond JL, Kossiakoff AA, Goddard-Borger ED, Locher KP. Structure, sequon recognition and mechanism of tryptophan C-mannosyltransferase. Nat Chem Biol 2023; 19:575-584. [PMID: 36604564 PMCID: PMC10154233 DOI: 10.1038/s41589-022-01219-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 10/28/2022] [Indexed: 01/07/2023]
Abstract
C-linked glycosylation is essential for the trafficking, folding and function of secretory and transmembrane proteins involved in cellular communication processes. The tryptophan C-mannosyltransferase (CMT) enzymes that install the modification attach a mannose to the first tryptophan of WxxW/C sequons in nascent polypeptide chains by an unknown mechanism. Here, we report cryogenic-electron microscopy structures of Caenorhabditis elegans CMT in four key states: apo, acceptor peptide-bound, donor-substrate analog-bound and as a trapped ternary complex with both peptide and a donor-substrate mimic bound. The structures indicate how the C-mannosylation sequon is recognized by this CMT and its paralogs, and how sequon binding triggers conformational activation of the donor substrate: a process relevant to all glycosyltransferase C superfamily enzymes. Our structural data further indicate that the CMTs adopt an unprecedented electrophilic aromatic substitution mechanism to enable the C-glycosylation of proteins. These results afford opportunities for understanding human disease and therapeutic targeting of specific CMT paralogs.
Collapse
Affiliation(s)
- Joël S Bloch
- Institute of Molecular Biology and Biophysics, ETH Zürich, Zürich, Switzerland
- Laboratory of Molecular Neurobiology and Biophysics and Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Alan John
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Runyu Mao
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Somnath Mukherjee
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Jérémy Boilevin
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | | | - Tamis Darbre
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Nichollas E Scott
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Jean-Louis Reymond
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Anthony A Kossiakoff
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Ethan D Goddard-Borger
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia.
| | - Kaspar P Locher
- Institute of Molecular Biology and Biophysics, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
7
|
Herreros D, Kiska J, Ramirez E, Filipovic J, Carazo JM, Sorzano COS. ZART: A novel multiresolution reconstruction algorithm with motion-blur correction for single particle analysis. J Mol Biol 2023; 435:168088. [PMID: 37030648 DOI: 10.1016/j.jmb.2023.168088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 03/31/2023] [Accepted: 04/01/2023] [Indexed: 04/10/2023]
Abstract
One of the main purposes of CryoEM Single Particle Analysis is to reconstruct the three-dimensional structure of a macromolecule thanks to the acquisition of many particle images representing different poses of the sample. By estimating the orientation of each projected particle, it is possible to recover the underlying 3D volume by multiple 3D reconstruction methods, usually working either in Fourier or in real space. However, the reconstruction from the projected images works under the assumption that all particles in the dataset correspond to the same conformation of the macromolecule. Although this requisite holds for some macromolecules, it is not true for flexible specimens, leading to motion-induced artefacts in the reconstructed CryoEM maps. In this work, we introduce a new Algebraic Reconstruction Technique called ZART, which is able to include continuous flexibility information during the reconstruction process to improve local resolution and reduce motion blurring. The conformational changes are modelled through Zernike3D polynomials. Our implementation allows for a multiresolution description of the macromolecule adapting itself to the local resolution of the reconstructed map. In addition, ZART has also proven to be a useful algorithm in cases where flexibility is not so dominant, as it improves the overall aspect of the reconstructed maps by improving their local and global resolution.
Collapse
Affiliation(s)
- D Herreros
- Centro Nacional de Biotecnologia-CSIC, C/ Darwin, 3, 28049, Cantoblanco, Madrid, Spain.
| | - J Kiska
- Institute of Computer Science, Masaryk University, Botanická 68a, 60200 Brno, Czech Republic
| | - E Ramirez
- Centro Nacional de Biotecnologia-CSIC, C/ Darwin, 3, 28049, Cantoblanco, Madrid, Spain
| | - J Filipovic
- Institute of Computer Science, Masaryk University, Botanická 68a, 60200 Brno, Czech Republic
| | - J M Carazo
- Centro Nacional de Biotecnologia-CSIC, C/ Darwin, 3, 28049, Cantoblanco, Madrid, Spain.
| | - C O S Sorzano
- Centro Nacional de Biotecnologia-CSIC, C/ Darwin, 3, 28049, Cantoblanco, Madrid, Spain.
| |
Collapse
|
8
|
Alexander JAN, Locher KP. Emerging structural insights into C-type glycosyltransferases. Curr Opin Struct Biol 2023; 79:102547. [PMID: 36827761 DOI: 10.1016/j.sbi.2023.102547] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/19/2022] [Accepted: 01/11/2023] [Indexed: 02/24/2023]
Abstract
Glycosyltransferases of the C superfamily (GT-Cs) are enzymes found in all domains of life. They catalyse the stepwise synthesis of oligosaccharides or the transfer of assembled glycans from lipid-linked donor substrates to acceptor proteins. The processes mediated by GT-Cs are required for C-, N- and O-linked glycosylation, all of which are essential post-translational modifications in higher-order eukaryotes. Until recently, GT-Cs were thought to share a conserved structural module of 7 transmembrane helices; however, recently determined GT-C structures revealed novel folds. Here we analyse the growing diversity of GT-C folds and discuss the emergence of two subclasses, termed GT-CA and GT-CB. Further substrate-bound structures are needed to facilitate a molecular understanding of glycan recognition and catalysis in these two subclasses.
Collapse
Affiliation(s)
| | - Kaspar P Locher
- Institute of Molecular Biology and Biophysics, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
9
|
Xu X, Dong B, Peng L, Gao C, He Z, Wang C, Zeng J. Anti-tuberculosis drug development via targeting the cell envelope of Mycobacterium tuberculosis. Front Microbiol 2022; 13:1056608. [PMID: 36620019 PMCID: PMC9810820 DOI: 10.3389/fmicb.2022.1056608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/25/2022] [Indexed: 12/24/2022] Open
Abstract
Mycobacterium tuberculosis possesses a dynamic cell envelope, which consists of a peptidoglycan layer, a mycolic acid layer, and an arabinogalactan polysaccharide. This envelope possesses a highly complex and unique structure representing a barrier that protects and assists the growth of M. tuberculosis and allows its adaptation to the host. It regulates the immune response of the host cells, causing their damage. Therefore, the cell envelope of M. tuberculosis is an attractive target for vaccine and drug development. The emergence of multidrug-resistant as well as extensively drug resistant tuberculosis and co-infection with HIV prevented an effective control of this disease. Thus, the discovery and development of new drugs is a major keystone for TB treatment and control. This review mainly summarizes the development of drug enzymes involved in the biosynthesis of the cell wall in M. tuberculosis, and other potential drug targets in this pathway, to provide more effective strategies for the development of new drugs.
Collapse
Affiliation(s)
- Xinyue Xu
- West China-PUMC CC Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Baoyu Dong
- West China-PUMC CC Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Lijun Peng
- West China-PUMC CC Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Chao Gao
- State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China.,Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, Chengdu, China
| | - Zhiqun He
- West China-PUMC CC Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Chuan Wang
- West China-PUMC CC Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Jumei Zeng
- West China-PUMC CC Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Ruiz‐Cruz S, Erazo Garzon A, Kelleher P, Bottacini F, Breum SØ, Neve H, Heller KJ, Vogensen FK, Palussière S, Courtin P, Chapot‐Chartier M, Vinogradov E, Sadovskaya I, Mahony J, van Sinderen D. Host genetic requirements for DNA release of lactococcal phage TP901-1. Microb Biotechnol 2022; 15:2875-2889. [PMID: 36259418 PMCID: PMC9733650 DOI: 10.1111/1751-7915.14156] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/29/2022] [Accepted: 09/27/2022] [Indexed: 12/14/2022] Open
Abstract
The first step in phage infection is the recognition of, and adsorption to, a receptor located on the host cell surface. This reversible host adsorption step is commonly followed by an irreversible event, which involves phage DNA delivery or release into the bacterial cytoplasm. The molecular components that trigger this latter event are unknown for most phages of Gram-positive bacteria. In the current study, we present a comparative genome analysis of three mutants of Lactococcus cremoris 3107, which are resistant to the P335 group phage TP901-1 due to mutations that affect TP901-1 DNA release. Through genetic complementation and phage infection assays, a predicted lactococcal three-component glycosylation system (TGS) was shown to be required for TP901-1 infection. Major cell wall saccharidic components were analysed, but no differences were found. However, heterologous gene expression experiments indicate that this TGS is involved in the glucosylation of a cell envelope-associated component that triggers TP901-1 DNA release. To date, a saccharide modification has not been implicated in the DNA delivery process of a Gram-positive infecting phage.
Collapse
Affiliation(s)
- Sofía Ruiz‐Cruz
- School of Microbiology & APC Microbiome IrelandUniversity College CorkCorkIreland
| | - Andrea Erazo Garzon
- School of Microbiology & APC Microbiome IrelandUniversity College CorkCorkIreland
| | - Philip Kelleher
- School of Microbiology & APC Microbiome IrelandUniversity College CorkCorkIreland
| | - Francesca Bottacini
- School of Microbiology & APC Microbiome IrelandUniversity College CorkCorkIreland,Department of Biological SciencesMunster Technological UniversityCorkIreland
| | - Solvej Østergaard Breum
- Section of Microbiology and Fermentation, Department of Food Science, Faculty of ScienceUniversity of CopenhagenFrederiksbergDenmark,Present address:
Department of Virus & Microbiological Special Diagnostics, Division of Infectious Disease Preparedness, Statens Serum InstitutCopenhagenDenmark
| | - Horst Neve
- Department of Microbiology and Biotechnology, Max Rubner‐InstitutFederal Research Institute of Nutrition and FoodKielGermany
| | - Knut J. Heller
- Department of Microbiology and Biotechnology, Max Rubner‐InstitutFederal Research Institute of Nutrition and FoodKielGermany
| | - Finn K. Vogensen
- Section of Microbiology and Fermentation, Department of Food Science, Faculty of ScienceUniversity of CopenhagenFrederiksbergDenmark
| | - Simon Palussière
- Université Paris‐Saclay, INRAE, AgroParisTech, Micalis InstituteJouy‐en‐JosasFrance
| | - Pascal Courtin
- Université Paris‐Saclay, INRAE, AgroParisTech, Micalis InstituteJouy‐en‐JosasFrance
| | | | - Evgeny Vinogradov
- National Research Council CanadaInstitute for Biological SciencesOttawaOntarioCanada
| | - Irina Sadovskaya
- Equipe BPA, Université du Littoral‐Côte d'Opale, Institut Charles Violette EA 7394 USC AnsesBoulogne‐sur‐merFrance
| | - Jennifer Mahony
- School of Microbiology & APC Microbiome IrelandUniversity College CorkCorkIreland
| | - Douwe van Sinderen
- School of Microbiology & APC Microbiome IrelandUniversity College CorkCorkIreland
| |
Collapse
|
11
|
Piper SJ, Johnson RM, Wootten D, Sexton PM. Membranes under the Magnetic Lens: A Dive into the Diverse World of Membrane Protein Structures Using Cryo-EM. Chem Rev 2022; 122:13989-14017. [PMID: 35849490 PMCID: PMC9480104 DOI: 10.1021/acs.chemrev.1c00837] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Indexed: 11/29/2022]
Abstract
Membrane proteins are highly diverse in both structure and function and can, therefore, present different challenges for structure determination. They are biologically important for cells and organisms as gatekeepers for information and molecule transfer across membranes, but each class of membrane proteins can present unique obstacles to structure determination. Historically, many membrane protein structures have been investigated using highly engineered constructs or using larger fusion proteins to improve solubility and/or increase particle size. Other strategies included the deconstruction of the full-length protein to target smaller soluble domains. These manipulations were often required for crystal formation to support X-ray crystallography or to circumvent lower resolution due to high noise and dynamic motions of protein subdomains. However, recent revolutions in membrane protein biochemistry and cryo-electron microscopy now provide an opportunity to solve high resolution structures of both large, >1 megadalton (MDa), and small, <100 kDa (kDa), drug targets in near-native conditions, routinely reaching resolutions around or below 3 Å. This review provides insights into how the recent advances in membrane biology and biochemistry, as well as technical advances in cryo-electron microscopy, help us to solve structures of a large variety of membrane protein groups, from small receptors to large transporters and more complex machineries.
Collapse
Affiliation(s)
- Sarah J. Piper
- Drug
Discovery Biology theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
- ARC
Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute
of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
| | - Rachel M. Johnson
- Drug
Discovery Biology theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
- ARC
Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute
of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
| | - Denise Wootten
- Drug
Discovery Biology theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
- ARC
Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute
of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
| | - Patrick M. Sexton
- Drug
Discovery Biology theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
- ARC
Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute
of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
| |
Collapse
|
12
|
Ramírez-Aportela E, Carazo JM, Sorzano COS. Higher resolution in cryo-EM by the combination of macromolecular prior knowledge and image-processing tools. IUCRJ 2022; 9:632-638. [PMID: 36071808 PMCID: PMC9438491 DOI: 10.1107/s2052252522006959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Single-particle cryo-electron microscopy has become a powerful technique for the 3D structure determination of biological molecules. The last decade has seen an astonishing development of both hardware and software, and an exponential growth of new structures obtained at medium-high resolution. However, the knowledge accumulated in this field over the years has hardly been utilized as feedback in the reconstruction of new structures. In this context, this article explores the use of the deep-learning approach deepEMhancer as a regularizer in the RELION refinement process. deepEMhancer introduces prior information derived from macromolecular structures, and contributes to noise reduction and signal enhancement, as well as a higher degree of isotropy. These features have a direct effect on image alignment and reduction of overfitting during iterative refinement. The advantages of this combination are demonstrated for several membrane proteins, for which it is especially useful because of their high disorder and flexibility.
Collapse
Affiliation(s)
- Erney Ramírez-Aportela
- Biocomputing Unit, National Centre for Biotechnology (CNB CSIC), Darwin 3, Campus Universidad Autónoma de Madrid, Cantoblanco, Madrid 28049, Spain
| | - Jose M. Carazo
- Biocomputing Unit, National Centre for Biotechnology (CNB CSIC), Darwin 3, Campus Universidad Autónoma de Madrid, Cantoblanco, Madrid 28049, Spain
| | - Carlos Oscar S. Sorzano
- Biocomputing Unit, National Centre for Biotechnology (CNB CSIC), Darwin 3, Campus Universidad Autónoma de Madrid, Cantoblanco, Madrid 28049, Spain
- Universidad CEU San Pablo, Campus Urb. Montepríncipe, Boadilla del Monte, Madrid 28668, Spain
| |
Collapse
|
13
|
Li YY, Liu HM, Wang D, Lu Y, Ding C, Zhou LS, Wu XY, Zhou ZW, Xu SQ, Lin C, Qin LH, Li Y, Liu J, Liu HP, Zhang L. Arabinogalactan enhances Mycobacterium marinum virulence by suppressing host innate immune responses. Front Immunol 2022; 13:879775. [PMID: 36090984 PMCID: PMC9459032 DOI: 10.3389/fimmu.2022.879775] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 07/28/2022] [Indexed: 11/28/2022] Open
Abstract
Arabinogalactan (AG) participates in forming the cell wall core of mycobacteria, a structure known as the mAGP complex. Few studies have reported the virulence of inartificial AG or its interaction with the host immune system. Using clustered regularly interspaced short palindromic repeats interference gene editing technology, conditional Mycobacterium marinum mutants were constructed with a low expression of embA or glfT2 (EmbA_KD or GlfT2_KD), which are separately involved in the biosynthesis of AG arabinose and galactose domains. High-performance gel permeation chromatography and high-performance liquid chromatography assays confirmed that the EmbA_KD strain showed a remarkable decrease in AG content with fragmentary arabinose chains, and the GlfT2_KD strain displayed less reduction in content with cut-down galactose chains. Based on transmission and scanning electron microscopy observations, the cell walls of the two mutants were found to be dramatically thickened, and the boundaries of different layers were more distinct. Phenotypes including the over-secretion of extracellular substances and enhanced spreading motility with a concomitant decreased resistance to ethambutol appeared in the EmbA_KD strain. The EmbA_KD and GlfT2_KD strains displayed limited intracellular proliferation after infecting murine J774A.1 macrophages. The disease progression infected with the EmbA_KD or GlfT2_KD strain significantly slowed down in zebrafish/murine tail infection models as well. Through transcriptome profiling, macrophages infected by EmbA_KD/GlfT2_KD strains showed enhanced oxidative metabolism. The cell survival measured using the CCK8 assay of macrophages exposed to the EmbA_KD strain was upregulated and consistent with the pathway enrichment analysis of differentially expressed genes in terms of cell cycle/apoptosis. The overexpression of C/EBPβ and the increasing secretion of proinflammatory cytokines were validated in the macrophages infected by the EmbA_KD mutant. In conclusion, the AG of Mycobacterium appears to restrain the host innate immune responses to enhance intracellular proliferation by interfering with oxidative metabolism and causing macrophage death. The arabinose chains of AG influence the Mycobacterium virulence and pathogenicity to a greater extent.
Collapse
Affiliation(s)
- Ye-yu Li
- Department of Microbiology, School of Life Science, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, China
| | - Han-Mei Liu
- Department of Microbiology, School of Life Science, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, China
| | - Decheng Wang
- School of Medicine, China Three Gorges University, Yichang, China
| | - Yan Lu
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, China
| | - Cairong Ding
- School of Medicine, China Three Gorges University, Yichang, China
| | - Li-Shuang Zhou
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, China
| | - Xiang-Yang Wu
- Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zi-Wei Zhou
- Department of Microbiology, School of Life Science, Fudan University, Shanghai, China
| | - Shu-qin Xu
- Department of Microbiology, School of Life Science, Fudan University, Shanghai, China
| | - Chen Lin
- Department of Microbiology, School of Life Science, Fudan University, Shanghai, China
| | - Lian-Hua Qin
- Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yao Li
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, China
| | - Jun Liu
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- *Correspondence: Jun Liu, ; Hai-Peng Liu, ; Lu Zhang,
| | - Hai-Peng Liu
- Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Jun Liu, ; Hai-Peng Liu, ; Lu Zhang,
| | - Lu Zhang
- Department of Microbiology, School of Life Science, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai, China
- *Correspondence: Jun Liu, ; Hai-Peng Liu, ; Lu Zhang,
| |
Collapse
|
14
|
Li H, Chen G, Gao S, Li J, Wan X, Zhang F. A Transfer Learning-Based Classification Model for Particle Pruning in Cryo-Electron Microscopy. JOURNAL OF COMPUTATIONAL BIOLOGY : A JOURNAL OF COMPUTATIONAL MOLECULAR CELL BIOLOGY 2022; 29:1117-1131. [PMID: 35985012 DOI: 10.1089/cmb.2022.0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The cryo-electron microscopy (cryo-EM) single-particle analysis requires tens of thousands of particle projections to reveal structural information of macromolecular complexes. However, due to the low signal-to-noise ratio and the presence of high contrast artifacts and contaminants in the micrographs, the semiautomatic and fully automatic particle picking algorithms tend to suffer from high false-positive rates, which degrades the confidence of structure determination. In this study, we introduce PickerOptimizer (PO), a transfer learning-based classification neural network for particle pruning in cryo-EM, as an additional strategy to complement the current automated particle picking algorithms. To achieve high classification performance with minimal human intervention, we adopted two key strategies: (1) utilizing the transfer learning techniques to train the convolutional neural network, where the knowledge gained from public classification datasets is applied to the field of cryo-EM. (2) Designing a multiloss strategy, a combination of multiple loss functions, to guide the optimization of the network parameters. To reduce the domain shift between cryo-EM images and natural images for pretraining, we build the first image classification dataset for cryo-EM, which contains positive and negative samples collected from EMPIAR entries. The PO is tested on 14 public experimental datasets, achieving accuracy and F1 scores above 95% in most cases. Furthermore, three case studies are provided to verify the model performance by applying PO on problematic particle selections, showing that our algorithm achieved better or comparable performance compared with other particle pruning strategies.
Collapse
Affiliation(s)
- Hongjia Li
- High Performance Computer Research Center, Institute of Computing Technology, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ge Chen
- University of Chinese Academy of Sciences, Beijing, China.,Domain-Oriented Computing Technology Research Center, Institute of Computing Technology, Beijing, China
| | - Shan Gao
- High Performance Computer Research Center, Institute of Computing Technology, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jintao Li
- High Performance Computer Research Center, Institute of Computing Technology, Beijing, China
| | - Xiaohua Wan
- High Performance Computer Research Center, Institute of Computing Technology, Beijing, China
| | - Fa Zhang
- High Performance Computer Research Center, Institute of Computing Technology, Beijing, China
| |
Collapse
|
15
|
Chua EYD, Mendez JH, Rapp M, Ilca SL, Tan YZ, Maruthi K, Kuang H, Zimanyi CM, Cheng A, Eng ET, Noble AJ, Potter CS, Carragher B. Better, Faster, Cheaper: Recent Advances in Cryo-Electron Microscopy. Annu Rev Biochem 2022; 91:1-32. [PMID: 35320683 PMCID: PMC10393189 DOI: 10.1146/annurev-biochem-032620-110705] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cryo-electron microscopy (cryo-EM) continues its remarkable growth as a method for visualizing biological objects, which has been driven by advances across the entire pipeline. Developments in both single-particle analysis and in situ tomography have enabled more structures to be imaged and determined to better resolutions, at faster speeds, and with more scientists having improved access. This review highlights recent advances at each stageof the cryo-EM pipeline and provides examples of how these techniques have been used to investigate real-world problems, including antibody development against the SARS-CoV-2 spike during the recent COVID-19 pandemic.
Collapse
Affiliation(s)
- Eugene Y D Chua
- New York Structural Biology Center, New York, NY, USA; , , , , , , , , , , ,
- Simons Electron Microscopy Center, New York, NY, USA
- National Center for CryoEM Access and Training, New York, NY, USA
| | - Joshua H Mendez
- New York Structural Biology Center, New York, NY, USA; , , , , , , , , , , ,
- Simons Electron Microscopy Center, New York, NY, USA
- National Center for CryoEM Access and Training, New York, NY, USA
| | - Micah Rapp
- New York Structural Biology Center, New York, NY, USA; , , , , , , , , , , ,
- Simons Electron Microscopy Center, New York, NY, USA
| | - Serban L Ilca
- New York Structural Biology Center, New York, NY, USA; , , , , , , , , , , ,
- Simons Electron Microscopy Center, New York, NY, USA
| | - Yong Zi Tan
- Department of Biological Sciences, National University of Singapore, Singapore;
- Disease Intervention Technology Laboratory, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Kashyap Maruthi
- New York Structural Biology Center, New York, NY, USA; , , , , , , , , , , ,
- Simons Electron Microscopy Center, New York, NY, USA
- National Resource for Automated Molecular Microscopy, New York, NY, USA
| | - Huihui Kuang
- New York Structural Biology Center, New York, NY, USA; , , , , , , , , , , ,
- Simons Electron Microscopy Center, New York, NY, USA
- National Resource for Automated Molecular Microscopy, New York, NY, USA
| | - Christina M Zimanyi
- New York Structural Biology Center, New York, NY, USA; , , , , , , , , , , ,
- Simons Electron Microscopy Center, New York, NY, USA
- National Center for CryoEM Access and Training, New York, NY, USA
| | - Anchi Cheng
- New York Structural Biology Center, New York, NY, USA; , , , , , , , , , , ,
- Simons Electron Microscopy Center, New York, NY, USA
- National Resource for Automated Molecular Microscopy, New York, NY, USA
| | - Edward T Eng
- New York Structural Biology Center, New York, NY, USA; , , , , , , , , , , ,
- Simons Electron Microscopy Center, New York, NY, USA
- National Center for CryoEM Access and Training, New York, NY, USA
| | - Alex J Noble
- New York Structural Biology Center, New York, NY, USA; , , , , , , , , , , ,
- Simons Electron Microscopy Center, New York, NY, USA
- National Resource for Automated Molecular Microscopy, New York, NY, USA
- National Center for In-Situ Tomographic Ultramicroscopy, New York, NY, USA
- Simons Machine Learning Center, New York, NY, USA
| | - Clinton S Potter
- New York Structural Biology Center, New York, NY, USA; , , , , , , , , , , ,
- Simons Electron Microscopy Center, New York, NY, USA
- National Center for CryoEM Access and Training, New York, NY, USA
- National Resource for Automated Molecular Microscopy, New York, NY, USA
- National Center for In-Situ Tomographic Ultramicroscopy, New York, NY, USA
- Simons Machine Learning Center, New York, NY, USA
| | - Bridget Carragher
- New York Structural Biology Center, New York, NY, USA; , , , , , , , , , , ,
- Simons Electron Microscopy Center, New York, NY, USA
- National Center for CryoEM Access and Training, New York, NY, USA
- National Resource for Automated Molecular Microscopy, New York, NY, USA
- National Center for In-Situ Tomographic Ultramicroscopy, New York, NY, USA
- Simons Machine Learning Center, New York, NY, USA
| |
Collapse
|
16
|
Bendre AD, Peters PJ, Kumar J. Tuberculosis: Past, present and future of the treatment and drug discovery research. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100037. [PMID: 34909667 PMCID: PMC8663960 DOI: 10.1016/j.crphar.2021.100037] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 05/21/2021] [Accepted: 05/21/2021] [Indexed: 11/25/2022] Open
Abstract
Tuberculosis (TB) is an infectious disease caused by the bacterium Mycobacterium tuberculosis. Despite decades of research driving advancements in drug development and discovery against TB, it still leads among the causes of deaths due to infectious diseases. We are yet to develop an effective treatment course or a vaccine that could help us eradicate TB. Some key issues being prolonged treatment courses, inadequate drug intake, and the high dropout rate of patients during the treatment course. Hence, we require drugs that could accelerate the elimination of bacteria, shortening the treatment duration. It is high time we evaluate the probable lacunas in research holding us back in coming up with a treatment regime and/or a vaccine that would help control TB spread. Years of dedicated and focused research provide us with a lead molecule that goes through several tests, trials, and modifications to transform into a ‘drug’. The transformation from lead molecule to ‘drug’ is governed by several factors determining its success or failure. In the present review, we have discussed drugs that are part of the currently approved treatment regimen, their limitations, vaccine candidates under trials, and current issues in research that need to be addressed. While we are waiting for the path-breaking treatment for TB, these factors should be considered during the ongoing quest for novel yet effective anti-tubercular. If these issues are addressed, we could hope to develop a more effective treatment that would cure multi/extremely drug-resistant TB and help us meet the WHO's targets for controlling the global TB pandemic within the prescribed timeline. Despite numerous drugs and vaccines undergoing clinical trials, we have not been able to control TB. Majority of articles list the advancements in the TB drug-discovery; here we review the limitations of existing treatments. Brief description of aspects to be considered for the development of one but effective drug/preventive vaccine. A glance at pediatric tuberculosis: the most neglected area of TB research which requires dedicated research efforts. A concise narrative for research aspects to be re-evaluated by both academia and pharmaceutical R&D teams.
Collapse
Key Words
- BCG, Bacille Calmette-Guérin
- BDQ, Bedaquiline
- BSL, Biosafety level
- CDC, Center for Disease Control and Prevention
- Drug discovery
- Drug resistance
- EMB, Ethambutol
- ESX, ESAT-6 secretion system
- ETC, Electron transport chain
- ETH, Ethionamide
- FAS-1, Fatty acid synthase 1
- FDA, Food and Drug Administration
- INH, Isoniazid
- LPZ, Lansoprazole
- MDR, Multidrug-resistant
- Mtb, Mycobacterium tuberculosis
- POA, pyrazinoic acid
- PZA, Pyrazinamide
- RD, the region of differences
- RIF, Rifampicin
- T7SS, Type 7 secretion system
- TB treatment
- TB, Tuberculosis
- TST, Tuberculin skin test
- Tuberculosis
- WHO, World health organization
- XDR, Extremely drug-resistant
Collapse
Affiliation(s)
- Ameya D Bendre
- Laboratory of Membrane Protein Biology, National Centre for Cell Science, NCCS Complex, S. P. Pune University, Maharashtra, Pune, 411007, India
| | - Peter J Peters
- The Maastricht Multimodal Molecular Imaging Institute (M4I), Division of Nanoscopy, Maastricht University, Maastricht, the Netherlands
| | - Janesh Kumar
- Laboratory of Membrane Protein Biology, National Centre for Cell Science, NCCS Complex, S. P. Pune University, Maharashtra, Pune, 411007, India
| |
Collapse
|
17
|
MmpA, a Conserved Membrane Protein Required for Efficient Surface Transport of Trehalose Lipids in Corynebacterineae. Biomolecules 2021; 11:biom11121760. [PMID: 34944401 PMCID: PMC8698533 DOI: 10.3390/biom11121760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 12/23/2022] Open
Abstract
Cell walls of bacteria of the genera Mycobacterium and Corynebacterium contain high levels of (coryno)mycolic acids. These very long chain fatty acids are synthesized on the cytoplasmic leaflet of the inner membrane (IM) prior to conjugation to the disaccharide, trehalose, and transport to the periplasm. Recent studies on Corynebacterium glutamicum have shown that acetylation of trehalose monohydroxycorynomycolate (hTMCM) promotes its transport across the inner membrane. Acetylation is mediated by the membrane acetyltransferase, TmaT, and is dependent on the presence of a putative methyltransferase, MtrP. Here, we identify a third protein that is required for the acetylation and membrane transport of hTMCM. Deletion of the C. glutamicum gene NCgl2761 (Rv0226c in Mycobacterium tuberculosis) abolished synthesis of acetylated hTMCM (AcTMCM), resulting in an accumulation of hTMCM in the inner membrane and reduced synthesis of trehalose dihydroxycorynomycolate (h2TDCM), a major outer membrane glycolipid. Complementation with the NCgl2761 gene, designated here as mmpA, restored the hTMCM:h2TDCM ratio. Comprehensive lipidomic analysis of the ΔtmaT, ΔmtrP and ΔmmpA mutants revealed strikingly similar global changes in overall membrane lipid composition. Our findings suggest that the acetylation and membrane transport of hTMCM is regulated by multiple proteins: MmpA, MtrP and TmaT, and that defects in this process lead to global, potentially compensatory changes in the composition of inner and outer membranes.
Collapse
|
18
|
Abstract
Membrane proteins (MPs) play essential roles in numerous cellular processes. Because around 70% of the currently marketed drugs target MPs, a detailed understanding of their structure, binding properties, and functional dynamics in a physiologically relevant environment is crucial for a more detailed understanding of this important protein class. We here summarize the benefits of using lipid nanodiscs for NMR structural investigations and provide a detailed overview of the currently used lipid nanodisc systems as well as their applications in solution-state NMR. Despite the increasing use of other structural methods for the structure determination of MPs in lipid nanodiscs, solution NMR turns out to be a versatile tool to probe a wide range of MP features, ranging from the structure determination of small to medium-sized MPs to probing ligand and partner protein binding as well as functionally relevant dynamical signatures in a lipid nanodisc setting. We will expand on these topics by discussing recent NMR studies with lipid nanodiscs and work out a key workflow for optimizing the nanodisc incorporation of an MP for subsequent NMR investigations. With this, we hope to provide a comprehensive background to enable an informed assessment of the applicability of lipid nanodiscs for NMR studies of a particular MP of interest.
Collapse
Affiliation(s)
- Umut Günsel
- Bavarian NMR Center (BNMRZ) at the Department of Chemistry, Technical University of Munich, Ernst-Otto-Fischer-Strasse 2, 85748 Garching, Germany
| | - Franz Hagn
- Bavarian NMR Center (BNMRZ) at the Department of Chemistry, Technical University of Munich, Ernst-Otto-Fischer-Strasse 2, 85748 Garching, Germany.,Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| |
Collapse
|
19
|
Swanson NA, Lokareddy RK, Li F, Hou CFD, Leptihn S, Pavlenok M, Niederweis M, Pumroy RA, Moiseenkova-Bell VY, Cingolani G. Cryo-EM structure of the periplasmic tunnel of T7 DNA-ejectosome at 2.7 Å resolution. Mol Cell 2021; 81:3145-3159.e7. [PMID: 34214465 DOI: 10.1016/j.molcel.2021.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 03/27/2021] [Accepted: 06/01/2021] [Indexed: 11/15/2022]
Abstract
Hershey and Chase used bacteriophage T2 genome delivery inside Escherichia coli to demonstrate that DNA, not protein, is the genetic material. Seventy years later, our understanding of viral genome delivery in prokaryotes remains limited, especially for short-tailed phages of the Podoviridae family. These viruses expel mysterious ejection proteins found inside the capsid to form a DNA-ejectosome for genome delivery into bacteria. Here, we reconstitute the phage T7 DNA-ejectosome components gp14, gp15, and gp16 and solve the periplasmic tunnel structure at 2.7 Å resolution. We find that gp14 forms an outer membrane pore, gp15 assembles into a 210 Å hexameric DNA tube spanning the host periplasm, and gp16 extends into the host cytoplasm forming a ∼4,200 residue hub. Gp16 promotes gp15 oligomerization, coordinating peptidoglycan hydrolysis, DNA binding, and lipid insertion. The reconstituted gp15:gp16 complex lacks channel-forming activity, suggesting that the pore for DNA passage forms only transiently during genome ejection.
Collapse
Affiliation(s)
- Nicholas A Swanson
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Ravi K Lokareddy
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Fenglin Li
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Chun-Feng David Hou
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Sebastian Leptihn
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Hangzhou, China
| | - Mikhail Pavlenok
- Department of Microbiology, University of Alabama at Birmingham, 845 19th Street South, Birmingham, AL 35294, USA
| | - Michael Niederweis
- Department of Microbiology, University of Alabama at Birmingham, 845 19th Street South, Birmingham, AL 35294, USA
| | - Ruth A Pumroy
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Vera Y Moiseenkova-Bell
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gino Cingolani
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA.
| |
Collapse
|
20
|
Bendre AD, Peters PJ, Kumar J. Recent Insights into the Structure and Function of Mycobacterial Membrane Proteins Facilitated by Cryo-EM. J Membr Biol 2021; 254:321-341. [PMID: 33954837 PMCID: PMC8099146 DOI: 10.1007/s00232-021-00179-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 03/23/2021] [Indexed: 12/26/2022]
Abstract
Mycobacterium tuberculosis (Mtb) is one of the deadliest pathogens encountered by humanity. Over the decades, its characteristic membrane organization and composition have been understood. However, there is still limited structural information and mechanistic understanding of the constituent membrane proteins critical for drug discovery pipelines. Recent advances in single-particle cryo-electron microscopy and cryo-electron tomography have provided the much-needed impetus towards structure determination of several vital Mtb membrane proteins whose structures were inaccessible via X-ray crystallography and NMR. Important insights into membrane composition and organization have been gained via a combination of electron tomography and biochemical and biophysical assays. In addition, till the time of writing this review, 75 new structures of various Mtb proteins have been reported via single-particle cryo-EM. The information obtained from these structures has improved our understanding of the mechanisms of action of these proteins and the physiological pathways they are associated with. These structures have opened avenues for structure-based drug design and vaccine discovery programs that might help achieve global-TB control. This review describes the structural features of selected membrane proteins (type VII secretion systems, Rv1819c, Arabinosyltransferase, Fatty Acid Synthase, F-type ATP synthase, respiratory supercomplex, ClpP1P2 protease, ClpB disaggregase and SAM riboswitch), their involvement in physiological pathways, and possible use as a drug target. Tuberculosis is a deadly disease caused by Mycobacterium tuberculosis. The Cryo-EM and tomography have simplified the understanding of the mycobacterial membrane organization. Some proteins are located in the plasma membrane; some span the entire envelope, while some, like MspA, are located in the mycomembrane. Cryo-EM has made the study of such membrane proteins feasible.
Collapse
Affiliation(s)
- Ameya D Bendre
- Laboratory of Membrane Protein Biology, National Centre for Cell Science, NCCS Complex, S. P. Pune University Campus, Ganeshkhind, Pune, Maharashtra, 411007, India
| | - Peter J Peters
- The Maastricht Multimodal Molecular Imaging Institute (M4I), Division of Nanoscopy, Maastricht University, Maastricht, The Netherlands
| | - Janesh Kumar
- Laboratory of Membrane Protein Biology, National Centre for Cell Science, NCCS Complex, S. P. Pune University Campus, Ganeshkhind, Pune, Maharashtra, 411007, India.
| |
Collapse
|
21
|
Bai L, Li H. Protein N-glycosylation and O-mannosylation are catalyzed by two evolutionarily related GT-C glycosyltransferases. Curr Opin Struct Biol 2021; 68:66-73. [PMID: 33445129 PMCID: PMC8222153 DOI: 10.1016/j.sbi.2020.12.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/14/2020] [Accepted: 12/23/2020] [Indexed: 11/30/2022]
Abstract
The structural folds of glycosyltransferases are categorized into three superfamilies: GT-A, GT-B, and GT-C. Few structures of GT-C fold existed in the Protein Data Bank prior to the recent advent of high-resolution cryo-EM, because the glycosyltransferases are large membrane proteins that are difficult to crystallize. The use of cryo-EM has resulted in the structures of several key GT-C glycosyltransferases. Here we summarize the latest structural features of and mechanistic insights into these membrane enzyme complexes.
Collapse
Affiliation(s)
- Lin Bai
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University, Beijing 100083, PR China.
| | - Huilin Li
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI 49503, United States.
| |
Collapse
|
22
|
Flores J, Cancino JC, Chavez-Galan L. Lipoarabinomannan as a Point-of-Care Assay for Diagnosis of Tuberculosis: How Far Are We to Use It? Front Microbiol 2021; 12:638047. [PMID: 33935997 PMCID: PMC8081860 DOI: 10.3389/fmicb.2021.638047] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/22/2021] [Indexed: 12/13/2022] Open
Abstract
Tuberculosis (TB) is still a severe public health problem; the current diagnostic tests have limitations that delay treatment onset. Lipoarabinomannan (LAM) is a glycolipid that is a component of the cell wall of the bacillus Mycobacterium tuberculosis, the etiologic agent of TB. This glycolipid is excreted as a soluble form in urine. The World Health Organization has established that the design of new TB diagnostic methods is one of the priorities within the EndTB Strategy. LAM has been suggested as a biomarker to develop diagnostic tests based on its identification in urine, and it is one of the most prominent candidates to develop point-of-care diagnostic test because urine samples can be easily collected. Moreover, LAM can regulate the immune response in the host and can be found in the serum of TB patients, where it probably affects a wide variety of host cell populations, consequently influencing the quality of both innate and adaptive immune responses during TB infection. Here, we revised the evidence that supports that LAM could be used as a tool for the development of new point-of-care tests for TB diagnosis, and we discussed the mechanisms that could contribute to the low sensitivity of diagnostic testing.
Collapse
Affiliation(s)
- Julio Flores
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico.,Laboratory of Immunomicrobiology, Department of Microbiology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Juan Carlos Cancino
- Laboratory of Immunomicrobiology, Department of Microbiology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Leslie Chavez-Galan
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico
| |
Collapse
|
23
|
High Throughput Expression Screening of Arabinofuranosyltransferases from Mycobacteria. Processes (Basel) 2021. [DOI: 10.3390/pr9040629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Studies on membrane proteins can help to develop new drug targets and treatments for a variety of diseases. However, membrane proteins continue to be among the most challenging targets in structural biology. This uphill endeavor can be even harder for membrane proteins from Mycobacterium species, which are notoriously difficult to express in heterologous systems. Arabinofuranosyltransferases are involved in mycobacterial cell wall synthesis and thus potential targets for antituberculosis drugs. A set of 96 mycobacterial genes coding for Arabinofuranosyltransferases was selected, of which 17 were successfully expressed in E. coli and purified by metal-affinity chromatography. We herein present an efficient high-throughput strategy to screen in microplates a large number of targets from Mycobacteria and select the best conditions for large-scale protein production to pursue functional and structural studies. This methodology can be applied to other targets, is cost and time effective and can be implemented in common laboratories.
Collapse
|
24
|
Modifications of cell wall polymers in Gram-positive bacteria by multi-component transmembrane glycosylation systems. Curr Opin Microbiol 2021; 60:24-33. [PMID: 33578058 PMCID: PMC8035078 DOI: 10.1016/j.mib.2021.01.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/12/2021] [Accepted: 01/22/2021] [Indexed: 11/22/2022]
Abstract
Secondary cell wall polymers fulfil diverse and important functions within the cell wall of Gram-positive bacteria. Here, we will provide a brief overview of the principles of teichoic acid and complex secondary cell wall polysaccharide biosynthesis pathways in Firmicutes and summarize the recently revised mechanism for the decoration of teichoic acids with d-alanines. Many cell wall polymers are decorated with glycosyl groups, either intracellularly or extracellularly. The main focus of this review will be on the extracellular glycosylation mechanism and recent advances that have been made in the identification of enzymes involved in this process. Based on the proteins involved, we propose to rename the system to multi-component transmembrane glycosylation system in place of three-component glycosylation system.
Collapse
|
25
|
Tan YZ, Rodrigues J, Keener JE, Zheng RB, Brunton R, Kloss B, Giacometti SI, Rosário AL, Zhang L, Niederweis M, Clarke OB, Lowary TL, Marty MT, Archer M, Potter CS, Carragher B, Mancia F. Cryo-EM structure of arabinosyltransferase EmbB from Mycobacterium smegmatis. Nat Commun 2020; 11:3396. [PMID: 32636380 PMCID: PMC7341804 DOI: 10.1038/s41467-020-17202-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/18/2020] [Indexed: 01/21/2023] Open
Abstract
Arabinosyltransferase B (EmbB) belongs to a family of membrane-bound glycosyltransferases that build the lipidated polysaccharides of the mycobacterial cell envelope, and are targets of anti-tuberculosis drug ethambutol. We present the 3.3 Å resolution single-particle cryo-electron microscopy structure of Mycobacterium smegmatis EmbB, providing insights on substrate binding and reaction mechanism. Mutations that confer ethambutol resistance map mostly around the putative active site, suggesting this to be the location of drug binding.
Collapse
Affiliation(s)
- Yong Zi Tan
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, 10032, USA
- National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, 10027, USA
| | - José Rodrigues
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), 2780-157, Oeiras, Portugal
| | - James E Keener
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85721, USA
| | - Ruixiang Blake Zheng
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| | - Richard Brunton
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| | - Brian Kloss
- Center on Membrane Protein Production and Analysis, New York Structural Biology Center, New York, NY, 10027, USA
| | - Sabrina I Giacometti
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, 10032, USA
| | - Ana L Rosário
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), 2780-157, Oeiras, Portugal
| | - Lei Zhang
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Michael Niederweis
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Oliver B Clarke
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, 10032, USA
- Department of Anesthesiology, Columbia University, New York, NY, 10032, USA
| | - Todd L Lowary
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
- Institute of Biological Chemistry, Academia Sinica, Academia Road, Section 2, #128, Nangang, Taipei, 11529, Taiwan
| | - Michael T Marty
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85721, USA
- Bio5 Institute, University of Arizona, Tucson, AZ, 85721, USA
| | - Margarida Archer
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), 2780-157, Oeiras, Portugal
| | - Clinton S Potter
- National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, 10027, USA
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, 10027, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, 10032, USA
| | - Bridget Carragher
- National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, 10027, USA.
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, 10027, USA.
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, 10032, USA.
| | - Filippo Mancia
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, 10032, USA.
| |
Collapse
|