1
|
Johnson JL. FKBP51 functions in the regulation of circadian rhythm and Alzheimer's disease. Cell Stress Chaperones 2025; 30:81-83. [PMID: 39933601 DOI: 10.1016/j.cstres.2025.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 01/27/2025] [Accepted: 02/04/2025] [Indexed: 02/13/2025] Open
Abstract
The FK506-binding protein 51 (FKBP51) is an important regulator of glucocorticoid receptor activity and an Hsp90 cochaperone. FKBP51 has previously been identified as a drug target due to its roles in stress-related disorders and pain tolerance. Two recent publications in Cell Stress and Chaperones further explore FKBP51 functions. To understand whether FKBP51 plays a role in sleep disturbances linked to stress disorders, one study examined the role of FKBP51 in regulating the circadian rhythm. Broadening the range of Hsp90 cochaperone function, the other article summarized the role of multiple cochaperones in Alzheimer's disease, discussing how cochaperones affect both Aβ and tau. They emphasize the role of FKBP51 in promoting tau pathogenesis and discuss the small molecule LA1011, which binds Hsp90 and competes with Hsp90-FKBP51 interaction. Further studies with LA1011 may lead to new treatments for Alzheimer's disease and will help clarify the contributions of FKBP51 to human disorders.
Collapse
Affiliation(s)
- Jill L Johnson
- Department of Biological Sciences and the Center for Reproductive Biology, University of Idaho, Moscow, ID 83844, USA.
| |
Collapse
|
2
|
Fendler NL, Ly J, Welp L, Lu D, Schulte F, Urlaub H, Vos SM. Identification and characterization of a human MORC2 DNA binding region that is required for gene silencing. Nucleic Acids Res 2025; 53:gkae1273. [PMID: 39739841 DOI: 10.1093/nar/gkae1273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 11/06/2024] [Accepted: 12/12/2024] [Indexed: 01/02/2025] Open
Abstract
The eukaryotic microrchidia (MORC) protein family are DNA gyrase, Hsp90, histidine kinase, MutL (GHKL)-type ATPases involved in gene expression regulation and chromatin compaction. The molecular mechanisms underlying these activities are incompletely understood. Here, we studied the full-length human MORC2 protein biochemically. We identified a DNA binding site in the C-terminus of the protein, and we observe that this region can be phosphorylated in cells. DNA binding by MORC2 reduces its ATPase activity and MORC2 can entrap multiple DNA substrates between its N-terminal GHKL and C-terminal coiled coil 3 dimerization domains. Finally, we observe that the MORC2 C-terminal DNA binding region is required for gene silencing in cells. Together, our data provide a model to understand how MORC2 engages with DNA substrates to mediate gene silencing.
Collapse
Affiliation(s)
- Nikole L Fendler
- Department of Biology, Massachusetts Institute of Technology, Building 68, 31 Ames St., Cambridge, MA 02139, USA
| | - Jimmy Ly
- Department of Biology, Massachusetts Institute of Technology, Building 68, 31 Ames St., Cambridge, MA 02139, USA
- Whitehead Institute for Biomedical Research, 455 Main St, Cambridge, MA 02139, USA
| | - Luisa Welp
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
- Department of Clinical Chemistry, Bioanalytics Group, University Medical Center Göttingen, Robert-Koch-Straße 40 37075 Göttingen, Germany
| | - Dan Lu
- Department of Systems Biology, Harvard Medical School, 210 Longwood Avenue, Boston, MA 02115, USA
| | - Fabian Schulte
- Whitehead Institute for Biomedical Research, Quantitative Proteomics Core, 455 Main St, Cambridge, MA 02139, USA
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
- Department of Clinical Chemistry, Bioanalytics Group, University Medical Center Göttingen, Robert-Koch-Straße 40 37075 Göttingen, Germany
| | - Seychelle M Vos
- Department of Biology, Massachusetts Institute of Technology, Building 68, 31 Ames St., Cambridge, MA 02139, USA
- Howard Hughes Medical Institute, 4000 Jones Bridge Rd, Chevy Chase, MD 20815, USA
| |
Collapse
|
3
|
Pokhrel S, Devi S, Gestwicki JE. Chaperone-dependent and chaperone-independent functions of carboxylate clamp tetratricopeptide repeat (CC-TPR) proteins. Trends Biochem Sci 2025; 50:121-133. [PMID: 39706778 DOI: 10.1016/j.tibs.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/06/2024] [Accepted: 11/15/2024] [Indexed: 12/23/2024]
Abstract
The molecular chaperones HSP70 and HSP90 play key roles in proteostasis by acting as adapters; they bind to a 'client' protein, often with the assistance of cochaperones, and then recruit additional cochaperones that promote specific fates (e.g., folding or degradation). One family of cochaperones contains a region termed the tetratricopeptide repeat with carboxylate clamps (CC-TPRs) domain. These domains bind to an EEVD motif at the C-termini of cytoplasmic HSP70 and HSP90 proteins, bringing them into proximity to chaperone-bound clients. It has recently become clear that CC-TPR proteins also bind to 'EEVD-like' motifs in non-chaperone proteins, circumventing the need for HSP70s or HSP90s. We provide an overview of the chaperone-dependent and -independent roles of CC-TPR proteins and discuss how, together, they shape proteostasis.
Collapse
Affiliation(s)
- Saugat Pokhrel
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Diseases, University of California San Francisco (UCSF), San Francisco, CA 94158, USA
| | - Shweta Devi
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Diseases, University of California San Francisco (UCSF), San Francisco, CA 94158, USA
| | - Jason E Gestwicki
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Diseases, University of California San Francisco (UCSF), San Francisco, CA 94158, USA.
| |
Collapse
|
4
|
Chakraborty P, Zweckstetter M. Interplay of p23 with FKBP51 and their chaperone complex in regulating tau aggregation. Nat Commun 2025; 16:669. [PMID: 39809798 PMCID: PMC11733250 DOI: 10.1038/s41467-025-56028-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 01/06/2025] [Indexed: 01/30/2025] Open
Abstract
The pathological deposition of tau and amyloid-beta into insoluble amyloid fibrils are pathological hallmarks of Alzheimer's disease. Molecular chaperones are important cellular factors contributing to the regulation of tau misfolding and aggregation. Here we reveal an Hsp90-independent mechanism by which the co-chaperone p23 as well as a molecular complex formed by two co-chaperones, p23 and FKBP51, modulates tau aggregation. Integrating NMR spectroscopy, SAXS, molecular docking, and site-directed mutagenesis we reveal the structural basis of the p23-FKBP51 complex. We show that p23 specifically recognizes the TPR domain of FKBP51 and interacts with tau through its C-terminal disordered tail. We further show that the p23-FKBP51 complex binds tau to form a dynamic p23-FKBP51-tau trimeric complex that delays tau aggregation and thus may counteract Hsp90-FKBP51 mediated toxicity. Taken together, our findings reveal a co-chaperone mediated Hsp90-independent chaperoning of tau protein.
Collapse
Affiliation(s)
- Pijush Chakraborty
- Department for NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Markus Zweckstetter
- Department for NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany.
| |
Collapse
|
5
|
Singh S, Srivastava D, Boyd K, Artemyev NO. Structural and functional dynamics of human cone cGMP-phosphodiesterase important for photopic vision. Proc Natl Acad Sci U S A 2025; 122:e2419732121. [PMID: 39739818 PMCID: PMC11725853 DOI: 10.1073/pnas.2419732121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/20/2024] [Indexed: 01/02/2025] Open
Abstract
Cone cGMP-phosphodiesterase (PDE6) is the key effector enzyme for daylight vision, and its properties are critical for shaping distinct physiology of cone photoreceptors. We determined the structures of human cone PDE6C in various liganded states by single-particle cryo-EM that reveal essential functional dynamics and adaptations of the enzyme. Our analysis exposed the dynamic nature of PDE6C association with its regulatory γ-subunit (Pγ) which allows openings of the catalytic pocket in the absence of phototransduction signaling, thereby controlling photoreceptor noise and sensitivity. We demonstrate evolutionarily recent adaptations of PDE6C stemming from residue substitutions in the Pγ subunit and the noncatalytic cGMP binding site and influencing the Pγ dynamics in holoPDE6C. Thus, our structural analysis sheds light on the previously unrecognized molecular evolution of the effector enzyme in cones that advances adaptation for photopic vision.
Collapse
Affiliation(s)
- Sneha Singh
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA52242
| | - Dhiraj Srivastava
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA52242
| | - Kimberly Boyd
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA52242
| | - Nikolai O. Artemyev
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA52242
- Department of Ophthalmology and Visual Sciences, University of Iowa Carver College of Medicine, Iowa City, IA52242
| |
Collapse
|
6
|
Fan X, Sun L, Qin Y, Liu Y, Wu S, Du L. The Role of HSP90 Molecular Chaperones in Depression: Potential Mechanisms. Mol Neurobiol 2025; 62:708-717. [PMID: 38896156 DOI: 10.1007/s12035-024-04284-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 06/05/2024] [Indexed: 06/21/2024]
Abstract
Major depressive disorder (MDD) is characterized by high rates of disability and death and has become a public health problem that threatens human life and health worldwide. HPA axis disorder and neuroinflammation are two common biological abnormalities in MDD patients. Hsp90 is an important molecular chaperone that is widely distributed in the organism. Hsp90 binds to the co-chaperone and goes through a molecular chaperone cycle to complete its regulation of the client protein. Numerous studies have demonstrated that Hsp90 regulates how the HPA axis reacts to stress and how GR, the HPA axis' responsive substrate, matures. In addition, Hsp90 exhibits pro-inflammatory effects that are closely related to neuroinflammation in MDD. Currently, Hsp90 inhibitors have made some progress in the treatment of a variety of human diseases, but they still need to be improved. Further insight into the role of Hsp90 in MDD provides new ideas for the development of new antidepressant drugs targeting Hsp90.
Collapse
Affiliation(s)
- Xuyuan Fan
- Department of Medicine, Yangzhou University, Yangzhou, 225012, Jiangsu, China
| | - Lei Sun
- Department of Medicine, Yangzhou University, Yangzhou, 225012, Jiangsu, China
| | - Ye Qin
- Department of Laboratory Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225012, Jiangsu, China
| | - Yuan Liu
- Department of Laboratory Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225012, Jiangsu, China
| | - Shusheng Wu
- Department of the Central Laboratory, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225012, Jiangsu, China.
| | - Longfei Du
- Department of Laboratory Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225012, Jiangsu, China.
| |
Collapse
|
7
|
Silbermann LM, Vermeer B, Schmid S, Tych K. The known unknowns of the Hsp90 chaperone. eLife 2024; 13:e102666. [PMID: 39737863 PMCID: PMC11687934 DOI: 10.7554/elife.102666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/17/2024] [Indexed: 01/01/2025] Open
Abstract
Molecular chaperones are vital proteins that maintain protein homeostasis by assisting in protein folding, activation, degradation, and stress protection. Among them, heat-shock protein 90 (Hsp90) stands out as an essential proteostasis hub in eukaryotes, chaperoning hundreds of 'clients' (substrates). After decades of research, several 'known unknowns' about the molecular function of Hsp90 remain unanswered, hampering rational drug design for the treatment of cancers, neurodegenerative, and other diseases. We highlight three fundamental open questions, reviewing the current state of the field for each, and discuss new opportunities, including single-molecule technologies, to answer the known unknowns of the Hsp90 chaperone.
Collapse
Affiliation(s)
- Laura-Marie Silbermann
- Groningen Biomolecular Sciences and Biotechnology Institute, University of GroningenGroningenNetherlands
| | - Benjamin Vermeer
- Laboratory of Biophysics, Wageningen University & ResearchWageningenNetherlands
| | - Sonja Schmid
- Laboratory of Biophysics, Wageningen University & ResearchWageningenNetherlands
| | - Katarzyna Tych
- Groningen Biomolecular Sciences and Biotechnology Institute, University of GroningenGroningenNetherlands
| |
Collapse
|
8
|
Goričan T, Golič Grdadolnik S. Insights into the Allosteric Regulation of Human Hsp90 Revealed by NMR Spectroscopy. Biomolecules 2024; 15:37. [PMID: 39858432 PMCID: PMC11761240 DOI: 10.3390/biom15010037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/09/2024] [Accepted: 12/22/2024] [Indexed: 01/27/2025] Open
Abstract
Human heat shock protein 90 (Hsp90) is one of the most important chaperones that play a role in the late stages of protein folding. Errors in the process of the chaperone cycle can lead to diseases such as cancer and neurodegenerative diseases. Therefore, the activity of Hsp90 must be carefully regulated. One of the possibilities is allosteric regulation by its natural allosteric modulators-nucleotides, co-chaperones and client proteins-and synthetic small-molecule allosteric modulators, such as those targeting the middle domain or the C-terminal domain (CTD) of Hsp90. Since no experimentally determined structure of a small-molecule allosteric modulator bound to the CTD of human Hsp90 has yet been obtained, the challenge for a structure-based design of allosteric modulators remains. Solution nuclear magnetic resonance (NMR) spectroscopy could be utilized to overcome these problems. The main aim of this review article is to discuss how solution NMR techniques, especially protein-based, and the advanced isotope labeling of proteins have been used to investigate the allosteric regulation of the cytosolic isoforms of human Hsp90 with allosteric modulators. This article provides the basis for planning future NMR experiments, with the aim of gaining insights into allosteric sites and the mechanisms of allosteric regulation.
Collapse
Affiliation(s)
| | - Simona Golič Grdadolnik
- Laboratory for Molecular Structural Dynamics, Theory Department, National Institute of Chemistry, Hajdrihova 19, p.p. 660, SI-1001 Ljubljana, Slovenia;
| |
Collapse
|
9
|
Baischew A, Engel S, Geiger TM, Taubert MC, Hausch F. Structural and biochemical insights into FKBP51 as a Hsp90 co-chaperone. J Cell Biochem 2024; 125:e30384. [PMID: 36791213 PMCID: PMC11649850 DOI: 10.1002/jcb.30384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/16/2023] [Accepted: 01/30/2023] [Indexed: 02/17/2023]
Abstract
The FK506-binding protein 51 (FKBP51) is a high-molecular-weight immunophilin that emerged as an important drug target for stress-related disorders, chronic pain, and obesity. It has been implicated in a plethora of molecular pathways but remains best characterized as a co-chaperone of Hsp90 in the steroid hormone receptor (SHR) maturation cycle. However, the mechanistic and structural basis for the regulation of SHRs by FKBP51 and the usually antagonistic function compared with its closest homolog FKBP52 remains enigmatic. Here we review recent structural and biochemical studies of FKBPs as regulators in the Hsp90 machinery. These advances provide important insights into the roles of FKBP51 and FKBP52 in SHR regulation.
Collapse
Affiliation(s)
- Asat Baischew
- Department of Chemistry, Institute for Organic Chemistry and BiochemistryTechnical University DarmstadtDarmstadtGermany
| | - Sarah Engel
- Department of Chemistry, Institute for Organic Chemistry and BiochemistryTechnical University DarmstadtDarmstadtGermany
| | - Thomas M. Geiger
- Department of Chemistry, Institute for Organic Chemistry and BiochemistryTechnical University DarmstadtDarmstadtGermany
| | - Martha C. Taubert
- Department of Chemistry, Institute for Organic Chemistry and BiochemistryTechnical University DarmstadtDarmstadtGermany
| | - Felix Hausch
- Department of Chemistry, Institute for Organic Chemistry and BiochemistryTechnical University DarmstadtDarmstadtGermany
| |
Collapse
|
10
|
Jeanne X, Török Z, Vigh L, Prodromou C. The role of the FKBP51-Hsp90 complex in Alzheimer's disease: An emerging new drug target. Cell Stress Chaperones 2024; 29:792-804. [PMID: 39615785 DOI: 10.1016/j.cstres.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024] Open
Abstract
With increasing age comes the inevitable decline in proteostasis, where chaperone and co-chaperone activity becomes imbalanced. These changes lead to global disturbances and pathogenic rewiring of the chaperone system into epichaperones consisting of protein networks that are ultimately dysfunctional. Such imbalances in proteostasis may favor mechanisms that can lead to neurological diseases, such as Alzheimer's disease (AD). Consequently, there has been an increase in research activity toward finding small molecules that can re-balance the chaperone and co-chaperone machinery to counter the effects of disease resulting from old age. The Hsp90 co-chaperone FKBP51 has recently been identified as a protein whose induction not only increases with age but is elevated further in AD cells. Significantly, FKBP51 plays a role in the Hsp90-dependent isomerization of tau, which in turn influences its phosphorylation and susceptibility to aggregation. We hypothesize that FKBP51 is a major player that is able to elicit tauopathy in response to amyloid-beta senile plaques that damage the brain. We propose that elevated FKBP51 levels result in an abnormal FKBP51-Hsp90 activity that alters the normal processing of tau, which manifests as hyperphosphorylation and oligomerization of tau. Thus, the Hsp90-FKBP51 complex is emerging as a drug target against AD. In support of this idea, the structure of the FKBP51-Hsp90 complex was recently described, and significantly, the small-molecule dihydropyridine LA1011 was shown to be able to disrupt the Hsp90-FKBP51 complex. LA1011 was previously shown to effectively prevent neurodegeneration in the APPxPS1 AD transgenic mouse model. This review looks at the role of Hsp90 and its co-chaperones in AD with a focus on FKBP51.
Collapse
Affiliation(s)
- Xavier Jeanne
- Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, Falmer BN1 9QG, UK
| | - Zsolt Török
- LipidArt Research and Development Ltd, Szeged, Temesvári Street 62, H-6726, Hungary
| | - László Vigh
- LipidArt Research and Development Ltd, Szeged, Temesvári Street 62, H-6726, Hungary
| | - Chrisostomos Prodromou
- Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, Falmer BN1 9QG, UK.
| |
Collapse
|
11
|
Riedl S, Bilgen E, Agam G, Hirvonen V, Jussupow A, Tippl F, Riedl M, Maier A, Becker CFW, Kaila VRI, Lamb DC, Buchner J. Evolution of the conformational dynamics of the molecular chaperone Hsp90. Nat Commun 2024; 15:8627. [PMID: 39366960 PMCID: PMC11452706 DOI: 10.1038/s41467-024-52995-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 09/25/2024] [Indexed: 10/06/2024] Open
Abstract
Hsp90 is a molecular chaperone of central importance for protein homeostasis in the cytosol of eukaryotic cells, with key functional and structural traits conserved from yeast to man. During evolution, Hsp90 has gained additional functional importance, leading to an increased number of interacting co-chaperones and client proteins. Here, we show that the overall conformational transitions coupled to the ATPase cycle of Hsp90 are conserved from yeast to humans, but cycle timing as well as the dynamics are significantly altered. In contrast to yeast Hsp90, the human Hsp90 is characterized by broad ensembles of conformational states, irrespective of the absence or presence of ATP. The differences in the ATPase rate and conformational transitions between yeast and human Hsp90 are based on two residues in otherwise conserved structural elements that are involved in triggering structural changes in response to ATP binding. The exchange of these two mutations allows swapping of the ATPase rate and of the conformational transitions between human and yeast Hsp90. Our combined results show that Hsp90 evolved to a protein with increased conformational dynamics that populates ensembles of different states with strong preferences for the N-terminally open, client-accepting states.
Collapse
Affiliation(s)
- Stefan Riedl
- Center for Protein Assemblies, Department Bioscience, School of Natural Sciences, Technical University Munich, Garching, Germany
| | - Ecenaz Bilgen
- Department of Chemistry and Center for Nanoscience, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Ganesh Agam
- Department of Chemistry and Center for Nanoscience, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Viivi Hirvonen
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, Stockholm, Sweden
| | - Alexander Jussupow
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, Stockholm, Sweden
| | - Franziska Tippl
- Center for Protein Assemblies, Department Bioscience, School of Natural Sciences, Technical University Munich, Garching, Germany
| | - Maximilian Riedl
- Center for Protein Assemblies, Department Bioscience, School of Natural Sciences, Technical University Munich, Garching, Germany
| | - Andreas Maier
- Center for Protein Assemblies, Department Bioscience, School of Natural Sciences, Technical University Munich, Garching, Germany
| | - Christian F W Becker
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Ville R I Kaila
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, Stockholm, Sweden
| | - Don C Lamb
- Department of Chemistry and Center for Nanoscience, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Johannes Buchner
- Center for Protein Assemblies, Department Bioscience, School of Natural Sciences, Technical University Munich, Garching, Germany.
| |
Collapse
|
12
|
Guarra F, Sciva C, Bonollo G, Pasala C, Chiosis G, Moroni E, Colombo G. Cracking the chaperone code through the computational microscope. Cell Stress Chaperones 2024; 29:626-640. [PMID: 39142378 PMCID: PMC11399801 DOI: 10.1016/j.cstres.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/09/2024] [Indexed: 08/16/2024] Open
Abstract
The heat shock protein 90 kDa (Hsp90) chaperone machinery plays a crucial role in maintaining cellular homeostasis. Beyond its traditional role in protein folding, Hsp90 is integral to key pathways influencing cellular function in health and disease. Hsp90 operates through the modular assembly of large multiprotein complexes, with their composition, stability, and localization adapting to the cell's needs. Its functional dynamics are finely tuned by ligand binding and post-translational modifications (PTMs). Here, we discuss how to disentangle the intricacies of the complex code that governs the crosstalk between dynamics, binding, PTMs, and the functions of the Hsp90 machinery using computer-based approaches. Specifically, we outline the contributions of computational and theoretical methods to the understanding of Hsp90 functions, ranging from providing atomic-level insights into its dynamics to clarifying the mechanisms of interactions with protein clients, cochaperones, and ligands. The knowledge generated in this framework can be actionable for the design and development of chemical tools and drugs targeting Hsp90 in specific disease-associated cellular contexts. Finally, we provide our perspective on how computation can be integrated into the study of the fine-tuning of functions in the highly complex Hsp90 landscape, complementing experimental methods for a comprehensive understanding of this important chaperone system.
Collapse
Affiliation(s)
| | | | | | - Chiranjeevi Pasala
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Gabriela Chiosis
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Elisabetta Moroni
- Institute of Chemical Sciences and Technologies (SCITEC) - Italian National Research Council (CNR), Milano, Italy.
| | | |
Collapse
|
13
|
Magnan B, Chen XH, Rashid S, Minard A, Chau W, Uyesugi T, Edwards RA, Panigrahi R, Glover JNM, LaPointe P, Spyracopoulos L. Asymmetric Dynamics Drive Catalytic Activation of the Hsp90 Chaperone. J Phys Chem B 2024; 128:8388-8399. [PMID: 39186634 DOI: 10.1021/acs.jpcb.4c03363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
The Hsp90 chaperone is an ATPase enzyme composed of two copies of a three-domain subunit. Hsp90 stabilizes and activates a diverse array of regulatory proteins. Substrates are bound and released by the middle domain through a clamping cycle involving conformational transitions between a dynamic open state and a compact conformationally restricted closed state. Intriguingly, the overall ATPase activity of dimeric Hsp90 can be asymmetrically enhanced through a single subunit when Hsp90 is bound to a cochaperone or when Hsp90 is composed of one active and one catalytically defunct subunit as a heterodimer. To explore the mechanism of asymmetric Hsp90 activation, we designed a subunit bearing N-terminal ATPase mutations that demonstrate increased intra- and interdomain dynamics. Using intact Hsp90 and various N-terminal and middle domain constructs, we blended 19F NMR spectroscopy, molecular dynamics (MD) simulations, and ATPase assays to show that within the context of heterodimeric Hsp90, the conformationally dynamic subunit stimulates the ATPase activity of the normal subunit. The contrasting dynamic properties of the subunits within heterodimeric Hsp90 provide a mechanistic framework to understand the molecular basis for asymmetric Hsp90 activation and its importance for the biological function of Hsp90.
Collapse
Affiliation(s)
- Breanna Magnan
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Xu Hong Chen
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Suad Rashid
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Alissa Minard
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - William Chau
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Toshi Uyesugi
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Ross A Edwards
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Rashmi Panigrahi
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - J N Mark Glover
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Paul LaPointe
- Department of Cell Biology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Leo Spyracopoulos
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| |
Collapse
|
14
|
Fendler NL, Ly J, Welp L, Urlaub H, Vos SM. Identification and characterization of a human MORC2 DNA binding region that is required for gene silencing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.05.597643. [PMID: 38895295 PMCID: PMC11185635 DOI: 10.1101/2024.06.05.597643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
The eukaryotic microrchidia (MORC) protein family are DNA gyrase, Hsp90, histidine kinase, MutL (GHKL)-type ATPases involved in gene expression regulation and chromatin compaction. The molecular mechanisms underlying these activities are incompletely understood. Here we studied the full-length human MORC2 protein biochemically. We identified a DNA binding site in the C-terminus of the protein, and we observe that this region is heavily phosphorylated in cells. Phosphorylation of MORC2 reduces its affinity for DNA and appears to exclude the protein from the nucleus. We observe that DNA binding by MORC2 reduces its ATPase activity and that MORC2 can topologically entrap multiple DNA substrates between its N-terminal GHKL and C-terminal coiled coil 3 dimerization domains. Finally, we observe that the MORC2 C-terminal DNA binding region is required for gene silencing in cells. Together, our data provide a model to understand how MORC2 engages with DNA substrates to mediate gene silencing.
Collapse
Affiliation(s)
- Nikole L. Fendler
- Department of Biology, Massachusetts Institute of Technology, Building 68, 31 Ames St., Cambridge, MA 02139
| | - Jimmy Ly
- Department of Biology, Massachusetts Institute of Technology, Building 68, 31 Ames St., Cambridge, MA 02139
- Whitehead Institute for Biomedical Research, Cambridge, MA 02139
| | - Luisa Welp
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Bioanalytics Group, University Medical Center Göttingen, Department of Clinical Chemistry, Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Bioanalytics Group, University Medical Center Göttingen, Department of Clinical Chemistry, Göttingen, Germany
| | - Seychelle M. Vos
- Department of Biology, Massachusetts Institute of Technology, Building 68, 31 Ames St., Cambridge, MA 02139
- Howard Hughes Medical Institute
| |
Collapse
|
15
|
Rios EI, Hunsberger IL, Johnson JL. Insights into Hsp90 mechanism and in vivo functions learned from studies in the yeast, Saccharomyces cerevisiae. Front Mol Biosci 2024; 11:1325590. [PMID: 38389899 PMCID: PMC10881880 DOI: 10.3389/fmolb.2024.1325590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/22/2024] [Indexed: 02/24/2024] Open
Abstract
The molecular chaperone Hsp90 (Heat shock protein, 90 kDa) is an abundant and essential cytosolic protein required for the stability and/or folding of hundreds of client proteins. Hsp90, along with helper cochaperone proteins, assists client protein folding in an ATP-dependent pathway. The laboratory of Susan Lindquist, in collaboration with other researchers, was the first to establish the yeast Saccharomyces cerevisiae as a model organism to study the functional interaction between Hsp90 and clients. Important insights from studies in her lab were that Hsp90 is essential, and that Hsp90 functions and cochaperone interactions are highly conserved between yeast and mammalian cells. Here, we describe key mechanistic insights into the Hsp90 folding cycle that were obtained using the yeast system. We highlight the early contributions of the laboratory of Susan Lindquist and extend our analysis into the broader use of the yeast system to analyze the understanding of the conformational cycle of Hsp90 and the impact of altered Hsp90 function on the proteome.
Collapse
Affiliation(s)
| | | | - Jill L. Johnson
- Department of Biological Sciences and Center for Reproductive Biology, University of Idaho, Moscow, ID, United States
| |
Collapse
|
16
|
Ventura C, Banerjee A, Zacharopoulou M, Itzhaki LS, Bahar I. Tandem-repeat proteins conformational mechanics are optimized to facilitate functional interactions and complexations. Curr Opin Struct Biol 2024; 84:102744. [PMID: 38134536 DOI: 10.1016/j.sbi.2023.102744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/30/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023]
Abstract
The architectures of tandem-repeat proteins are distinct from those of globular proteins. Individual modules, each comprising small structural motifs of 20-40 residues, are arrayed in a quasi one-dimensional fashion to form striking, elongated, horseshoe-like, and superhelical architectures, stabilized solely by short-range interaction. The spring-like shapes of repeat arrays point to elastic modes of action, and these proteins function as adapter molecules or 'hubs,' propagating signals within multi-subunit assemblies in diverse biological contexts. This flexibility is apparent in the dramatic variability observed in the structures of tandem-repeat proteins in different complexes. Here, using computational analysis, we demonstrate the striking ability of just one or a few global motions to recapitulate these structures. These findings show how the mechanics of repeat arrays are robustly enabled by their unique architecture. Thus, the repeating architecture has been optimized by evolution to favor functional modes of motions. The global motions enabling functional transitions can be fully visualized at http://bahargroup.org/tr_web.
Collapse
Affiliation(s)
- Carlos Ventura
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, 11794, USA; Department of Chemistry, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Anupam Banerjee
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Maria Zacharopoulou
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD, UK. https://twitter.com/maria_zach_
| | - Laura S Itzhaki
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD, UK.
| | - Ivet Bahar
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, 11794, USA; Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, 11794, USA.
| |
Collapse
|
17
|
Esquivel AR, Hill SE, Blair LJ. DnaJs are enriched in tau regulators. Int J Biol Macromol 2023; 253:127486. [PMID: 37852393 PMCID: PMC10842427 DOI: 10.1016/j.ijbiomac.2023.127486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/09/2023] [Accepted: 10/15/2023] [Indexed: 10/20/2023]
Abstract
The aberrant accumulation of tau protein is implicated as a pathogenic factor in many neurodegenerative diseases. Tau seeding may underlie its predictable spread in these diseases. Molecular chaperones can modulate tau pathology, but their effects have mainly been studied in isolation. This study employed a semi-high throughput assay to identify molecular chaperones influencing tau seeding using Tau RD P301S FRET Biosensor cells, which express a portion of tau containing the frontotemporal dementia-related P301S tau mutation fused to a FRET biosensor. Approximately fifty chaperones from five major families were screened using live cell imaging to monitor FRET-positive tau seeding. Among the tested chaperones, five exhibited significant effects on tau in the primary screen. Notably, three of these were from the DnaJ family. In subsequent studies, overexpression of DnaJA2, DnaJB1, and DnaJB6b resulted in significant reductions in tau levels. Knockdown experiments by shRNA revealed an inverse correlation between DnaJB1 and DnaJB6b with tau levels. DnaJB6b overexpression, specifically, reduced total tau levels in a cellular model with a pre-existing pool of tau, partially through enhanced proteasomal degradation. Further, DnaJB6b interacted with tau complexes. These findings highlight the potent chaperone activity within the DnaJ family, particularly DnaJB6b, towards tau.
Collapse
Affiliation(s)
- Abigail R Esquivel
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; USF Health Byrd Alzheimer's Institute, University of South Florida, Tampa, FL 33613, USA
| | - Shannon E Hill
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; USF Health Byrd Alzheimer's Institute, University of South Florida, Tampa, FL 33613, USA
| | - Laura J Blair
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; USF Health Byrd Alzheimer's Institute, University of South Florida, Tampa, FL 33613, USA; Research Service, James A Haley Veterans Hospital, 13000 Bruce B Downs Blvd, Tampa, FL 33612, USA.
| |
Collapse
|
18
|
Baischew A, Engel S, Taubert MC, Geiger TM, Hausch F. Large-scale, in-cell photocrosslinking at single-residue resolution reveals the molecular basis for glucocorticoid receptor regulation by immunophilins. Nat Struct Mol Biol 2023; 30:1857-1866. [PMID: 37945739 DOI: 10.1038/s41594-023-01098-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 08/16/2023] [Indexed: 11/12/2023]
Abstract
The Hsp90 co-chaperones FKBP51 and FKBP52 play key roles in steroid-hormone-receptor regulation, stress-related disorders, and sexual embryonic development. As a prominent target, glucocorticoid receptor (GR) signaling is repressed by FKBP51 and potentiated by FKBP52, but the underlying molecular mechanisms remain poorly understood. Here we present the architecture and functional annotation of FKBP51-, FKBP52-, and p23-containing Hsp90-apo-GR pre-activation complexes, trapped by systematic incorporation of photoreactive amino acids inside human cells. The identified crosslinking sites clustered in characteristic patterns, depended on Hsp90, and were disrupted by GR activation. GR binding to the FKBPFK1, but not the FKBPFK2, domain was modulated by FKBP ligands, explaining the lack of GR derepression by certain classes of FKBP ligands. Our findings show how FKBPs differentially interact with apo-GR, help to explain the differentiated pharmacology of FKBP51 ligands, and provide a structural basis for the development of improved FKBP ligands.
Collapse
Affiliation(s)
- Asat Baischew
- Department of Chemistry, Technical University Darmstadt, Darmstadt, Germany
| | - Sarah Engel
- Department of Chemistry, Technical University Darmstadt, Darmstadt, Germany
| | - Martha C Taubert
- Department of Chemistry, Technical University Darmstadt, Darmstadt, Germany
| | - Thomas M Geiger
- Department of Chemistry, Technical University Darmstadt, Darmstadt, Germany
| | - Felix Hausch
- Department of Chemistry, Technical University Darmstadt, Darmstadt, Germany.
- Centre for Synthetic Biology, Technical University Darmstadt, Darmstadt, Germany.
| |
Collapse
|
19
|
Noddings CM, Johnson JL, Agard DA. Cryo-EM reveals how Hsp90 and FKBP immunophilins co-regulate the glucocorticoid receptor. Nat Struct Mol Biol 2023; 30:1867-1877. [PMID: 37945740 PMCID: PMC10716051 DOI: 10.1038/s41594-023-01128-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 09/18/2023] [Indexed: 11/12/2023]
Abstract
Hsp90 is an essential molecular chaperone responsible for the folding and activation of hundreds of 'client' proteins, including the glucocorticoid receptor (GR). Previously, we revealed that Hsp70 and Hsp90 remodel the conformation of GR to regulate ligand binding, aided by co-chaperones. In vivo, the co-chaperones FKBP51 and FKBP52 antagonistically regulate GR activity, but a molecular understanding is lacking. Here we present a 3.01 Å cryogenic electron microscopy structure of the human GR:Hsp90:FKBP52 complex, revealing how FKBP52 integrates into the GR chaperone cycle and directly binds to the active client, potentiating GR activity in vitro and in vivo. We also present a 3.23 Å cryogenic electron microscopy structure of the human GR:Hsp90:FKBP51 complex, revealing how FKBP51 competes with FKBP52 for GR:Hsp90 binding and demonstrating how FKBP51 can act as a potent antagonist to FKBP52. Altogether, we demonstrate how FKBP51 and FKBP52 integrate into the GR chaperone cycle to advance GR to the next stage of maturation.
Collapse
Affiliation(s)
- Chari M Noddings
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Jill L Johnson
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA
| | - David A Agard
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
20
|
Semchonok DA, Kyrilis FL, Hamdi F, Kastritis PL. Cryo-EM of a heterogeneous biochemical fraction elucidates multiple protein complexes from a multicellular thermophilic eukaryote. J Struct Biol X 2023; 8:100094. [PMID: 37638207 PMCID: PMC10451023 DOI: 10.1016/j.yjsbx.2023.100094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 07/27/2023] [Accepted: 08/07/2023] [Indexed: 08/29/2023] Open
Abstract
Biomolecular complexes and their interactions govern cellular structure and function. Understanding their architecture is a prerequisite for dissecting the cell's inner workings, but their higher-order assembly is often transient and challenging for structural analysis. Here, we performed cryo-EM on a single, highly heterogeneous biochemical fraction derived from Chaetomium thermophilum cell extracts to visualize the biomolecular content of the multicellular eukaryote. After cryo-EM single-particle image processing, results showed that a simultaneous three-dimensional structural characterization of multiple chemically diverse biomacromolecules is feasible. Namely, the thermophilic, eukaryotic complexes of (a) ATP citrate-lyase, (b) Hsp90, (c) 20S proteasome, (d) Hsp60 and (e) UDP-glucose pyrophosphorylase were characterized. In total, all five complexes have been structurally dissected in a thermophilic eukaryote in a total imaged sample area of 190.64 μm2, and two, in particular, 20S proteasome and Hsp60, exhibit side-chain resolution features. The C. thermophilum Hsp60 near-atomic model was resolved at 3.46 Å (FSC = 0.143) and shows a hinge-like conformational change of its equatorial domain, highly similar to the one previously shown for its bacterial orthologue, GroEL. This work demonstrates that cryo-EM of cell extracts will greatly accelerate the structural analysis of cellular complexes and provide unprecedented opportunities to annotate architectures of biomolecules in a holistic approach.
Collapse
Affiliation(s)
- Dmitry A. Semchonok
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3a, Halle/Saale, Germany
| | - Fotis L. Kyrilis
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3a, Halle/Saale, Germany
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3, Halle/Saale, Germany
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - Farzad Hamdi
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3a, Halle/Saale, Germany
| | - Panagiotis L. Kastritis
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3a, Halle/Saale, Germany
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3, Halle/Saale, Germany
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
- Biozentrum, Martin Luther University Halle-Wittenberg, Weinbergweg 22, Halle/Saale, Germany
| |
Collapse
|
21
|
Rouges C, Asad M, Laurent AD, Marchand P, Le Pape P. Is the C-Terminal Domain an Effective and Selective Target for the Design of Hsp90 Inhibitors against Candida Yeast? Microorganisms 2023; 11:2837. [PMID: 38137982 PMCID: PMC10745388 DOI: 10.3390/microorganisms11122837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/10/2023] [Accepted: 11/17/2023] [Indexed: 12/24/2023] Open
Abstract
Improving the armamentarium to treat invasive candidiasis has become necessary to overcome drug resistance and the lack of alternative therapy. In the pathogenic fungus Candida albicans, the 90-kDa Heat-Shock Protein (Hsp90) has been described as a major regulator of virulence and resistance, offering a promising target. Some human Hsp90 inhibitors have shown activity against Candida spp. in vitro, but host toxicity has limited their use as antifungal drugs. The conservation of Hsp90 across all species leads to selectivity issues. To assess the potential of Hsp90 as a druggable antifungal target, the activity of nine structurally unrelated Hsp90 inhibitors with different binding domains was evaluated against a panel of Candida clinical isolates. The Hsp90 sequences from human and yeast species were aligned. Despite the degree of similarity between human and yeast N-terminal domain residues, the in vitro activities measured for the inhibitors interacting with this domain were not reproducible against all Candida species. Moreover, the inhibitors binding to the C-terminal domain (CTD) did not show any antifungal activity, with the exception of one of them. Given the greater sequence divergence in this domain, the identification of selective CTD inhibitors of fungal Hsp90 could be a promising strategy for the development of innovative antifungal drugs.
Collapse
Affiliation(s)
- Célia Rouges
- Nantes Université, CHU Nantes, Cibles et Médicaments des Infections et de l’Immunité, IICiMed, UR 1155, F-44000 Nantes, France; (C.R.); (P.M.)
| | - Mohammad Asad
- Nantes Université, CNRS, CEISAM, UMR 6230, F-44000 Nantes, France
| | - Adèle D. Laurent
- Nantes Université, CNRS, CEISAM, UMR 6230, F-44000 Nantes, France
| | - Pascal Marchand
- Nantes Université, CHU Nantes, Cibles et Médicaments des Infections et de l’Immunité, IICiMed, UR 1155, F-44000 Nantes, France; (C.R.); (P.M.)
| | - Patrice Le Pape
- Nantes Université, CHU Nantes, Cibles et Médicaments des Infections et de l’Immunité, IICiMed, UR 1155, F-44000 Nantes, France; (C.R.); (P.M.)
| |
Collapse
|
22
|
Peng S, Matts R, Deng J. Structural basis of the key residue W320 responsible for Hsp90 conformational change. J Biomol Struct Dyn 2023; 41:9745-9755. [PMID: 36373326 PMCID: PMC10183053 DOI: 10.1080/07391102.2022.2146197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 11/06/2022] [Indexed: 11/16/2022]
Abstract
The 90-kDa heat shock protein (Hsp90) is a homodimeric molecular chaperone with ATPase activity, which has become an intensely studied target for the development of drugs for the treatment of cancer, neurodegenerative and infectious diseases. The equilibrium between Hsp90 dimers and oligomers is important for modulating its function. In the absence of ATP, the passive chaperone activity of Hsp90 dimers and oligomers has been shown to stabilize client proteins as a holdase, which enhances substrate binding and prevents irreversible aggregation and precipitation of the substrate proteins. In the presence of ATP and its associated cochaperones, Hsp90 homodimers act as foldases with the binding and hydrolysis of ATP driving conformational changes that mediate client folding. Crystal structures of both wild type and W320A mutant Hsp90αMC (middle/C-terminal domain) have been determined, which displayed a preference for hexameric and dimeric states, respectively. Structural analysis showed that W320 is a key residue for Hsp90 oligomerization by forming intermolecular interactions at the Hsp90 hexameric interface through cation-π interactions with R367. W320A substitution results in the formation of a more open conformation of Hsp90, which has not previously been reported, and the induction of a conformational change in the catalytic loop. The structures provide new insights into the mechanism by which W320 functions as a key switch for conformational changes in Hsp90 self-oligomerization, and binding cochaperones and client proteins.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shuxia Peng
- Department of Biochemistry and Molecular biology, Oklahoma State University, 246 Noble Research Center, Stillwater, OK 74078, USA
| | - Robert Matts
- Department of Biochemistry and Molecular biology, Oklahoma State University, 246 Noble Research Center, Stillwater, OK 74078, USA
| | - Junpeng Deng
- Department of Biochemistry and Molecular biology, Oklahoma State University, 246 Noble Research Center, Stillwater, OK 74078, USA
| |
Collapse
|
23
|
Chiosis G, Digwal CS, Trepel JB, Neckers L. Structural and functional complexity of HSP90 in cellular homeostasis and disease. Nat Rev Mol Cell Biol 2023; 24:797-815. [PMID: 37524848 PMCID: PMC10592246 DOI: 10.1038/s41580-023-00640-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2023] [Indexed: 08/02/2023]
Abstract
Heat shock protein 90 (HSP90) is a chaperone with vital roles in regulating proteostasis, long recognized for its function in protein folding and maturation. A view is emerging that identifies HSP90 not as one protein that is structurally and functionally homogeneous but, rather, as a protein that is shaped by its environment. In this Review, we discuss evidence of multiple structural forms of HSP90 in health and disease, including homo-oligomers and hetero-oligomers, also termed epichaperomes, and examine the impact of stress, post-translational modifications and co-chaperones on their formation. We describe how these variations influence context-dependent functions of HSP90 as well as its interaction with other chaperones, co-chaperones and proteins, and how this structural complexity of HSP90 impacts and is impacted by its interaction with small molecule modulators. We close by discussing recent developments regarding the use of HSP90 inhibitors in cancer and how our new appreciation of the structural and functional heterogeneity of HSP90 invites a re-evaluation of how we discover and implement HSP90 therapeutics for disease treatment.
Collapse
Affiliation(s)
- Gabriela Chiosis
- Chemical Biology Program, Memorial Sloan Kettering Institute, New York, NY, USA.
- Department of Medicine, Memorial Sloan Kettering Institute, New York, NY, USA.
| | - Chander S Digwal
- Chemical Biology Program, Memorial Sloan Kettering Institute, New York, NY, USA
| | - Jane B Trepel
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Len Neckers
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
| |
Collapse
|
24
|
Mazaira GI, Erlejman AG, Zgajnar NR, Piwien-Pilipuk G, Galigniana MD. The transportosome system as a model for the retrotransport of soluble proteins. Mol Cell Endocrinol 2023; 577:112047. [PMID: 37604241 DOI: 10.1016/j.mce.2023.112047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 08/08/2023] [Accepted: 08/17/2023] [Indexed: 08/23/2023]
Abstract
The classic model of action of the glucocorticoid receptor (GR) sustains that its associated heat-shock protein of 90-kDa (HSP90) favours the cytoplasmic retention of the unliganded GR, whereas the binding of steroid triggers the dissociation of HSP90 allowing the passive nuclear accumulation of GR. In recent years, it was described a molecular machinery called transportosome that is responsible for the active retrograde transport of GR. The transportosome heterocomplex includes a dimer of HSP90, the stabilizer co-chaperone p23, and FKBP52 (FK506-binding protein of 52-kDa), an immunophilin that binds dynein/dynactin motor proteins. The model shows that upon steroid binding, FKBP52 is recruited to the GR allowing its active retrograde transport on cytoskeletal tracks. Then, the entire GR heterocomplex translocates through the nuclear pore complex. The HSP90-based heterocomplex is released in the nucleoplasm followed by receptor dimerization. Subsequent findings demonstrated that the transportosome is also responsible for the retrotransport of other soluble proteins. Importantly, the disruption of this molecular oligomer leads to several diseases. In this article, we discuss the relevance of this transport machinery in health and disease.
Collapse
Affiliation(s)
- Gisela I Mazaira
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales de la Universidad de Buenos Aires, Buenos Aires, 1428, Argentina; Instituto de Química Biológica de la, Facultad de Ciencias Exactas y Naturales, CONICET, Buenos Aires, 1428, Argentina
| | - Alejandra G Erlejman
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales de la Universidad de Buenos Aires, Buenos Aires, 1428, Argentina; Instituto de Química Biológica de la, Facultad de Ciencias Exactas y Naturales, CONICET, Buenos Aires, 1428, Argentina
| | - Nadia R Zgajnar
- Instituto de Biología y Medicina Experimental, CONICET, Buenos Aires, 1428, Argentina
| | | | - Mario D Galigniana
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales de la Universidad de Buenos Aires, Buenos Aires, 1428, Argentina; Instituto de Biología y Medicina Experimental, CONICET, Buenos Aires, 1428, Argentina.
| |
Collapse
|
25
|
Roe SM, Török Z, McGown A, Horváth I, Spencer J, Pázmány T, Vigh L, Prodromou C. The Crystal Structure of the Hsp90-LA1011 Complex and the Mechanism by Which LA1011 May Improve the Prognosis of Alzheimer's Disease. Biomolecules 2023; 13:1051. [PMID: 37509087 PMCID: PMC10377191 DOI: 10.3390/biom13071051] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Functional changes in chaperone systems play a major role in the decline of cognition and contribute to neurological pathologies, such as Alzheimer's disease (AD). While such a decline may occur naturally with age or with stress or trauma, the mechanisms involved have remained elusive. The current models suggest that amyloid-β (Aβ) plaque formation leads to the hyperphosphorylation of tau by a Hsp90-dependent process that triggers tau neurofibrillary tangle formation and neurotoxicity. Several co-chaperones of Hsp90 can influence the phosphorylation of tau, including FKBP51, FKBP52 and PP5. In particular, elevated levels of FKBP51 occur with age and stress and are further elevated in AD. Recently, the dihydropyridine LA1011 was shown to reduce tau pathology and amyloid plaque formation in transgenic AD mice, probably through its interaction with Hsp90, although the precise mode of action is currently unknown. Here, we present a co-crystal structure of LA1011 in complex with a fragment of Hsp90. We show that LA1011 can disrupt the binding of FKBP51, which might help to rebalance the Hsp90-FKBP51 chaperone machinery and provide a favourable prognosis towards AD. However, without direct evidence, we cannot completely rule out effects on other Hsp90-co-chaprone complexes and the mechanisms they are involved in, including effects on Hsp90 client proteins. Nonetheless, it is highly significant that LA1011 showed promise in our previous AD mouse models, as AD is generally a disease affecting older patients, where slowing of disease progression could result in AD no longer being life limiting. The clinical value of LA1011 and its possible derivatives thereof remains to be seen.
Collapse
Affiliation(s)
- S Mark Roe
- Department of Biochemistry and Biomedicine, University of Sussex, Brighton BN1 9QG, UK
| | - Zsolt Török
- Institute of Biochemistry, Biological Research Centre, 6726 Szeged, Hungary
| | - Andrew McGown
- Sussex Drug Discovery Centre, School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | - Ibolya Horváth
- Institute of Biochemistry, Biological Research Centre, 6726 Szeged, Hungary
| | - John Spencer
- Sussex Drug Discovery Centre, School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | - Tamás Pázmány
- Gedeon Richter Plc, 1475 Budapest, Hungary
- National Vaccine Factory Plc, 4032 Debrecen, Hungary
| | - László Vigh
- Institute of Biochemistry, Biological Research Centre, 6726 Szeged, Hungary
| | | |
Collapse
|
26
|
Wang Q, Liu P, Wen Y, Li K, Bi B, Li BB, Qiu M, Zhang S, Li Y, Li J, Chen H, Yin Y, Zeng L, Zhang C, He Y, Zhao J. Metal-enriched HSP90 nanoinhibitor overcomes heat resistance in hyperthermic intraperitoneal chemotherapy used for peritoneal metastases. Mol Cancer 2023; 22:95. [PMID: 37316830 DOI: 10.1186/s12943-023-01790-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/16/2023] [Indexed: 06/16/2023] Open
Abstract
Clinical hyperthermic intraperitoneal chemotherapy (HIPEC) is regarded as a potential treatment that can prolong survival of patients with peritoneal metastases after cytoreductive surgery. However, treated tumor cells are prone to becoming heat resistant to HIPEC therapy through high expression of heat shock proteins (HSPs). Here, a carrier-free bifunctional nanoinhibitor was developed for HIPEC therapy in the management of peritoneal metastases. Self-assembly of the nanoinhibitor was formed by mixing Mn ion and epigallocatechin gallate (EGCG) in a controllable manner. Such nanoinhibitor directly inhibited HSP90 and impaired the HSP90 chaperone cycle by reduced intracellular ATP level. Additionally, heat and Mn ion synergistically induced oxidative stress and expression of caspase 1, which activated GSDMD by proteolysis and caused pyroptosis in tumor cells, triggering immunogenic inflammatory cell death and induced maturation of dendritic cells through the release of tumor antigens. This strategy to inhibit heat resistance in HIPEC presented an unprecedented paradigm for converting "cold" tumors into "hot" ones, thus significantly eradicating disseminated tumors located deep in the abdominal cavity and stimulating immune response in peritoneal metastases of a mouse model. Collectively, the nanoinhibitor effectively induced pyroptosis of colon tumor cells under heat conditions by inhibiting heat stress resistance and increasing oxidative stress, which may provide a new strategy for treatment of colorectal peritoneal metastases.
Collapse
Affiliation(s)
- Qiang Wang
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, China
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Peng Liu
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, China
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Yingfei Wen
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Kuan Li
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, China
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Bo Bi
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, China
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Bin-Bin Li
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, China
| | - Miaojuan Qiu
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, China
| | - Shiqiang Zhang
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - You Li
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Jia Li
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, China
| | - Hengxing Chen
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, China
| | - Yuan Yin
- Gastric Cancer Center, West China Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Sichuan, China
| | - Leli Zeng
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China.
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, China.
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China.
| | - Changhua Zhang
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China.
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, China.
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China.
| | - Yulong He
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China.
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, China.
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China.
| | - Jing Zhao
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China.
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China.
| |
Collapse
|
27
|
Jaime-Garza M, Nowotny CA, Coutandin D, Wang F, Tabios M, Agard DA. Hsp90 provides a platform for kinase dephosphorylation by PP5. Nat Commun 2023; 14:2197. [PMID: 37069154 PMCID: PMC10110553 DOI: 10.1038/s41467-023-37659-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 03/23/2023] [Indexed: 04/19/2023] Open
Abstract
The Hsp90 molecular chaperone collaborates with the phosphorylated Cdc37 cochaperone for the folding and activation of its many client kinases. As with many kinases, the Hsp90 client kinase CRaf is activated by phosphorylation at specific regulatory sites. The cochaperone phosphatase PP5 dephosphorylates CRaf and Cdc37 in an Hsp90-dependent manner. Although dephosphorylating Cdc37 has been proposed as a mechanism for releasing Hsp90-bound kinases, here we show that Hsp90 bound kinases sterically inhibit Cdc37 dephosphorylation indicating kinase release must occur before Cdc37 dephosphorylation. Our cryo-EM structure of PP5 in complex with Hsp90:Cdc37:CRaf reveals how Hsp90 both activates PP5 and scaffolds its association with the bound CRaf to dephosphorylate phosphorylation sites neighboring the kinase domain. Thus, we directly show how Hsp90's role in maintaining protein homeostasis goes beyond folding and activation to include post translationally modifying its client kinases.
Collapse
Affiliation(s)
- Maru Jaime-Garza
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Carlos A Nowotny
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Daniel Coutandin
- Novartis Institutes for BioMedical Research, San Diego, CA, 92121, USA
| | - Feng Wang
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Mariano Tabios
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - David A Agard
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, 94143, USA.
| |
Collapse
|
28
|
Ramirez LM, Zweckstetter M. Molecular-level interplay between intrinsically disordered clients and Hsp90. Curr Opin Chem Biol 2023; 74:102304. [PMID: 37068388 DOI: 10.1016/j.cbpa.2023.102304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 04/19/2023]
Abstract
Proteostasis is maintained by a network of molecular chaperones, a prominent member of which is the 90-kilodalton heat shock protein Hsp90. The chaperone function of Hsp90 has been extensively reviewed previously, emphasizing its ATPase activity and remodeling of folded client proteins. Experimental evidence implicating Hsp90 in neurodegenerative diseases has bolstered interest in the noncanonical chaperoning of intrinsically disordered protein (IDPs), however the interplay between Hsp90 and its disordered clients remains poorly understood. In this review we describe recent advances that have contributed to our understanding of the intricate mechanisms characterizing Hsp90-mediated chaperoning of the IDPs tau and α-synuclein and survey emerging insights into the modulation of the chaperone-client interplay in the context of neurodegeneration.
Collapse
Affiliation(s)
- Lisa Marie Ramirez
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075 Gӧttingen, Germany
| | - Markus Zweckstetter
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075 Gӧttingen, Germany; Department for NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Gӧttingen, Germany.
| |
Collapse
|
29
|
Wen Z, Zhang Y, Zhang B, Hang Y, Xu L, Chen Y, Xie Q, Zhao Q, Zhang L, Li G, Zhao B, Sun F, Zhai Y, Zhu Y. Cryo-EM structure of the cytosolic AhR complex. Structure 2023; 31:295-308.e4. [PMID: 36649707 DOI: 10.1016/j.str.2022.12.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 11/24/2022] [Accepted: 12/21/2022] [Indexed: 01/17/2023]
Abstract
Aryl hydrocarbon receptor (AhR) is an important ligand-activated transcription factor involved in the regulation of various important physiological functions. Here, we report the cryo-EM structures of the Hsp90-AhR-p23 complex with or without bound XAP2, where the structure of the mouse AhR PAS-B domain is resolved. A highly conserved bridge motif of AhR is responsible for the interaction with the Hsp90 dimeric lumen. The ligand-free AhR PAS-B domain is attached to the Hsp90 dimer and is stabilized in the complex with bound XAP2. In addition, the DE-loop and a group of conserved pocket inner residues in the AhR PAS-B domain are found to be important for ligand binding. These results reveal the structural basis of the biological functions of AhR. Moreover, the protein purification method presented here allows the isolation of stable mouse AhR protein, which could be used to develop high-sensitivity biosensors for environmental pollutant detection.
Collapse
Affiliation(s)
- Zuoling Wen
- National Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yuebin Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Beirong Zhang
- University of Chinese Academy of Sciences, Beijing, China; CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Yumo Hang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Li Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yangsheng Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qunhui Xie
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qun Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Lihua Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Guohui Li
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Bin Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Fei Sun
- National Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing, China; Center for Biological Imaging, Core Facilities for Protein Science, Institute of Biophysics, CAS, Beijing, China.
| | - Yujia Zhai
- National Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Yun Zhu
- National Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
30
|
Srivastava D, Yadav RP, Singh S, Boyd K, Artemyev NO. Unique interface and dynamics of the complex of HSP90 with a specialized cochaperone AIPL1. Structure 2023; 31:309-317.e5. [PMID: 36657440 PMCID: PMC9992320 DOI: 10.1016/j.str.2022.12.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/06/2022] [Accepted: 12/23/2022] [Indexed: 01/19/2023]
Abstract
Photoreceptor phosphodiesterase PDE6 is central for visual signal transduction. Maturation of PDE6 depends on a specialized chaperone complex of HSP90 with aryl hydrocarbon receptor-interacting protein-like 1 (AIPL1). Disruption of PDE6 maturation underlies a severe form of retina degeneration. Here, we report a 3.9 Å cryoelectron microscopy (cryo-EM) structure of the complex of HSP90 with AIPL1. This structure reveals a unique interaction of the FK506-binding protein (FKBP)-like domain of AIPL1 with HSP90 at its dimer interface. Unusually, the N terminus AIPL1 inserts into the HSP90 lumen in a manner that was observed previously for HSP90 clients. Deletion of the 7 N-terminal residues of AIPL1 decreased its ability to cochaperone PDE6. Multi-body refinement of the cryo-EM data indicated large swing-like movements of AIPL1-FKBP. Modeling the complex of HSP90 with AIPL1 using crosslinking constraints indicated proximity of the mobile tetratricopeptide repeat (TPR) domain with the C-terminal domain of HSP90. Our study establishes a framework for future structural studies of PDE6 maturation.
Collapse
Affiliation(s)
- Dhiraj Srivastava
- Department of Molecular Physiology and Biophysics, The University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Ravi P Yadav
- Department of Molecular Physiology and Biophysics, The University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Sneha Singh
- Department of Molecular Physiology and Biophysics, The University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Kimberly Boyd
- Department of Molecular Physiology and Biophysics, The University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Nikolai O Artemyev
- Department of Molecular Physiology and Biophysics, The University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Department of Ophthalmology and Visual Sciences, The University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA.
| |
Collapse
|
31
|
Noddings CM, Johnson JL, Agard DA. Cryo-EM reveals how Hsp90 and FKBP immunophilins co-regulate the Glucocorticoid Receptor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.10.523504. [PMID: 36711821 PMCID: PMC9882067 DOI: 10.1101/2023.01.10.523504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Hsp90 is an essential molecular chaperone responsible for the folding and activation of hundreds of 'client' proteins, including the glucocorticoid receptor (GR)1-3. Previously, we revealed that GR ligand binding activity is inhibited by Hsp70 and restored by Hsp90, aided by co-chaperones4. We then presented cryo-EM structures mechanistically detailing how Hsp70 and Hsp90 remodel the conformation of GR to regulate ligand binding5,6. In vivo, GR-chaperone complexes are found associated with numerous Hsp90 co-chaperones, but the most enigmatic have been the immunophilins FKBP51 and FKBP52, which further regulate the activity of GR and other steroid receptors7-9. A molecular understanding of how FKBP51 and FKBP52 integrate with the GR chaperone cycle to differentially regulate GR activation in vivo is lacking due to difficulties reconstituting these interactions. Here, we present a 3.01 Å cryo-EM structure of the GR:Hsp90:FKBP52 complex, revealing , for the first time, that FKBP52 directly binds to the folded, ligand-bound GR using three novel interfaces, each of which we demonstrate are critical for FKBP52-dependent potentiation of GR activity in vivo. In addition, we present a 3.23 Å cryo-EM structure of the GR:Hsp90:FKBP51 complex, which, surprisingly, largely mimics the GR:Hsp90:FKBP52 structure. In both structures, FKBP51 and FKBP52 directly engage the folded GR and unexpectedly facilitate release of p23 through an allosteric mechanism. We also reveal that FKBP52, but not FKBP51, potentiates GR ligand binding in vitro, in a manner dependent on FKBP52-specific interactions. Altogether, we reveal how FKBP51 and FKBP52 integrate into the GR chaperone cycle to advance GR to the next stage of maturation and how FKBP51 and FKBP52 compete for GR:Hsp90 binding, leading to functional antagonism.
Collapse
Affiliation(s)
- Chari M. Noddings
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jill L. Johnson
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA
| | - David A. Agard
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
32
|
Prodromou C, Aran-Guiu X, Oberoi J, Perna L, Chapple JP, van der Spuy J. HSP70-HSP90 Chaperone Networking in Protein-Misfolding Disease. Subcell Biochem 2023; 101:389-425. [PMID: 36520314 DOI: 10.1007/978-3-031-14740-1_13] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Molecular chaperones and their associated co-chaperones are essential in health and disease as they are key facilitators of protein-folding, quality control and function. In particular, the heat-shock protein (HSP) 70 and HSP90 molecular chaperone networks have been associated with neurodegenerative diseases caused by aberrant protein-folding. The pathogenesis of these disorders usually includes the formation of deposits of misfolded, aggregated protein. HSP70 and HSP90, plus their co-chaperones, have been recognised as potent modulators of misfolded protein toxicity, inclusion formation and cell survival in cellular and animal models of neurodegenerative disease. Moreover, these chaperone machines function not only in folding but also in proteasome-mediated degradation of neurodegenerative disease proteins. This chapter gives an overview of the HSP70 and HSP90 chaperones, and their respective regulatory co-chaperones, and explores how the HSP70 and HSP90 chaperone systems form a larger functional network and its relevance to counteracting neurodegenerative disease associated with misfolded proteins and disruption of proteostasis.
Collapse
Affiliation(s)
| | - Xavi Aran-Guiu
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | - Jasmeen Oberoi
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | - Laura Perna
- Centre for Endocrinology, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - J Paul Chapple
- Centre for Endocrinology, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK.
| | | |
Collapse
|
33
|
Henot F, Rioual E, Favier A, Macek P, Crublet E, Josso P, Brutscher B, Frech M, Gans P, Loison C, Boisbouvier J. Visualizing the transiently populated closed-state of human HSP90 ATP binding domain. Nat Commun 2022; 13:7601. [PMID: 36494347 PMCID: PMC9734131 DOI: 10.1038/s41467-022-35399-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022] Open
Abstract
HSP90 are abundant molecular chaperones, assisting the folding of several hundred client proteins, including substrates involved in tumor growth or neurodegenerative diseases. A complex set of large ATP-driven structural changes occurs during HSP90 functional cycle. However, the existence of such structural rearrangements in apo HSP90 has remained unclear. Here, we identify a metastable excited state in the isolated human HSP90α ATP binding domain. We use solution NMR and mutagenesis to characterize structures of both ground and excited states. We demonstrate that in solution the HSP90α ATP binding domain transiently samples a functionally relevant ATP-lid closed state, distant by more than 30 Å from the ground state. NMR relaxation enables to derive information on the kinetics and thermodynamics of this interconversion, while molecular dynamics simulations establish that the ATP-lid in closed conformation is a metastable exited state. The precise description of the dynamics and structures sampled by human HSP90α ATP binding domain provides information for the future design of new therapeutic ligands.
Collapse
Affiliation(s)
- Faustine Henot
- grid.4444.00000 0001 2112 9282Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 71, avenue des martyrs, F-38044 Grenoble, France
| | - Elisa Rioual
- grid.4444.00000 0001 2112 9282Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 71, avenue des martyrs, F-38044 Grenoble, France ,grid.7849.20000 0001 2150 7757Institut Lumière Matière, University of Lyon, Université Claude Bernard Lyon 1, CNRS, F-69622 Villeurbanne, France
| | - Adrien Favier
- grid.4444.00000 0001 2112 9282Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 71, avenue des martyrs, F-38044 Grenoble, France
| | - Pavel Macek
- grid.4444.00000 0001 2112 9282Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 71, avenue des martyrs, F-38044 Grenoble, France ,NMR-Bio, 5 place Robert Schuman, F-38025 Grenoble, France
| | - Elodie Crublet
- NMR-Bio, 5 place Robert Schuman, F-38025 Grenoble, France
| | - Pierre Josso
- grid.7849.20000 0001 2150 7757Institut Lumière Matière, University of Lyon, Université Claude Bernard Lyon 1, CNRS, F-69622 Villeurbanne, France
| | - Bernhard Brutscher
- grid.4444.00000 0001 2112 9282Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 71, avenue des martyrs, F-38044 Grenoble, France
| | - Matthias Frech
- grid.39009.330000 0001 0672 7022Discovery Technologies, Merck KGaA, Frankfurter Straße 250, 64293 Darmstadt, Germany
| | - Pierre Gans
- grid.4444.00000 0001 2112 9282Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 71, avenue des martyrs, F-38044 Grenoble, France
| | - Claire Loison
- grid.7849.20000 0001 2150 7757Institut Lumière Matière, University of Lyon, Université Claude Bernard Lyon 1, CNRS, F-69622 Villeurbanne, France
| | - Jerome Boisbouvier
- grid.4444.00000 0001 2112 9282Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 71, avenue des martyrs, F-38044 Grenoble, France
| |
Collapse
|
34
|
Oberoi J, Guiu XA, Outwin EA, Schellenberger P, Roumeliotis TI, Choudhary JS, Pearl LH. HSP90-CDC37-PP5 forms a structural platform for kinase dephosphorylation. Nat Commun 2022; 13:7343. [PMID: 36446791 PMCID: PMC9709061 DOI: 10.1038/s41467-022-35143-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 11/18/2022] [Indexed: 12/02/2022] Open
Abstract
Activation of client protein kinases by the HSP90 molecular chaperone system is affected by phosphorylation at multiple sites on HSP90, the kinase-specific co-chaperone CDC37, and the kinase client itself. Removal of regulatory phosphorylation from client kinases and their release from the HSP90-CDC37 system depends on the Ser/Thr phosphatase PP5, which associates with HSP90 via its N-terminal TPR domain. Here, we present the cryoEM structure of the oncogenic protein kinase client BRAFV600E bound to HSP90-CDC37, showing how the V600E mutation favours BRAF association with HSP90-CDC37. Structures of HSP90-CDC37-BRAFV600E complexes with PP5 in autoinhibited and activated conformations, together with proteomic analysis of its phosphatase activity on BRAFV600E and CRAF, reveal how PP5 is activated by recruitment to HSP90 complexes. PP5 comprehensively dephosphorylates client proteins, removing interaction sites for regulatory partners such as 14-3-3 proteins and thus performing a 'factory reset' of the kinase prior to release.
Collapse
Affiliation(s)
- Jasmeen Oberoi
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9RQ, UK
| | - Xavi Aran Guiu
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9RQ, UK
| | - Emily A Outwin
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9RQ, UK
| | - Pascale Schellenberger
- Electron Microscopy Imaging centre, School of Life Sciences, University of Sussex, Falmer, BN1 9QG, UK
| | - Theodoros I Roumeliotis
- Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London, SW3 6JB, UK
| | - Jyoti S Choudhary
- Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London, SW3 6JB, UK
| | - Laurence H Pearl
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9RQ, UK.
- Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London, SW3 6JB, UK.
| |
Collapse
|
35
|
HSP90 mediates the connection of multiple programmed cell death in diseases. Cell Death Dis 2022; 13:929. [PMID: 36335088 PMCID: PMC9637177 DOI: 10.1038/s41419-022-05373-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 11/07/2022]
Abstract
Heat shock protein (HSP) 90, an important component of the molecular chaperone network, is closely concerned with cellular signaling pathways and stress response by participating in the process of maturation and activation of client proteins, playing a crucial role both in the normal and abnormal operation of the organism. In functionally defective tissues, programmed cell death (PCD) is one of the regulable fundamental mechanisms mediated by HSP90, including apoptosis, autophagy, necroptosis, ferroptosis, and others. Here, we show the complex relationship between HSP90 and different types of PCD in various diseases, and discuss the possibility of HSP90 as the common regulatory nodal in multiple PCD, which would provide a new perspective for the therapeutic approaches in disease.
Collapse
|
36
|
Yang CX, Chen L, Mou Q, Yang YW, Wang Y, Yin Z, Du ZQ. HSP90AA1 promotes viability and lactate production but inhibits hormone secretion of porcine immature Sertoli cells. Theriogenology 2022; 194:64-74. [DOI: 10.1016/j.theriogenology.2022.09.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 08/31/2022] [Accepted: 09/26/2022] [Indexed: 11/15/2022]
|
37
|
Verkhivker GM. Conformational Dynamics and Mechanisms of Client Protein Integration into the Hsp90 Chaperone Controlled by Allosteric Interactions of Regulatory Switches: Perturbation-Based Network Approach for Mutational Profiling of the Hsp90 Binding and Allostery. J Phys Chem B 2022; 126:5421-5442. [PMID: 35853093 DOI: 10.1021/acs.jpcb.2c03464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Understanding the allosteric mechanisms of the Hsp90 chaperone interactions with cochaperones and client protein clientele is fundamental to dissect activation and regulation of many proteins. In this work, atomistic simulations are combined with perturbation-based approaches and dynamic network modeling for a comparative mutational profiling of the Hsp90 binding and allosteric interaction networks in the three Hsp90 maturation complexes with FKBP51 and P23 cochaperones and the glucocorticoid receptor (GR) client. The conformational dynamics signatures of the Hsp90 complexes and dynamics fluctuation analysis revealed how the intrinsic plasticity of the Hsp90 dimer can be modulated by cochaperones and client proteins to stabilize the closed dimer state required at the maturation stage of the ATPase cycle. In silico deep mutational scanning of the protein residues characterized the hot spots of protein stability and binding affinity in the Hsp90 complexes, showing that binding hot spots may often coincide with the regulatory centers that modulate dynamic allostery in the Hsp90 dimer. We introduce a perturbation-based network approach for mutational scanning of allosteric residue potentials and characterize allosteric switch clusters that control mechanism of cochaperone-dependent client recognition and remodeling by the Hsp90 chaperone. The results revealed a conserved network of allosteric switches in the Hsp90 complexes that allow cochaperones and GR protein to become integrated into the Hsp90 system by anchoring to the conformational switch points in the functional Hsp90 regions. This study suggests that the Hsp90 binding and allostery may operate under a regulatory mechanism in which activation or repression of the Hsp90 activity can be pre-encoded in the allosterically regulated Hsp90 dimer motions. By binding directly to the conformational switch centers on the Hsp90, cochaperones and interacting proteins can efficiently modulate the allosteric interactions and long-range communications required for client remodeling and activation.
Collapse
Affiliation(s)
- Gennady M Verkhivker
- Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, 1 University Drive, Orange, California 92866, United States
- Depatment of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California 92618, United States
| |
Collapse
|
38
|
Shi Y, Cao S, Ni D, Fan J, Lu S, Xue M. The Role of Conformational Dynamics and Allostery in the Control of Distinct Efficacies of Agonists to the Glucocorticoid Receptor. Front Mol Biosci 2022; 9:933676. [PMID: 35874618 PMCID: PMC9300934 DOI: 10.3389/fmolb.2022.933676] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Glucocorticoid receptor (GR) regulates various cellular functions. Given its broad influence on metabolic activities, it has been the target of drug discovery for decades. However, how drugs induce conformational changes in GR has remained elusive. Herein, we used five GR agonists (dex, AZ938, pred, cor, and dibC) with different efficacies to investigate which aspect of the ligand induced the differences in efficacy. We performed molecular dynamics simulations on the five systems (dex-, AZ938-, pred-, cor-, and dibC-bound systems) and observed a distinct discrepancy in the conformation of the cofactor TIF2. Moreover, we discovered ligand-induced differences regarding the level of conformational changes posed by the binding of cofactor TIF2 and identified a pair of essential residues D590 and T39. We further found a positive correlation between the efficacies of ligands and the interaction of the two binding pockets' domains, where D590 and T739 were involved, implying their significance in the participation of allosteric communication. Using community network analysis, two essential communities containing D590 and T739 were identified with their connectivity correlating to the efficacy of ligands. The potential communication pathways between these two residues were revealed. These results revealed the underlying mechanism of allosteric communication between the ligand-binding and cofactor-binding pockets and identified a pair of important residues in the allosteric communication pathway, which can serve as a guide for future drug discovery.
Collapse
Affiliation(s)
- Yuxin Shi
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shu Cao
- Department of Urology, Ezhou Central Hospital, Hubei, China
| | - Duan Ni
- The Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| | - Jigang Fan
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shaoyong Lu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mintao Xue
- Department of Orthopedics, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| |
Collapse
|
39
|
Peng S, Woodruff J, Pathak PK, Matts RL, Deng J. Crystal structure of the middle and C-terminal domains of Hsp90α labeled with a coumarin derivative reveals a potential allosteric binding site as a drug target. Acta Crystallogr D Struct Biol 2022; 78:571-585. [PMID: 35503206 PMCID: PMC9063849 DOI: 10.1107/s2059798322002261] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/26/2022] [Indexed: 12/01/2022] Open
Abstract
The 90 kDa heat-shock protein (Hsp90) is an abundant molecular chaperone that is essential to activate, stabilize and regulate the function of a plethora of client proteins. As drug targets for the treatment of cancer and neurodegenerative diseases, Hsp90 inhibitors that bind to the N-terminal ATP-binding site of Hsp90 have shown disappointing efficacy in clinical trials. Thus, allosteric regulation of the function of Hsp90 by compounds that interact with its middle and C-terminal (MC) domains is now being pursued as a mechanism to inhibit the ATPase activity and client protein-binding activity of Hsp90 without concomitant induction of the heat-shock response. Here, the crystal structure of the Hsp90αMC protein covalently linked to a coumarin derivative, MDCC {7-diethylamino-3-[N-(2-maleimidoethyl)carbamoyl]coumarin}, which is located in a hydrophobic pocket that is formed at the Hsp90αMC hexamer interface, is reported. MDCC binding leads to the hexamerization of Hsp90, and the stabilization and conformational changes of three loops that are critical for its function. A fluorescence competition assay demonstrated that other characterized coumarin and isoflavone-containing Hsp90 inhibitors compete with MDCC binding, suggesting that they could bind at a common site or that they might allosterically alter the structure of the MDCC binding site. This study provides insights into the mechanism by which the coumarin class of allosteric inhibitors potentially disrupt the function of Hsp90 by regulating its oligomerization and the burial of interaction sites involved in the ATP-dependent folding of Hsp90 clients. The hydrophobic binding pocket characterized here will provide new structural information for future drug design.
Collapse
Affiliation(s)
- Shuxia Peng
- Department of Biochemistry and Molecular Biology, Oklahoma State University, 246 Noble Research Center, Stillwater, OK 74078, USA
| | - Jeff Woodruff
- Department of Biochemistry and Molecular Biology, Oklahoma State University, 246 Noble Research Center, Stillwater, OK 74078, USA
| | - Prabhat Kumar Pathak
- Department of Biochemistry and Molecular Biology, Oklahoma State University, 246 Noble Research Center, Stillwater, OK 74078, USA
| | - Robert L. Matts
- Department of Biochemistry and Molecular Biology, Oklahoma State University, 246 Noble Research Center, Stillwater, OK 74078, USA
| | - Junpeng Deng
- Department of Biochemistry and Molecular Biology, Oklahoma State University, 246 Noble Research Center, Stillwater, OK 74078, USA
| |
Collapse
|
40
|
Advances towards Understanding the Mechanism of Action of the Hsp90 Complex. Biomolecules 2022; 12:biom12050600. [PMID: 35625528 PMCID: PMC9138868 DOI: 10.3390/biom12050600] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/13/2022] [Accepted: 04/17/2022] [Indexed: 12/24/2022] Open
Abstract
Hsp90 (Heat Shock Protein 90) is an ATP (Adenosine triphosphate) molecular chaperone responsible for the activation and maturation of client proteins. The mechanism by which Hsp90 achieves such activation, involving structurally diverse client proteins, has remained enigmatic. However, recent advances using structural techniques, together with advances in biochemical studies, have not only defined the chaperone cycle but have shed light on its mechanism of action. Hsp90 hydrolysis of ATP by each protomer may not be simultaneous and may be dependent on the specific client protein and co-chaperone complex involved. Surprisingly, Hsp90 appears to remodel client proteins, acting as a means by which the structure of the client protein is modified to allow its subsequent refolding to an active state, in the case of kinases, or by making the client protein competent for hormone binding, as in the case of the GR (glucocorticoid receptor). This review looks at selected examples of client proteins, such as CDK4 (cyclin-dependent kinase 4) and GR, which are activated according to the so-called ‘remodelling hypothesis’ for their activation. A detailed description of these activation mechanisms is paramount to understanding how Hsp90-associated diseases develop.
Collapse
|
41
|
Keramisanou D, Vasantha Kumar M, Boose N, Abzalimov RR, Gelis I. Assembly mechanism of early Hsp90-Cdc37-kinase complexes. SCIENCE ADVANCES 2022; 8:eabm9294. [PMID: 35294247 PMCID: PMC8926337 DOI: 10.1126/sciadv.abm9294] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/25/2022] [Indexed: 05/27/2023]
Abstract
Molecular chaperones have an essential role for the maintenance of a balanced protein homeostasis. Here, we investigate how protein kinases are recruited and loaded to the Hsp90-Cdc37 complex, the first step during Hsp90-mediated chaperoning that leads to enhanced client kinase stability and activation. We show that conformational dynamics of all partners is a critical feature of the underlying loading mechanism. The kinome co-chaperone Cdc37 exists primarily in a dynamic extended conformation but samples a low-populated, well-defined compact structure. Exchange between these two states is maintained in an assembled Hsp90-Cdc37 complex and is necessary for substrate loading. Breathing motions at the N-lobe of a free kinase domain partially expose the kinase segment trapped in the Hsp90 dimer downstream in the cycle. Thus, client dynamics poise for chaperone dependence. Hsp90 is not directly involved during loading, and Cdc37 is assigned the task of sensing clients by stabilizing the preexisting partially unfolded client state.
Collapse
Affiliation(s)
| | | | - Nicole Boose
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA
| | - Rinat R. Abzalimov
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY 10031, USA
| | - Ioannis Gelis
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA
| |
Collapse
|
42
|
Yadav RP, Boyd K, Artemyev NO. Molecular insights into the maturation of phosphodiesterase 6 by the specialized chaperone complex of HSP90 with AIPL1. J Biol Chem 2022; 298:101620. [PMID: 35065964 PMCID: PMC8857470 DOI: 10.1016/j.jbc.2022.101620] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 12/18/2022] Open
Abstract
Phosphodiesterase 6 (PDE6) is a key effector enzyme in vertebrate phototransduction, and its maturation and function are known to critically depend on a specialized chaperone, aryl hydrocarbon receptor-interacting protein-like 1 (AIPL1). Defects in PDE6 and AIPL1 underlie several severe retinal diseases, including retinitis pigmentosa and Leber congenital amaurosis. Here, we characterize the complex of AIPL1 with HSP90 and demonstrate its essential role in promoting the functional conformation of nascent PDE6. Our analysis suggests that AIPL1 preferentially binds to HSP90 in the closed state with a stoichiometry of 1:2, with the tetratricopeptide repeat domain and the tetratricopeptide repeat helix 7 extension of AIPL1 being the main contributors to the AIPL1/HSP90 interface. We demonstrate that mutations of these determinants markedly diminished both the affinity of AIPL1 for HSP90 and the ability of AIPL1 to cochaperone the maturation of PDE6 in a heterologous expression system. In addition, the FK506-binding protein (FKBP) domain of AIPL1 encloses a unique prenyl-binding site that anchors AIPL1 to posttranslational lipid modifications of PDE6. A mouse model with rod PDE6 lacking farnesylation of its PDE6A subunit revealed normal expression, trafficking, and signaling of the enzyme. Furthermore, AIPL1 was unexpectedly capable of inducing the maturation of unprenylated cone PDE6C, whereas mutant AIPL1 deficient in prenyl binding competently cochaperoned prenylated PDE6C. Thus, we conclude neither sequestration of the prenyl modifications is required for PDE6 maturation to proceed, nor is the FKBP-lipid interaction involved in the conformational switch of the enzyme into the functional state.
Collapse
Affiliation(s)
- Ravi P Yadav
- Department of Molecular Physiology and Biophysics, The University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Kimberly Boyd
- Department of Molecular Physiology and Biophysics, The University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Nikolai O Artemyev
- Department of Molecular Physiology and Biophysics, The University of Iowa Carver College of Medicine, Iowa City, Iowa, USA; Department of Ophthalmology and Visual Sciences, The University of Iowa Carver College of Medicine, Iowa City, Iowa, USA.
| |
Collapse
|
43
|
Structural and Kinetic Views of Molecular Chaperones in Multidomain Protein Folding. Int J Mol Sci 2022; 23:ijms23052485. [PMID: 35269628 PMCID: PMC8910466 DOI: 10.3390/ijms23052485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 12/10/2022] Open
Abstract
Despite recent developments in protein structure prediction, the process of the structure formation, folding, remains poorly understood. Notably, folding of multidomain proteins, which involves multiple steps of segmental folding, is one of the biggest questions in protein science. Multidomain protein folding often requires the assistance of molecular chaperones. Molecular chaperones promote or delay the folding of the client protein, but the detailed mechanisms are still unclear. This review summarizes the findings of biophysical and structural studies on the mechanism of multidomain protein folding mediated by molecular chaperones and explains how molecular chaperones recognize the client proteins and alter their folding properties. Furthermore, we introduce several recent studies that describe the concept of kinetics-activity relationships to explain the mechanism of functional diversity of molecular chaperones.
Collapse
|
44
|
Exploring Mechanisms of Allosteric Regulation and Communication Switching in the Multiprotein Regulatory Complexes of the Hsp90 Chaperone with Cochaperones and Client Proteins : Atomistic Insights from Integrative Biophysical Modeling and Network Analysis of Conformational Landscapes. J Mol Biol 2022; 434:167506. [DOI: 10.1016/j.jmb.2022.167506] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 12/16/2022]
|
45
|
Giannoulis A, Feintuch A, Unger T, Amir S, Goldfarb D. Monitoring the Conformation of the Sba1/Hsp90 Complex in the Presence of Nucleotides with Mn(II)-Based Double Electron-Electron Resonance. J Phys Chem Lett 2021; 12:12235-12241. [PMID: 34928609 PMCID: PMC8724802 DOI: 10.1021/acs.jpclett.1c03641] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Hsp90 is an important molecular chaperone that facilitates the maturation of client proteins. It is a homodimer, and its function depends on a conformational cycle controlled by ATP hydrolysis and co-chaperones binding. We explored the binding of co-chaperone Sba1 to yeast Hsp90 (yHsp90) and the associated conformational change of yHsp90 in the pre- and post-ATP hydrolysis states by double electron-electron resonance (DEER) distance measurements. We substituted the Mg(II) cofactor at the ATPase site with paramagnetic Mn(II) and established the binding of Sba1 by measuring the distance between Mn(II) and a nitroxide (NO) spin-label on Sba1. Then, Mn(II)-NO DEER measurements on yHsp90 labeled with NO at the N-terminal domain detected the shift toward the closed conformation for both hydrolysis states. Finally, Mn(II)-Mn(II) DEER showed that Sba1 induced a closed conformation different from those with just bound Mn(II)·nucleotides. Our results provide structural experimental evidence for the binding of Sba1 tuning the closed conformation of yHsp90.
Collapse
Affiliation(s)
- Angeliki Giannoulis
- Department
of Chemical and Biological Physics, Weizmann
Institute of Science, Rehovot 76100, Israel
| | - Akiva Feintuch
- Department
of Chemical and Biological Physics, Weizmann
Institute of Science, Rehovot 76100, Israel
| | - Tamar Unger
- Structural
Proteomics Unit, Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Shiran Amir
- Structural
Proteomics Unit, Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Daniella Goldfarb
- Department
of Chemical and Biological Physics, Weizmann
Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
46
|
The Potential of Hsp90 in Targeting Pathological Pathways in Cardiac Diseases. J Pers Med 2021; 11:jpm11121373. [PMID: 34945845 PMCID: PMC8709342 DOI: 10.3390/jpm11121373] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 12/26/2022] Open
Abstract
Heat shock protein 90 (Hsp90) is a molecular chaperone that interacts with up to 10% of the proteome. The extensive involvement in protein folding and regulation of protein stability within cells makes Hsp90 an attractive therapeutic target to correct multiple dysfunctions. Many of the clients of Hsp90 are found in pathways known to be pathogenic in the heart, ranging from transforming growth factor β (TGF-β) and mitogen activated kinase (MAPK) signaling to tumor necrosis factor α (TNFα), Gs and Gq g-protein coupled receptor (GPCR) and calcium (Ca2+) signaling. These pathways can therefore be targeted through modulation of Hsp90 activity. The activity of Hsp90 can be targeted through small-molecule inhibition. Small-molecule inhibitors of Hsp90 have been found to be cardiotoxic in some cases however. In this regard, specific targeting of Hsp90 by modulation of post-translational modifications (PTMs) emerges as an attractive strategy. In this review, we aim to address how Hsp90 functions, where Hsp90 interacts within pathological pathways, and current knowledge of small molecules and PTMs known to modulate Hsp90 activity and their potential as therapeutics in cardiac diseases.
Collapse
|
47
|
Two-colour single-molecule photoinduced electron transfer fluorescence imaging microscopy of chaperone dynamics. Nat Commun 2021; 12:6964. [PMID: 34845214 PMCID: PMC8630005 DOI: 10.1038/s41467-021-27286-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 11/11/2021] [Indexed: 11/20/2022] Open
Abstract
Many proteins are molecular machines, whose function is dependent on multiple conformational changes that are initiated and tightly controlled through biochemical stimuli. Their mechanistic understanding calls for spectroscopy that can probe simultaneously such structural coordinates. Here we present two-colour fluorescence microscopy in combination with photoinduced electron transfer (PET) probes as a method that simultaneously detects two structural coordinates in single protein molecules, one colour per coordinate. This contrasts with the commonly applied resonance energy transfer (FRET) technique that requires two colours per coordinate. We demonstrate the technique by directly and simultaneously observing three critical structural changes within the Hsp90 molecular chaperone machinery. Our results reveal synchronicity of conformational motions at remote sites during ATPase-driven closure of the Hsp90 molecular clamp, providing evidence for a cooperativity mechanism in the chaperone’s catalytic cycle. Single-molecule PET fluorescence microscopy opens up avenues in the multi-dimensional exploration of protein dynamics and allosteric mechanisms. Revealing mechanisms of complex protein machines requires simultaneous exploration of multiple structural coordinates. Here the authors report two-colour fluorescence microscopy combined with photoinduced electron transfer probes to simultaneously detect two structural coordinates in single protein molecules.
Collapse
|
48
|
Arhar T, Shkedi A, Nadel CM, Gestwicki JE. The interactions of molecular chaperones with client proteins: why are they so weak? J Biol Chem 2021; 297:101282. [PMID: 34624315 PMCID: PMC8567204 DOI: 10.1016/j.jbc.2021.101282] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/29/2021] [Accepted: 10/04/2021] [Indexed: 12/30/2022] Open
Abstract
The major classes of molecular chaperones have highly variable sequences, sizes, and shapes, yet they all bind to unfolded proteins, limit their aggregation, and assist in their folding. Despite the central importance of this process to protein homeostasis, it has not been clear exactly how chaperones guide this process or whether the diverse families of chaperones use similar mechanisms. For the first time, recent advances in NMR spectroscopy have enabled detailed studies of how unfolded, "client" proteins interact with both ATP-dependent and ATP-independent classes of chaperones. Here, we review examples from four distinct chaperones, Spy, Trigger Factor, DnaK, and HscA-HscB, highlighting the similarities and differences between their mechanisms. One striking similarity is that the chaperones all bind weakly to their clients, such that the chaperone-client interactions are readily outcompeted by stronger, intra- and intermolecular contacts in the folded state. Thus, the relatively weak affinity of these interactions seems to provide directionality to the folding process. However, there are also key differences, especially in the details of how the chaperones release clients and how ATP cycling impacts that process. For example, Spy releases clients in a largely folded state, while clients seem to be unfolded upon release from Trigger Factor or DnaK. Together, these studies are beginning to uncover the similarities and differences in how chaperones use weak interactions to guide protein folding.
Collapse
Affiliation(s)
- Taylor Arhar
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Disease, University of California San Francisco, San Francisco California, USA
| | - Arielle Shkedi
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Disease, University of California San Francisco, San Francisco California, USA
| | - Cory M Nadel
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Disease, University of California San Francisco, San Francisco California, USA
| | - Jason E Gestwicki
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Disease, University of California San Francisco, San Francisco California, USA.
| |
Collapse
|