1
|
Li Y, Xu T, Ma H, Yue D, Lamao Q, Liu Y, Zhou Z, Wei W. Functional profiling of serine, threonine and tyrosine sites. Nat Chem Biol 2025; 21:532-543. [PMID: 39313591 DOI: 10.1038/s41589-024-01731-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 08/14/2024] [Indexed: 09/25/2024]
Abstract
Systematic perturbation of amino acids at endogenous loci provides diverse insights into protein function. Here, we performed a genome-wide screen to globally assess the cell fitness dependency of serine, threonine and tyrosine residues. Using an adenine base editor, we designed a whole-genome library comprising 817,089 single guide RNAs to perturb 584,337 S, T and Y sites. We identified 3,467 functional substitutions affecting cell fitness and 677 of them involving phosphorylation, including numerous phosphorylation-mediated gain-of-function substitutions that regulate phosphorylation levels of itself or downstream factors. Furthermore, our findings highlight that specific substitution types, notably serine to proline, are crucial for maintaining domain structure broadly. Lastly, we demonstrate that 309 enriched hits capable of initiating cell overproliferation might be potential cancer driver mutations. This study represents an extensive functional profiling of S, T and Y residues and provides insights into the distinctive roles of these amino acids in biological mechanisms and tumor progression.
Collapse
Affiliation(s)
- Yizhou Li
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
- Changping Laboratory, Beijing, China
| | - Tao Xu
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Huazheng Ma
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
- State Key Laboratory of Common Mechanism Research for Major Diseases, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Suzhou, China
| | - Di Yue
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Qiezhong Lamao
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
- Changping Laboratory, Beijing, China
| | - Ying Liu
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
- Changping Laboratory, Beijing, China
| | - Zhuo Zhou
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
- State Key Laboratory of Common Mechanism Research for Major Diseases, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Suzhou, China
| | - Wensheng Wei
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China.
- Changping Laboratory, Beijing, China.
| |
Collapse
|
2
|
Zhang K, Wang Y, Jiang S, Li Y, Xiang P, Zhang Y, Chen Y, Chen M, Su W, Liu L, Li S. dsDAP: An efficient method for high-abundance DNA-encoded library construction in mammalian cells. Int J Biol Macromol 2025; 298:140089. [PMID: 39842606 DOI: 10.1016/j.ijbiomac.2025.140089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/14/2025] [Accepted: 01/17/2025] [Indexed: 01/24/2025]
Abstract
DNA-encoded libraries are invaluable tools for high-throughput screening and functional genomics studies. However, constructing high-abundance libraries in mammalian cells remains challenging. Here, we present dsDNA-assembly-PCR (dsDAP), a novel Gibson-assembly-PCR strategy for creating DNA-encoded libraries, offering improved flexibility and efficiency over previous methods. We demonstrated this approach by investigating the impact of translation initiation sequences (TIS) on protein expression in HEK293T cells. Both CRISPR-Cas9 and piggyBac systems were employed for genomic integration, allowing comparison of different integration methods. Our results confirmed the importance of specific nucleotides in the TIS region, particularly the preference for adenine at the -3 position in high-expression sequences. We also explored the effects of library dilution on genotype-phenotype correlations. This Gibson-assembly-PCR strategy overcomes limitations of existing methods, such as restriction enzyme dependencies, and provides a versatile tool for constructing high-abundance libraries in mammalian cells. Our approach has broad applications in functional genomics, drug discovery, and the study of gene regulation.
Collapse
Affiliation(s)
- Kaili Zhang
- Department of Molecular Pharmacology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yi Wang
- Department of Molecular Pharmacology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Shuze Jiang
- Department of Molecular Pharmacology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yifan Li
- Department of Molecular Pharmacology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Pan Xiang
- Department of Molecular Pharmacology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yuxuan Zhang
- Department of Molecular Pharmacology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yongzi Chen
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Min Chen
- Department of Molecular Pharmacology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Weijun Su
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Liren Liu
- Department of Molecular Pharmacology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China.
| | - Shuai Li
- Department of Molecular Pharmacology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China.
| |
Collapse
|
3
|
Acosta J, Johnson GA, Gould SI, Dong K, Lendner Y, Detrés D, Atwa O, Bulkens J, Gruber S, Contreras ME, Wuest AN, Narendra VK, Hemann MT, Sánchez-Rivera FJ. Multiplexed in vivo base editing identifies functional gene-variant-context interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.23.639770. [PMID: 40060482 PMCID: PMC11888363 DOI: 10.1101/2025.02.23.639770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Human genome sequencing efforts in healthy and diseased individuals continue to identify a broad spectrum of genetic variants associated with predisposition, progression, and therapeutic outcomes for diseases like cancer1-6. Insights derived from these studies have significant potential to guide clinical diagnoses and treatment decisions; however, the relative importance and functional impact of most genetic variants remain poorly understood. Precision genome editing technologies like base and prime editing can be used to systematically engineer and interrogate diverse types of endogenous genetic variants in their native context7-9. We and others have recently developed and applied scalable sensor-based screening approaches to engineer and measure the phenotypes produced by thousands of endogenous mutations in vitro 10-12. However, the impact of most genetic variants in the physiological in vivo setting, including contextual differences depending on the tissue or microenvironment, remains unexplored. Here, we integrate new cross-species base editing sensor libraries with syngeneic cancer mouse models to develop a multiplexed in vivo platform for systematic functional analysis of endogenous genetic variants in primary and disseminated malignancies. We used this platform to screen 13,840 guide RNAs designed to engineer 7,783 human cancer-associated mutations mapping to 489 endogenous protein-coding genes, allowing us to construct a rich compendium of putative functional interactions between genes, mutations, and physiological contexts. Our findings suggest that the physiological in vivo environment and cellular organotropism are important contextual determinants of specific gene-variant phenotypes. We also show that many mutations and their in vivo effects fail to be detected with standard CRISPR-Cas9 nuclease approaches and often produce discordant phenotypes, potentially due to site-specific amino acid selection- or separation-of-function mechanisms. This versatile platform could be deployed to investigate how genetic variation impacts diverse in vivo phenotypes associated with cancer and other genetic diseases, as well as identify new potential therapeutic avenues to treat human disease.
Collapse
Affiliation(s)
- Jonuelle Acosta
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Grace A. Johnson
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Samuel I. Gould
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kexin Dong
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yovel Lendner
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Diego Detrés
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ondine Atwa
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jari Bulkens
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Utrecht University, Utrecht, The Netherlands
| | - Samuel Gruber
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Manuel E. Contreras
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alexandra N. Wuest
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Varun K. Narendra
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michael T. Hemann
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Francisco J. Sánchez-Rivera
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
4
|
Pan Q, Zhang Z, Xiong Y, Bao Y, Chen T, Xu P, Liu Z, Ma H, Yu Y, Zhou Z, Wei W. Mapping functional elements of the DNA damage response through base editor screens. Cell Rep 2024; 43:115047. [PMID: 39661519 DOI: 10.1016/j.celrep.2024.115047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 09/05/2024] [Accepted: 11/19/2024] [Indexed: 12/13/2024] Open
Abstract
Maintaining genomic stability is vital for cellular equilibrium. In this study, we combined CRISPR-mediated base editing with pooled screening technologies to identify numerous mutations in lysine residues and protein-coding genes. The loss of these lysine residues and genes resulted in either sensitivity or resistance to DNA-damaging agents. Among the identified variants, we characterized both loss-of-function and gain-of-function mutations in response to DNA damage. Notably, we discovered that the K494 mutation of C17orf53 disrupts its interaction with RPA proteins, leading to increased sensitivity to cisplatin. Additionally, our analysis identified STK35 as a previously unrecognized gene involved in DNA damage response (DDR) pathways, suggesting that it may play a critical role in DNA repair. We believe that this resource will offer valuable insights into the broader functions of DNA damage response genes and accelerate research on variants relevant to cancer therapy.
Collapse
Affiliation(s)
- Qian Pan
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Zhixuan Zhang
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Yangfang Xiong
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Ying Bao
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; Changping Laboratory, Beijing 102206, China
| | - Tianxin Chen
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Ping Xu
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Zhiheng Liu
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Huazheng Ma
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Ying Yu
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Zhuo Zhou
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; State Key Laboratory of Common Mechanism Research for Major Diseases, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, Jiangsu, China
| | - Wensheng Wei
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; Changping Laboratory, Beijing 102206, China.
| |
Collapse
|
5
|
Bao Y, Wei W. Protocol for high-throughput screening of functional lysine residues in cell fitness. STAR Protoc 2024; 5:103418. [PMID: 39471176 PMCID: PMC11550167 DOI: 10.1016/j.xpro.2024.103418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/09/2024] [Accepted: 10/07/2024] [Indexed: 11/01/2024] Open
Abstract
Amino acid residues are crucial to protein structure and function and have links to various human diseases. Here, we present a protocol for screening functional lysine residues across the human genome. We describe steps for designing lysine codon-targeting single-guide RNAs (sgRNAs), constructing an sgRNA library, conducting cell fitness screenings, and acquiring screening results. This approach leverages base editing and high-throughput screening techniques to systematically examine functional amino acid residues. For complete details on the use and execution of this protocol, please refer to Bao et al.1.
Collapse
Affiliation(s)
- Ying Bao
- Changping Laboratory, Beijing 102206, China
| | - Wensheng Wei
- Changping Laboratory, Beijing 102206, China; Biomedical Pioneering Innovation Center, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
6
|
McCarthy WJ, van der Zouwen AJ, Bush JT, Rittinger K. Covalent fragment-based drug discovery for target tractability. Curr Opin Struct Biol 2024; 86:102809. [PMID: 38554479 DOI: 10.1016/j.sbi.2024.102809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/08/2024] [Accepted: 03/10/2024] [Indexed: 04/01/2024]
Abstract
An important consideration in drug discovery is the prioritization of tractable protein targets that are not only amenable to binding small molecules, but also alter disease biology in response to small molecule binding. Covalent fragment-based drug discovery has emerged as a powerful approach to aid in the identification of such protein targets. The application of irreversible binding mechanisms enables the identification of fragment hits for challenging-to-target proteins, allows proteome-wide screening in a cellular context, and makes it possible to determine functional effects with modestly potent ligands without the requirement for extensive compound optimization. Here, we provide an overview of recent approaches to covalent fragment-based screening and discuss how these have been applied to establish the tractability of unexplored binding sites on protein targets.
Collapse
Affiliation(s)
- William J McCarthy
- Molecular Structure of Cell Signalling Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Antonie J van der Zouwen
- Molecular Structure of Cell Signalling Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Jacob T Bush
- Crick-GSK Biomedical LinkLabs, GSK, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK. https://twitter.com/Jake_T_Bush
| | - Katrin Rittinger
- Molecular Structure of Cell Signalling Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
| |
Collapse
|
7
|
Lin T, Liu D, Guan Z, Zhao X, Li S, Wang X, Hou R, Zheng J, Cao J, Shi M. CRISPR screens in mechanism and target discovery for AML. Heliyon 2024; 10:e29382. [PMID: 38660246 PMCID: PMC11040068 DOI: 10.1016/j.heliyon.2024.e29382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 03/20/2024] [Accepted: 04/07/2024] [Indexed: 04/26/2024] Open
Abstract
CRISPR-based screens have discovered novel functional genes involving in diverse tumor biology and elucidated the mechanisms of the cancer pathological states. Recently, with its randomness and unbiasedness, CRISPR screens have been used to discover effector genes with previously unknown roles for AML. Those novel targets are related to AML survival resembled cellular pathways mediating epigenetics, synthetic lethality, transcriptional regulation, mitochondrial and energy metabolism. Other genes that are crucial for pharmaceutical targeting and drug resistance have also been identified. With the rapid development of novel strategies, such as barcodes and multiplexed mosaic CRISPR perturbation, more potential therapeutic targets and mechanism in AML will be discovered. In this review, we present an overview of recent progresses in the development of CRISPR-based screens for the mechanism and target identification in AML and discuss the challenges and possible solutions in this rapidly growing field.
Collapse
Affiliation(s)
- Tian Lin
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu, 221002, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Dan Liu
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu, 221002, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Zhangchun Guan
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu, 221002, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Xuan Zhao
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu, 221002, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Sijin Li
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu, 221002, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Xu Wang
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu, 221002, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Rui Hou
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu, 221002, China
- College of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Junnian Zheng
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu, 221002, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Jiang Cao
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu, 221002, China
| | - Ming Shi
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu, 221002, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
| |
Collapse
|
8
|
Johnson GA, Gould SI, Sánchez-Rivera FJ. Deconstructing cancer with precision genome editing. Biochem Soc Trans 2024; 52:803-819. [PMID: 38629716 PMCID: PMC11088927 DOI: 10.1042/bst20230984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/25/2024] [Accepted: 04/03/2024] [Indexed: 04/25/2024]
Abstract
Recent advances in genome editing technologies are allowing investigators to engineer and study cancer-associated mutations in their endogenous genetic contexts with high precision and efficiency. Of these, base editing and prime editing are quickly becoming gold-standards in the field due to their versatility and scalability. Here, we review the merits and limitations of these precision genome editing technologies, their application to modern cancer research, and speculate how these could be integrated to address future directions in the field.
Collapse
Affiliation(s)
- Grace A. Johnson
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02142, MA, U.S.A
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge 02142, MA, U.S.A
| | - Samuel I. Gould
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02142, MA, U.S.A
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge 02142, MA, U.S.A
| | - Francisco J. Sánchez-Rivera
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02142, MA, U.S.A
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge 02142, MA, U.S.A
| |
Collapse
|
9
|
Mezghrani A, Simon J, Reys V, Labesse G. Detection and Analysis of Short Linear Motif-Based Protein-Protein Interactions with SLiMAn2 Web Server. Methods Mol Biol 2024; 2836:253-281. [PMID: 38995545 DOI: 10.1007/978-1-0716-4007-4_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Interactomics is bringing a deluge of data regarding protein-protein interactions (PPIs) which are involved in various molecular processes in all types of cells. However, this information does not easily translate into direct and precise molecular interfaces. This limits our understanding of each interaction network and prevents their efficient modulation. A lot of the detected interactions involve recognition of short linear motifs (SLiMs) by a folded domain while others rely on domain-domain interactions. Functional SLiMs hide among a lot of spurious ones, making deeper analysis of interactomes tedious. Hence, actual contacts and direct interactions are difficult to identify.Consequently, there is a need for user-friendly bioinformatic tools, enabling rapid molecular and structural analysis of SLiM-based PPIs in a protein network. In this chapter, we describe the use of the new webserver SLiMAn to help digging into SLiM-based PPIs in an interactive fashion.
Collapse
Affiliation(s)
- Alexandre Mezghrani
- Centre de Biologie Structurale (CBS), CNRS, INSERM, University of Montpellier, Montpellier, France
| | - Juliette Simon
- Centre de Biologie Structurale (CBS), CNRS, INSERM, University of Montpellier, Montpellier, France
| | - Victor Reys
- Centre de Biologie Structurale (CBS), CNRS, INSERM, University of Montpellier, Montpellier, France.
| | - Gilles Labesse
- Centre de Biologie Structurale (CBS), CNRS, INSERM, University of Montpellier, Montpellier, France.
| |
Collapse
|
10
|
Gopala Krishna V, Gautsch VG, D'Angiolella V. The case of the missing Ks: Base editor screen to assess cellular fitness at single lysines. Mol Cell 2023; 83:4442-4444. [PMID: 38134884 DOI: 10.1016/j.molcel.2023.11.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023]
Abstract
In this issue of Molecular Cell, Bao et al.1 set out to elucidate "functional lysines" in the genome using adenine base editors. The study reveals several cases of alteration of functions that previous canonical CRISPR-Cas9 screens were unable to detect.
Collapse
Affiliation(s)
- Varun Gopala Krishna
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK
| | - Verena Gudrun Gautsch
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK
| | - Vincenzo D'Angiolella
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK.
| |
Collapse
|