1
|
Yuan X, Su Y, Johnson B, Kirchner M, Zhang X, Xu S, Jiang S, Wu J, Shi S, Russo JJ, Chen Q, Zhang S. Mass Spectrometry-Based Direct Sequencing of tRNAs De Novo and Quantitative Mapping of Multiple RNA Modifications. J Am Chem Soc 2024; 146:25600-25613. [PMID: 39231532 PMCID: PMC11421004 DOI: 10.1021/jacs.4c07280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Despite the extensive use of next-generation sequencing (NGS) of RNA, simultaneous direct sequencing and quantitative mapping of multiple RNA nucleotide modifications remains challenging. Mass spectrometry (MS)-based sequencing can directly sequence all RNA modifications without being limited to specific ones, but it requires a perfect MS ladder that few tRNAs can provide. Here, we describe an MS ladder complementation sequencing approach (MLC-Seq) that circumvents the perfect ladder requirement, allowing de novo MS sequencing of full-length heterogeneous cellular tRNAs with multiple nucleotide modifications at single-nucleotide precision. Unlike NGS-based methods, which lose RNA modification information, MLC-Seq preserves RNA sequence diversity and modification information, revealing new detailed stoichiometric tRNA modification profiles and their changes upon treatment with the dealkylating enzyme AlkB. It can also be combined with reference sequences to provide quantitative analysis of diverse tRNAs and modifications in total tRNA samples. MLC-Seq enables systematic, quantitative, and site-specific mapping of RNA modifications, revealing the truly complete informational content of tRNA.
Collapse
Affiliation(s)
- Xiaohong Yuan
- Department of Biological and Chemical Sciences, New York Institute of Technology, New York, New York 10023, United States
| | - Yue Su
- Department of Biological and Chemical Sciences, New York Institute of Technology, New York, New York 10023, United States
| | - Benjamin Johnson
- Department of Biological and Chemical Sciences, New York Institute of Technology, New York, New York 10023, United States
| | - Michele Kirchner
- Department of Biological and Chemical Sciences, New York Institute of Technology, New York, New York 10023, United States
| | - Xudong Zhang
- Molecular Medicine Program, Department of Human Genetics, and Division of Urology, Department of Surgery, University of Utah School of Medicine, Salt Lake City, Utah 84132, United States
| | - Sihang Xu
- Department of Biological and Chemical Sciences, New York Institute of Technology, New York, New York 10023, United States
| | - Sophia Jiang
- Department of Biological and Chemical Sciences, New York Institute of Technology, New York, New York 10023, United States
| | - Jing Wu
- Department of Biological and Chemical Sciences, New York Institute of Technology, New York, New York 10023, United States
| | - Shundi Shi
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - James J Russo
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Qi Chen
- Molecular Medicine Program, Department of Human Genetics, and Division of Urology, Department of Surgery, University of Utah School of Medicine, Salt Lake City, Utah 84132, United States
| | - Shenglong Zhang
- Department of Biological and Chemical Sciences, New York Institute of Technology, New York, New York 10023, United States
- Department of Chemistry and The RNA Institute, University at Albany, State University of New York, Albany, New York 12222, United States
| |
Collapse
|
2
|
Butterfield SP, Sizer RE, Rand E, White RJ. Selection of tRNA Genes in Human Breast Tumours Varies Substantially between Individuals. Cancers (Basel) 2023; 15:3576. [PMID: 37509247 PMCID: PMC10377016 DOI: 10.3390/cancers15143576] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/07/2023] [Accepted: 07/09/2023] [Indexed: 07/30/2023] Open
Abstract
Abnormally elevated expression of tRNA is a common feature of breast tumours. Rather than a uniform increase in all tRNAs, some are deregulated more strongly than others. Elevation of particular tRNAs has been associated with poor prognosis for patients, and experimental models have demonstrated the ability of some tRNAs to promote proliferation or metastasis. Each tRNA isoacceptor is encoded redundantly by multiple genes, which are commonly dispersed across several chromosomes. An unanswered question is whether the consistently high expression of a tRNA in a cancer type reflects the consistent activation of the same members of a gene family, or whether different family members are activated from one patient to the next. To address this question, we interrogated ChIP-seq data to determine which tRNA genes were active in individual breast tumours. This revealed that distinct sets of tRNA genes become activated in individual cancers, whereas there is much less variation in the expression patterns of families. Several pathways have been described that are likely to contribute to increases in tRNA gene transcription in breast tumours, but none of these can adequately explain the observed variation in the choice of genes between tumours. Current models may therefore lack at least one level of regulation.
Collapse
Affiliation(s)
| | - Rebecca E Sizer
- Department of Biology, University of York, York YO10 5DD, UK
| | - Emma Rand
- Department of Biology, University of York, York YO10 5DD, UK
| | - Robert J White
- Department of Biology, University of York, York YO10 5DD, UK
| |
Collapse
|
3
|
Epigenetic regulation of human non-coding RNA gene transcription. Biochem Soc Trans 2022; 50:723-736. [PMID: 35285478 DOI: 10.1042/bst20210860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 12/12/2022]
Abstract
Recent investigations on the non-protein-coding transcriptome of human cells have revealed previously hidden layers of gene regulation relying on regulatory non-protein-coding (nc) RNAs, including the widespread ncRNA-dependent regulation of epigenetic chromatin states and of mRNA translation and stability. However, despite its centrality, the epigenetic regulation of ncRNA genes has received relatively little attention. In this mini-review, we attempt to provide a synthetic account of recent literature suggesting an unexpected complexity in chromatin-dependent regulation of ncRNA gene transcription by the three human nuclear RNA polymerases. Emerging common features, like the heterogeneity of chromatin states within ncRNA multigene families and their influence on 3D genome organization, point to unexplored issues whose investigation could lead to a better understanding of the whole human epigenomic network.
Collapse
|