1
|
Impact of Surfactant Protein-A on Immunomodulatory Properties of Murine and Human Breast Milk. J Pediatr Gastroenterol Nutr 2022; 75:97-103. [PMID: 35442233 DOI: 10.1097/mpg.0000000000003458] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVES Human milk reduces the incidence of necrotizing enterocolitis (NEC). Prior studies have demonstrated that exogenous surfactant protein-A (SP-A) modulates intestinal inflammation, reduces NEC-like pathology in SP-A-deficient (SPAKO) pups, and may contribute to breast milk's immunomodulatory potential. We hypothesize that SP-A is present in milk and impacts inflammatory responses in the terminal ileum of neonatal mice. METHODS Human milk was collected at postpartum days 1-3 and 28. Mouse milk was collected at postpartum days 1-10. SP-A was detected in milk through immunoprecipitation and western blot analysis. The impact of murine wild-type (WT) milk on SPAKO pup ileum was evaluated in a model of intestinal inflammation via cross-rearing experiments. Terminal ileum was evaluated for inflammatory cytokine and toll-like receptor 4 (TLR4) mRNA expression via quantitative real-time RT-PCR. RESULTS SP-A was detected in human milk and wild type (WT) mouse milk, but not in SPAKO mouse milk. Expression of TLR4, interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α was decreased in SPAKO pups reared with WT dams compared to SPAKO pups reared with SPAKO dams, with a peak effect at day of life 14. When inflammation was induced using a lipopolysaccharide-induced model of inflammation, expression of TLR4, IL-1β, IL-6, CXCL-1, and TNF-α was significantly lower in SPAKO pups reared with WT dams compared to SPAKO pups reared with SPAKO dams. CONCLUSIONS SP-A is present in human and murine milk and plays a role in lowering inflammation in murine pup terminal ileum. Both baseline inflammation and induced inflammatory responses are reduced via exposure to SP-A in milk with the effect amplified in inflammatory conditions.
Collapse
|
2
|
Floros J, Tsotakos N. Differential Regulation of Human Surfactant Protein A Genes, SFTPA1 and SFTPA2, and Their Corresponding Variants. Front Immunol 2021; 12:766719. [PMID: 34917085 PMCID: PMC8669794 DOI: 10.3389/fimmu.2021.766719] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 11/02/2021] [Indexed: 11/26/2022] Open
Abstract
The human SFTPA1 and SFTPA2 genes encode the surfactant protein A1 (SP-A1) and SP-A2, respectively, and they have been identified with significant genetic and epigenetic variability including sequence, deletion/insertions, and splice variants. The surfactant proteins, SP-A1 and SP-A2, and their corresponding variants play important roles in several processes of innate immunity as well in surfactant-related functions as reviewed elsewhere [1]. The levels of SP-A have been shown to differ among individuals both under baseline conditions and in response to various agents or disease states. Moreover, a number of agents have been shown to differentially regulate SFTPA1 and SFTPA2 transcripts. The focus in this review is on the differential regulation of SFTPA1 and SFTPA2 with primary focus on the role of 5′ and 3′ untranslated regions (UTRs) and flanking sequences on this differential regulation as well molecules that may mediate the differential regulation.
Collapse
Affiliation(s)
- Joanna Floros
- Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA, United States.,Department of Obstetrics and Gynecology, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Nikolaos Tsotakos
- School of Science, Engineering, and Technology, The Pennsylvania State University - Harrisburg, Middletown, PA, United States
| |
Collapse
|
3
|
Liu L, Aron CZ, Grable CM, Robles A, Liu X, Liu Y, Fatheree NY, Rhoads JM, Alcorn JL. Surfactant protein A reduces TLR4 and inflammatory cytokine mRNA levels in neonatal mouse ileum. Sci Rep 2021; 11:2593. [PMID: 33510368 PMCID: PMC7843620 DOI: 10.1038/s41598-021-82219-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 01/15/2021] [Indexed: 01/10/2023] Open
Abstract
Levels of intestinal toll-like receptor 4 (TLR4) impact inflammation in the neonatal gastrointestinal tract. While surfactant protein A (SP-A) is known to regulate TLR4 in the lung, it also reduces intestinal damage, TLR4 and inflammation in an experimental model of necrotizing enterocolitis (NEC) in neonatal rats. We hypothesized that SP-A-deficient (SP-A-/-) mice have increased ileal TLR4 and inflammatory cytokine levels compared to wild type mice, impacting intestinal physiology. We found that ileal TLR4 and proinflammatory cytokine levels were significantly higher in infant SP-A-/- mice compared to wild type mice. Gavage of neonatal SP-A-/- mice with purified SP-A reduced ileal TLR4 protein levels. SP-A reduced expression of TLR4 and proinflammatory cytokines in normal human intestinal epithelial cells (FHs74int), suggesting a direct effect. However, incubation of gastrointestinal cell lines with proteasome inhibitors did not abrogate the effect of SP-A on TLR4 protein levels, suggesting that proteasomal degradation is not involved. In a mouse model of experimental NEC, SP-A-/- mice were more susceptible to intestinal stress resembling NEC, while gavage with SP-A significantly decreased ileal damage, TLR4 and proinflammatory cytokine mRNA levels. Our data suggests that SP-A has an extrapulmonary role in the intestinal health of neonatal mice by modulating TLR4 and proinflammatory cytokines mRNA expression in intestinal epithelium.
Collapse
Affiliation(s)
- Lidan Liu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110036, China
| | - Chaim Z Aron
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin, Suite 3.222, Houston, TX, 77030, USA
| | - Cullen M Grable
- McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Adrian Robles
- McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Xiangli Liu
- Department of Thoracic Surgery, First Hospital of China Medical University, Shenyang, 110001, China
| | - Yuying Liu
- Division of Pediatric Gastroenterology, Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.,Department of Pediatrics, Pediatric Research Center, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Nicole Y Fatheree
- Division of Pediatric Gastroenterology, Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - J Marc Rhoads
- Division of Pediatric Gastroenterology, Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.,Department of Pediatrics, Pediatric Research Center, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Joseph L Alcorn
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin, Suite 3.222, Houston, TX, 77030, USA. .,Department of Pediatrics, Pediatric Research Center, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| |
Collapse
|
4
|
Nalian A, Umstead TM, Yang CH, Silveyra P, Thomas NJ, Floros J, McCormack FX, Chroneos ZC. Structural and Functional Determinants of Rodent and Human Surfactant Protein A: A Synthesis of Binding and Computational Data. Front Immunol 2019; 10:2613. [PMID: 31781112 PMCID: PMC6856657 DOI: 10.3389/fimmu.2019.02613] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 10/21/2019] [Indexed: 11/23/2022] Open
Abstract
Surfactant protein A (SP-A) provides surfactant stability, first line host defense, and lung homeostasis by binding surfactant phospholipids, pathogens, alveolar macrophages (AMs), and epithelial cells. Non-primates express one SP-A protein whereas humans express two: SP-A1 and SP-A2 with core intra- and inter-species differences in the collagen-like domain. Here, we used macrophages and solid phase binding assays to discern structural correlates of rat (r) and human (h) SP-A function. Binding assays using recombinant rSP-A expressed in insect cells showed that lack of proline hydroxylation, truncations of amino-terminal oligomerization domains, and site-directed serine (S) or alanine (A) mutagenesis of cysteine 6 (C6S), glutamate 195 (E195A), and glutamate 171 (E171A) in the carbohydrate recognition domain (CRD) all impaired SP-A binding. Replacement of arginine 197 with alanine found in hSP-A (R197A), however, restored the binding of hydroxyproline-deficient rSP-A to the SP-A receptor SP-R210 similar to native rat and human SP-A. In silico calculation of Ca++ coordination bond length and solvent accessibility surface area revealed that the “humanized” R197A substitution alters topology and solvent accessibility of the Ca++ coordination residues of the CRD domain. Binding assays in mouse AMs that were exposed to either endogenous SP-A or hSP-A1 (6A2) and hSP-A2 (1A0) isoforms in vivo revealed that mouse SP-A is a functional hybrid of hSP-A1 and hSP-A2 in regulating SP-A receptor occupancy and binding affinity. Binding assays using neonatal and adult human AMs indicates that the interaction of SP-A1 and SP-A2 with AMs is developmentally regulated. Furthermore, our data indicate that the auxiliary ion coordination loop encompassing the conserved E171 residue may comprise a conserved site of interaction with macrophages, and SP-R210 specifically, that merits further investigation to discern conserved and divergent SP-A functions between species. In summary, our findings support the notion that complex structural adaptation of SP-A regulate conserved and species specific AM functions in vertebrates.
Collapse
Affiliation(s)
- Armen Nalian
- Department of Biology, Stephen F. Austin State University, Nacogdoches, TX, United States.,The Center of Biomedical Research, University of Texas Health Science Center at Tyler, Tyler, TX, United States
| | - Todd M Umstead
- Department of Pediatrics, Pennsylvania State University College of Medicine and PennState Health Children's Hospital, Hershey, PA, United States.,Pulmonary Immunology and Physiology Laboratory, Pennsylvania State University College of Medicine and PennState Health Children's Hospital, Hershey, PA, United States
| | - Ching-Hui Yang
- The Center of Biomedical Research, University of Texas Health Science Center at Tyler, Tyler, TX, United States
| | - Patricia Silveyra
- Department of Pediatrics, Pennsylvania State University College of Medicine and PennState Health Children's Hospital, Hershey, PA, United States.,Pulmonary Immunology and Physiology Laboratory, Pennsylvania State University College of Medicine and PennState Health Children's Hospital, Hershey, PA, United States
| | - Neal J Thomas
- Department of Pediatrics, Pennsylvania State University College of Medicine and PennState Health Children's Hospital, Hershey, PA, United States.,Department of Public Health Sciences, Pennsylvania State University College of Medicine and PennState Health Children's Hospital, Hershey, PA, United States
| | - Joanna Floros
- Department of Pediatrics, Pennsylvania State University College of Medicine and PennState Health Children's Hospital, Hershey, PA, United States.,Center of Host Defense and Inflammatory Disease Research, Pennsylvania State University College of Medicine and PennState Health Children's Hospital, Hershey, PA, United States.,Department of Obstetrics and Gynecology, Pennsylvania State University College of Medicine and PennState Health Children's Hospital, Hershey, PA, United States
| | - Francis X McCormack
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Zissis C Chroneos
- The Center of Biomedical Research, University of Texas Health Science Center at Tyler, Tyler, TX, United States.,Department of Pediatrics, Pennsylvania State University College of Medicine and PennState Health Children's Hospital, Hershey, PA, United States.,Pulmonary Immunology and Physiology Laboratory, Pennsylvania State University College of Medicine and PennState Health Children's Hospital, Hershey, PA, United States.,Department of Microbiology and Immunology, Pennsylvania State University College of Medicine and PennState Health Children's Hospital, Hershey, PA, United States
| |
Collapse
|
5
|
Oral administration of surfactant protein-a reduces pathology in an experimental model of necrotizing enterocolitis. J Pediatr Gastroenterol Nutr 2015; 60:613-20. [PMID: 25539191 PMCID: PMC5027895 DOI: 10.1097/mpg.0000000000000678] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVES Necrotizing enterocolitis (NEC) frequently results in significant morbidity and mortality in premature infants. Others reported that mice deficient in pulmonary surfactant protein-A (SP-A) born and raised in a nonhygienic environment succumb to significant gastrointestinal tract pathology, and enteral administration of purified SP-A significantly reduced mortality. We hypothesized that oral administration of purified SP-A can ameliorate pathology in an experimental model of neonatal NEC. METHODS Experimental NEC was induced in newborn Sprague-Dawley rat pups by daily formula gavage and intermittent exposure to hypoxia. Purified human SP-A (5 μg/day) was administered by oral gavage. After 4 days, surviving pups were sacrificed, and intestinal pathology was assessed by histological examination of distal terminal ileal sections. Intestinal levels of inflammatory cytokines (IL-1β, IFN-γ, and TNF-α) were assessed by enzyme-linked immunosorbent assay and levels of Toll-like receptor 4 (TLR4) by Western analysis. RESULTS Sixty-one percent of the gavaged rat pups that survived to day 4 met the criteria for experimental NEC after hypoxia, whereas treatment with SP-A significantly reduced mortality and assessment of NEC. Intestinal levels of proinflammatory cytokines were significantly increased in pups exposed to hypoxia. Administration of SP-A to pups exposed to hypoxia significantly reduced IL-1β and TNF-α levels, but had little effect on elevated levels of IFN-γ. SP-A treatment of hypoxia-exposed pups significantly reduced expression of intestinal TLR4, key in NEC pathogenesis. CONCLUSIONS In a rat model of experimental neonatal NEC, oral administration of SP-A reduces intestinal levels of proinflammatory cytokines and TLR4 protein and ameliorates adverse outcomes associated with gastrointestinal pathologies.
Collapse
|
6
|
Silveyra P, Floros J. Air pollution and epigenetics: effects on SP-A and innate host defence in the lung. Swiss Med Wkly 2012; 142:w13579. [PMID: 22553125 DOI: 10.4414/smw.2012.13579] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
An appropriate immune and inflammatory response is key to defend against harmful agents present in the environment, such as pathogens, allergens and inhaled pollutants, including ozone and particulate matter. Air pollution is a serious public health concern worldwide, and cumulative evidence has revealed that air pollutants contribute to epigenetic variation in several genes, and this in turn can contribute to disease susceptibility. Several groups of experts have recently reviewed findings on epigenetics and air pollution [1-6]. Surfactant proteins play a central role in pulmonary host defence by mediating pathogen clearance, modulating allergic responses and facilitating the resolution of lung inflammation. Recent evidence indicates that surfactant proteins are subject to epigenetic regulation under hypoxia and other conditions. Oxidative stress caused by ozone, and exposure to particulate matter have been shown to affect the expression of surfactant protein A (SP-A), an important lung host defence molecule, as well as alter its functions. In this review, we discuss recent findings in the fields of epigenetics and air pollution effects on innate immunity, with the focus on SP-A, and the human SP-A variants in particular. Their function may be differentially affected by pollutants and specifically by ozone-induced oxidative stress, and this in turn may differentially affect susceptibility to lung disease.
Collapse
Affiliation(s)
- Patricia Silveyra
- Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, USA
| | | |
Collapse
|
7
|
Clearance of Propionibacterium acnes by kupffer cells is regulated by osteopontin through modulating the expression of p47phox. Mol Immunol 2011; 48:2019-26. [PMID: 21737140 DOI: 10.1016/j.molimm.2011.06.435] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 06/10/2011] [Indexed: 02/08/2023]
Abstract
Osteopontin (OPN) is a cytokine with multiple functions, including the regulation of innate immune response. However, the detailed function and mechanism of OPN in host defense against invaded microorganisms remain unclear. In this report, we revealed that OPN could affect the clearance of Propionibacterium acnes in kupffer cells. In a murine model of P. acnes induced hepatic granuloma, OPN-deficient mice or wild-type (WT) mice treated with anti-OPN mAb exhibited more hepatic granuloma formation than WT mice. Increased infiltration of intrahepatic leukocytes, higher expression of TLRs, and significantly upregulated level of proinflammatory cytokines of liver tissue were observed in OPN-deficient mice after P. acnes challenge. Moreover, in vitro assay showed that kupffer cells isolated from OPN(-/-) mice exhibited impairment in clearance of P. acnes. Kupffer cells isolated from OPN(-/-) mice showed reduced level of NADPH oxidase-mediated reactive oxygen species (ROS) in response to P. acnes, which was regulated by NADPH oxidase subunit p47phox. Further investigation revealed that OPN interaction with αvβ3 integrin activated PI3K and ERK signal pathways, leading to the expression of p47phox. Taken together, these data demonstrated an important role of OPN in enhancing the antimicrobial innate immune response by modulation of bacterium clearance activity in kupffer cells.
Collapse
|
8
|
Sorensen GL, Husby S, Holmskov U. Surfactant protein A and surfactant protein D variation in pulmonary disease. Immunobiology 2007; 212:381-416. [PMID: 17544823 DOI: 10.1016/j.imbio.2007.01.003] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2006] [Accepted: 01/02/2007] [Indexed: 12/17/2022]
Abstract
Surfactant proteins A (SP-A) and D (SP-D) have been implicated in pulmonary innate immunity. The proteins are host defense lectins, belonging to the collectin family which also includes mannan-binding lectin (MBL). SP-A and SP-D are pattern-recognition molecules with the lectin domains binding preferentially to sugars on a broad spectrum of pathogen surfaces and thereby facilitating immune functions including viral neutralization, clearance of bacteria, fungi and apoptotic and necrotic cells, modulation of allergic reactions, and resolution of inflammation. SP-A and SP-D can interact with receptor molecules present on immune cells leading to enhanced microbial clearance and modulation of inflammation. SP-A and SP-D also modulate the functions of cells of the adaptive immune system including dendritic cells and T cells. Studies on SP-A and SP-D polymorphisms and protein levels in bronchoalveolar lavage and blood have indicated associations with a multitude of pulmonary inflammatory diseases. In addition, accumulating evidence in mouse models of infection and inflammation indicates that recombinant forms of the surfactant proteins are biologically active in vivo and may have therapeutic potential in controlling pulmonary inflammatory disease. The presence of the surfactant collectins, especially SP-D, in non-pulmonary tissues, such as the gastrointestinal tract and genital organs, suggest additional actions located to other mucosal surfaces. The aim of this review is to summarize studies on genetic polymorphisms, structural variants, and serum levels of human SP-A and SP-D and their associations with human pulmonary disease.
Collapse
|
9
|
Grubor B, Meyerholz DK, Ackermann MR. Collectins and cationic antimicrobial peptides of the respiratory epithelia. Vet Pathol 2006; 43:595-612. [PMID: 16966437 PMCID: PMC2786072 DOI: 10.1354/vp.43-5-595] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The respiratory epithelium is a primary site for the deposition of microorganisms that are acquired during inspiration. The innate immune system of the respiratory tract eliminates many of these potentially harmful agents preventing their colonization. Collectins and cationic antimicrobial peptides are antimicrobial components of the pulmonary innate immune system produced by respiratory epithelia, which have integral roles in host defense and inflammation in the lung. Synthesis and secretion of these molecules are regulated by the developmental stage, hormones, as well as many growth and immunoregulatory factors. The purpose of this review is to discuss antimicrobial innate immune elements within the respiratory tract of healthy and pneumonic lung with emphasis on hydrophilic surfactant proteins and beta-defensins.
Collapse
Affiliation(s)
- B Grubor
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, IA, USA.
| | | | | |
Collapse
|
10
|
Abel B, Freigang S, Bachmann MF, Boschert U, Kopf M. Osteopontin Is Not Required for the Development of Th1 Responses and Viral Immunity. THE JOURNAL OF IMMUNOLOGY 2005; 175:6006-13. [PMID: 16237095 DOI: 10.4049/jimmunol.175.9.6006] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Osteopontin (OPN) has been defined as a key cytokine promoting the release of IL-12 and hence inducing the development of protective cell-mediated immunity to viruses and intracellular pathogens. To further characterize the role of OPN in antiviral immunity, OPN-deficient (OPN-/-) mice were analyzed after infection with influenza virus and vaccinia virus. Surprisingly, we found that viral clearance, lung inflammation, and recruitment of effector T cells to the lung were unaffected in OPN-/- mice after influenza infection. Furthermore, effector status of T cells was normal as demonstrated by normal IFN-gamma production and CTL lytic activity. Moreover, activation and Th1 differentiation of naive TCR transgenic CD4+ T cells by dendritic cells and cognate Ag was normal in the absence of OPN in vitro. Contrary to a previous report, we found that OPN-/- mice mounted a normal immune response to Listeria monocytogenes. In conclusion, OPN is dispensable for antiviral immune responses against influenza virus and vaccinia virus.
Collapse
Affiliation(s)
- Brian Abel
- Molecular Biomedicine, Swiss Federal Institute of Technology, and
| | | | | | | | | |
Collapse
|