1
|
Luo H, Bu D, Shao L, Li Y, Sun L, Wang C, Wang J, Yang W, Yang X, Dong J, Zhao Y, Li F. Single-cell Long Non-coding RNA Landscape of T Cells in Human Cancer Immunity. GENOMICS PROTEOMICS & BIOINFORMATICS 2021; 19:377-393. [PMID: 34284134 PMCID: PMC8864193 DOI: 10.1016/j.gpb.2021.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 12/03/2020] [Accepted: 03/06/2021] [Indexed: 01/08/2023]
Abstract
The development of new biomarkers or therapeutic targets for cancer immunotherapies requires deep understanding of T cells. To date, the complete landscape and systematic characterization of long noncoding RNAs (lncRNAs) in T cells in cancer immunity are lacking. Here, by systematically analyzing full-length single-cell RNA sequencing (scRNA-seq) data of more than 20,000 libraries of T cells across three cancer types, we provided the first comprehensive catalog and the functional repertoires of lncRNAs in human T cells. Specifically, we developed a custom pipeline for de novotranscriptome assembly and obtained a novel lncRNA catalog containing 9433 genes. This increased the number of current human lncRNA catalog by 16% and nearly doubled the number of lncRNAs expressed in T cells. We found that a portion of expressed genes in single T cells were lncRNAs which had been overlooked by the majority of previous studies. Based on metacell maps constructed by the MetaCell algorithm that partitions scRNA-seq datasets into disjointed and homogenous groups of cells (metacells), 154 signature lncRNA genes were identified. They were associated with effector, exhausted, and regulatory T cell states. Moreover, 84 of them were functionally annotated based on the co-expression networks, indicating that lncRNAs might broadly participate in the regulation of T cell functions. Our findings provide a new point of view and resource for investigating the mechanisms of T cell regulation in cancer immunity as well as for novel cancer-immune biomarker development and cancer immunotherapies
Collapse
Affiliation(s)
- Haitao Luo
- Translational Medicine Collaborative Innovation Center, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen 518020, China; Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen 518020, China; Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou 510632, China.
| | - Dechao Bu
- Bioinformatics Research Group, Key Laboratory of Intelligent Information Processing, Advanced Computing Research Center, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Lijuan Shao
- Translational Medicine Collaborative Innovation Center, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen 518020, China; Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen 518020, China; Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou 510632, China
| | - Yang Li
- Department of Gastrointestinal Surgery, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen 518020, China
| | - Liang Sun
- Bioinformatics Research Group, Key Laboratory of Intelligent Information Processing, Advanced Computing Research Center, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Ce Wang
- Translational Medicine Collaborative Innovation Center, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen 518020, China; Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen 518020, China
| | - Jing Wang
- Translational Medicine Collaborative Innovation Center, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen 518020, China; Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen 518020, China; Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou 510632, China
| | - Wei Yang
- Translational Medicine Collaborative Innovation Center, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen 518020, China; Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen 518020, China
| | - Xiaofei Yang
- Translational Medicine Collaborative Innovation Center, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen 518020, China; Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen 518020, China
| | - Jun Dong
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou 510632, China.
| | - Yi Zhao
- Bioinformatics Research Group, Key Laboratory of Intelligent Information Processing, Advanced Computing Research Center, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China.
| | - Furong Li
- Translational Medicine Collaborative Innovation Center, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen 518020, China; Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen 518020, China.
| |
Collapse
|
2
|
Sharma N, Ponce M, Kaul S, Pan Z, Berry DM, Eiwegger T, McGlade CJ. SLAP Is a Negative Regulator of FcεRI Receptor-Mediated Signaling and Allergic Response. Front Immunol 2019; 10:1020. [PMID: 31156621 PMCID: PMC6529641 DOI: 10.3389/fimmu.2019.01020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 04/23/2019] [Indexed: 01/09/2023] Open
Abstract
Binding of antigen to IgE-high affinity FcεRI complexes on mast cells and basophils results in the release of preformed mediators such as histamine and de novo synthesis of cytokines causing allergic reactions. Src-like adapter protein (SLAP) functions co-operatively with c-Cbl to negatively regulate signaling downstream of the T cell receptor, B cell receptor, and receptor tyrosine kinases (RTK). Here, we investigated the role of SLAP in FcεRI-mediated mast cell signaling, using bone marrow derived mast cells (BMMCs) from SLAP knock out (SLAP KO) mice. Mature SLAP-KO BMMCs displayed significantly enhanced antigen induced degranulation and synthesis of IL-6, TNFα, and MCP-1 compared to wild type (WT) BMMCs. In addition, SLAP KO mice displayed an enhanced passive cutaneous anaphylaxis response. In agreement with a negative regulatory role, SLAP KO BMMCs showed enhanced FcεRI-mediated signaling to downstream effector kinases, Syk, Erk, and Akt. Recombinant GST-SLAP protein binds to the FcεRIβ chain and to the Cbl-b in mast cell lysates, suggesting a role in FcεRI down regulation. In addition, the ubiquitination of FcεRIγ chain and antigen mediated down regulation of FcεRI is impaired in SLAP KO BMMCs compared to the wild type. In line with these findings, stimulation of peripheral blood human basophils with FcεRIα antibody, or a clinically relevant allergen, resulted in increased SLAP expression. Together, these results indicate that SLAP is a dynamic regulator of IgE-FcεRI signaling, limiting allergic responses.
Collapse
Affiliation(s)
- Namit Sharma
- Program in Cell Biology and the Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Marta Ponce
- Program in Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria.,Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Savar Kaul
- Program in Cell Biology and the Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Zhongda Pan
- Program in Cell Biology and the Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Donna M Berry
- Program in Cell Biology and the Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Thomas Eiwegger
- Program in Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Immunology, University of Toronto, Toronto, ON, Canada.,Food allergy and Anaphylaxis Program, Division of Immunology and Allergy, Department of Paediatrics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Catherine J McGlade
- Program in Cell Biology and the Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
3
|
Dumbell R, Matveeva O, Oster H. Circadian Clocks, Stress, and Immunity. Front Endocrinol (Lausanne) 2016; 7:37. [PMID: 27199894 PMCID: PMC4852176 DOI: 10.3389/fendo.2016.00037] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 04/18/2016] [Indexed: 12/20/2022] Open
Abstract
In mammals, molecular circadian clocks are present in most cells of the body, and this circadian network plays an important role in synchronizing physiological processes and behaviors to the appropriate time of day. The hypothalamic-pituitary-adrenal endocrine axis regulates the response to acute and chronic stress, acting through its final effectors - glucocorticoids - released from the adrenal cortex. Glucocorticoid secretion, characterized by its circadian rhythm, has an important role in synchronizing peripheral clocks and rhythms downstream of the master circadian pacemaker in the suprachiasmatic nucleus. Finally, glucocorticoids are powerfully anti-inflammatory, and recent work has implicated the circadian clock in various aspects and cells of the immune system, suggesting a tight interplay of stress and circadian systems in the regulation of immunity. This mini-review summarizes our current understanding of the role of the circadian clock network in both the HPA axis and the immune system, and discusses their interactions.
Collapse
Affiliation(s)
- Rebecca Dumbell
- Chronophysiology Group, Medical Department I, University of Lübeck, Lübeck, Germany
| | - Olga Matveeva
- Chronophysiology Group, Medical Department I, University of Lübeck, Lübeck, Germany
| | - Henrik Oster
- Chronophysiology Group, Medical Department I, University of Lübeck, Lübeck, Germany
| |
Collapse
|
4
|
The Emerging and Diverse Roles of Src-Like Adaptor Proteins in Health and Disease. Mediators Inflamm 2015; 2015:952536. [PMID: 26339145 PMCID: PMC4539169 DOI: 10.1155/2015/952536] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 01/02/2015] [Accepted: 01/05/2015] [Indexed: 12/26/2022] Open
Abstract
Although Src-like adaptor proteins (SLAP-1 and SLAP-2) were mainly studied in lymphocytes, where they act as negative regulators and provide fine control of receptor signaling, recently, several other functions of these proteins were discovered. In addition to the well-characterized immunoregulatory functions, SLAP proteins appear to have an essential role in the pathogenesis of type I hypersensitivity, osteoporosis, and numerous malignant diseases. Both adaptor proteins are expressed in a wide variety of tissues, where they have mostly inhibitory effects on multiple intracellular signaling pathways. In this review, we summarize the diverse effects of SLAP proteins.
Collapse
|
5
|
Kazi JU, Kabir NN, Rönnstrand L. Role of SRC-like adaptor protein (SLAP) in immune and malignant cell signaling. Cell Mol Life Sci 2015; 72:2535-44. [PMID: 25772501 PMCID: PMC11113356 DOI: 10.1007/s00018-015-1882-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 03/01/2015] [Accepted: 03/05/2015] [Indexed: 01/05/2023]
Abstract
SRC-like adaptor protein (SLAP) is an adaptor protein structurally similar to the SRC family protein kinases. Like SRC, SLAP contains an SH3 domain followed by an SH2 domain but the kinase domain has been replaced by a unique C-terminal region. SLAP is expressed in a variety of cell types. Current studies suggest that it regulates signaling of various cell surface receptors including the B cell receptor, the T cell receptor, cytokine receptors and receptor tyrosine kinases which are important regulator of immune and cancer cell signaling. SLAP targets receptors, or its associated components, by recruiting the ubiquitin machinery and thereby destabilizing signaling. SLAP directs receptors to ubiquitination-mediated degradation and controls receptors turnover as well as signaling. Thus, SLAP appears to be an important component in regulating signal transduction required for immune and malignant cells.
Collapse
Affiliation(s)
- Julhash U. Kazi
- Division of Translational Cancer Research, Lund University, Medicon Village 404:C3, 223 63 Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
- Laboratory of Computational Biochemistry, KN Biomedical Research Institute, Barisal, Bangladesh
| | - Nuzhat N. Kabir
- Laboratory of Computational Biochemistry, KN Biomedical Research Institute, Barisal, Bangladesh
| | - Lars Rönnstrand
- Division of Translational Cancer Research, Lund University, Medicon Village 404:C3, 223 63 Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
| |
Collapse
|
6
|
Sagar S, Morgan ME, Chen S, Vos AP, Garssen J, van Bergenhenegouwen J, Boon L, Georgiou NA, Kraneveld AD, Folkerts G. Bifidobacterium breve and Lactobacillus rhamnosus treatment is as effective as budesonide at reducing inflammation in a murine model for chronic asthma. Respir Res 2014; 15:46. [PMID: 24735374 PMCID: PMC4029990 DOI: 10.1186/1465-9921-15-46] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Accepted: 04/03/2014] [Indexed: 02/06/2023] Open
Abstract
Background Asthma is estimated to affect as many as 300 million people worldwide and its incidence and prevalence are rapidly increasing throughout the world, especially in children and within developing countries. Recently, there has been a growing interest in the use of potentially beneficial bacteria for allergic diseases. This study is aimed at exploring the therapeutic effects of long-term treatment with two different beneficial bacterial strains (Bifidobacterium breve M-16 V and Lactobacillus rhamnosus NutRes1) and a glucocorticoid (budesonide), as a reference treatment, on inflammatory response in a murine model for chronic allergic asthma. Methods To mimic the chronic disease in asthmatic patients, we used the murine ovalbumin-induced asthma model combined with prolonged allergen exposure. Airway function; pulmonary airway inflammation; airway remodelling, mRNA expression of pattern recognition receptors, Th-specific cytokines and transcription factors in lung tissue; mast cell degranulation; in vitro T cell activation; and expression of Foxp3 in blood Th cells were examined. Results Lactobacillus rhamnosus reduced lung resistance to a similar extent as budesonide treatment in chronically asthmatic mice. Pulmonary airway inflammation, mast cell degranulation, T cell activation and airway remodelling were suppressed by all treatments. Beneficial bacteria and budesonide differentially modulated the expression of toll-like receptors (TLRs), nod-like receptors (NLRs), cytokines and T cell transcription factors. Bifidobacterium breve induced regulatory T cell responses in the airways by increasing Il10 and Foxp3 transcription in lung tissue as well as systemic by augmenting the mean fluorescence intensity of Foxp3 in blood CD4+ T cells. Conclusion These findings show that Bifidobacterium breve M-16 V and Lactobacillus rhamnosus NutRes1 have strong anti-inflammatory properties that are comparable to budesonide and therefore may be beneficial in the treatment of chronic asthma.
Collapse
Affiliation(s)
- Seil Sagar
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, PO box 80082, 3508 TB Utrecht, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Silwal P, Lee MN, Lee CJ, Hong JH, Namgung U, Lee ZW, Kim J, Lim K, Kweon GR, Park JI, Park SK. Dexamethasone Induces FcγRIIb Expression in RBL-2H3 Cells. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2012; 16:393-8. [PMID: 23269901 PMCID: PMC3526743 DOI: 10.4196/kjpp.2012.16.6.393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 10/17/2012] [Accepted: 11/10/2012] [Indexed: 11/18/2022]
Abstract
Mast cells are involved in allergic responses, protection against pathogens and autoimmune diseases. Dexamethasone (Dex) and other glucocorticoids suppress FcεRI-mediated release of inflammatory mediators from mast cells. The inhibition mechanisms were mainly investigated on the downstream signaling of Fc receptor activations. Here, we addressed the effects of Dex on Fc receptor expressions in rat mast cell line RBL-2H3. We measured mRNA levels of Fc receptors by real-time PCR. As expected, Dex decreased the mRNA levels of activating Fc receptor for IgE (FcεR) I and increased the mRNA levels of the inhibitory Fc receptor for IgG FcγRIIb. Interestingly, Dex stimulated transcriptions of other activating receptors such as Fc receptors for IgG (FcγR) I and FcγRIII. To investigate the mechanisms underlying transcriptional regulation, we employed a transcription inhibitor actinomycin D and a translation inhibitor cycloheximide. The inhibition of protein synthesis without Dex treatment enhanced FcγRI and FcγRIII mRNA levels potently, while FcεRI and FcγRIIb were minimally affected. Next, we examined expressions of the Fc receptors on cell surfaces by the flow cytometric method. Only FcγRIIb protein expression was significantly enhanced by Dex treatment, while FcγRI, FcγRIII and FcεRI expression levels were marginally changed. Our data showed, for the first time, that Dex regulates Fc receptor expressions resulting in augmentation of the inhibitory receptor FcγRIIb.
Collapse
Affiliation(s)
- Prashanta Silwal
- Research Institute for Medical Sciences and Department of Biochemistry, College of Medicine, Chungnam National University, Daejeon 301-747, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Ayroldi E, Cannarile L, Migliorati G, Nocentini G, Delfino DV, Riccardi C. Mechanisms of the anti-inflammatory effects of glucocorticoids: genomic and nongenomic interference with MAPK signaling pathways. FASEB J 2012; 26:4805-20. [PMID: 22954589 DOI: 10.1096/fj.12-216382] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Glucocorticoids (GCs) are steroid hormones produced by the adrenal gland and regulated by the hypothalamus-pituitary-adrenal axis. GCs mediate effects that mostly result in transcriptional regulation of glucocorticoid receptor target genes. Mitogen-activated protein kinases (MAPKs) comprise a family of signaling proteins that convert extracellular stimuli into the activation of intracellular transduction pathways via phosphorylation of a cascade of substrates. They modulate a variety of physiological cell processes, such as proliferation, apoptosis, and development. However, when MAPKs are improperly activated by proinflammatory and/or extracellular stress stimuli, they contribute to the regulation of proinflammatory transcription factors, thus perpetuating activation of the inflammatory cascade. One of the mechanisms by which GCs exert their anti-inflammatory effects is negative interference with MAPK signaling pathways. Several functional interactions between GCs and MAPK signaling have been discovered and studied. Some of these interactions involve the GC-mediated up-regulation of proteins that in turn interfere with the activation of MAPK, such as glucocorticoid-induced-leucine zipper, MAPK phosphatase-1, and annexin-1. Other mechanisms include activated GR directly interacting with components of the MAPK pathway and negatively regulating their activation. The multiple interactions between GCs and MAPK pathways and their potential biological relevance in mediating the anti-inflammatory effects of GCs are reviewed.
Collapse
Affiliation(s)
- Emira Ayroldi
- Section of Pharmacology, Department of Clinical and Experimental Medicine, University of Perugia, Via del Giochetto, 06122 Perugia, Italy.
| | | | | | | | | | | |
Collapse
|
9
|
Schwartz JR, Sarvaiya PJ, Leiva LE, Velez MC, Singleton TC, Yu LC, Vedeckis WV. A facile, branched DNA assay to quantitatively measure glucocorticoid receptor auto-regulation in T-cell acute lymphoblastic leukemia. CHINESE JOURNAL OF CANCER 2012; 31:381-91. [PMID: 22739263 PMCID: PMC3777508 DOI: 10.5732/cjc.012.10044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Glucocorticoid (GC) steroid hormones are used to treat acute lymphoblastic leukemia (ALL) because of their pro-apoptotic effects in hematopoietic cells. However, not all leukemia cells are sensitive to GC, and no assay to stratify patients is available. In the GC-sensitive T-cell ALL cell line CEM-C7, auto-up-regulation of RNA transcripts for the glucocorticoid receptor (GR) correlates with increased apoptotic response. This study aimed to determine if a facile assay of GR transcript levels might be promising for stratifying ALL patients into hormone-sensitive and hormone-resistant populations. The GR transcript profiles of various lymphoid cell lines and 4 bone marrow samples from patients with T-cell ALL were analyzed using both an optimized branched DNA (bDNA) assay and a real-time quantitative reverse transcription-polymerase chain reaction assay. There were significant correlations between both assay platforms when measuring total GR (exon 5/6) transcripts in various cell lines and patient samples, but not for a probe set that detects a specific, low abundance GR transcript (exon 1A3). Our results suggest that the bDNA platform is reproducible and precise when measuring total GR transcripts and, with further development, may ultimately offer a simple clinical assay to aid in the prediction of GC-sensitivity in ALL patients.
Collapse
Affiliation(s)
- Jason R Schwartz
- Department of Biochemistry and Molecular Biology, Stanley S. Scott Cancer Center, Louisiana State University Health Science Center, New Orleans, LA 70112, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Carreño C, Domènech A, Prats N, Miralpeix M, Ramis I. Characterization of a model of tracheal plasma extravasation in passively sensitized rats using anti-allergic and anti-inflammatory drugs by oral and intratracheal route. Pulm Pharmacol Ther 2012; 25:87-93. [DOI: 10.1016/j.pupt.2011.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 10/28/2011] [Accepted: 12/09/2011] [Indexed: 11/29/2022]
|
11
|
An essential role for mast cells as modulators of neutrophils influx in collagen-induced arthritis in the mouse. J Transl Med 2011; 91:33-42. [PMID: 20714326 PMCID: PMC3498880 DOI: 10.1038/labinvest.2010.140] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Mast cells are involved in immune disorders so that many of the proinflammatory and tissue destructive mediators produced by these cells have been implicated in the pathogenesis of rheumatoid arthritis. This scenario prompted us to investigate the correlation between mast cell degranulation and neutrophil influx within the digits and knees joints of arthritic mice assessing what could be the functional role(s) of joint mast cells in the response to collagen immunization. DBA/1J mice were submitted to collagen-induced arthritis and disease was assessed on day 21, 32 and 42 post-immunization. Pharmacological treatment with the glucocorticoid prednisolone, commonly used in the clinic, and nedocromil, a mast cell stabilizer, was performed from day 21 to 30. Arthritis develop after immunization, gradually increased up to day 42. Neutrophil infiltration peaked on day 32 and 21, in the digits and knees, respectively, showing an unequal pattern of recruitment between these tissues. This difference emerged for mast cells: they peaked in the digits on day 21, but a higher degree of degranulation could be measured in the knee joints. Uneven modulation of arthritis occurred after treatment of mice with prednisolone or nedocromil. Neutrophils migration to the tissue was reduced after both therapies, but only prednisolone augmented mast cell migration to the joints. Nedocromil exerted inhibitory properties both on mast cell proliferation and migration, more effectively on the digit joints. Thus, collagen induced an inflammatory process characterized by tissue mast cells activation and degranulation, suggesting a potential driving force in propagating inflammatory circuits yielding recruitment of neutrophils. However, the different degree of affected joint involvement suggests a time-related implication of digits and knees during collagen-induced arthritis development. These results provide evidence for local alterations whereby mast cells contribute to the initiation of inflammatory arthritis and may be targeted in intervention strategies.
Collapse
|
12
|
Dragone LL, Shaw LA, Myers MD, Weiss A. SLAP, a regulator of immunoreceptor ubiquitination, signaling, and trafficking. Immunol Rev 2010; 232:218-28. [PMID: 19909366 DOI: 10.1111/j.1600-065x.2009.00827.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Src-like adapter proteins (SLAP and SLAP-2) constitute a family of proteins that are expressed in a variety of cell types but are studied most extensively in lymphocytes. They have been shown to associate with proximal components of the T-cell receptor (TCR) and B-cell receptor (BCR) signaling complexes. An interaction of SLAP with c-Cbl leads to the ubiquitination and degradation of phosphorylated components of the TCR- and BCR-signaling complexes. The absence of this process in immature SLAP-deficient T and B cells leads to increased immunoreceptor levels due to decreased intracellular retention and degradation. We propose a model in which SLAP-dependent regulation of immunoreceptor levels allows for finer control of immunoreceptor signaling. Thus, SLAP functions to dampen immunoreceptor signaling, thereby influencing lymphocyte development and repertoire selection.
Collapse
|
13
|
Ohama T, Brautigan DL. Endotoxin conditioning induces VCP/p97-mediated and inducible nitric-oxide synthase-dependent Tyr284 nitration in protein phosphatase 2A. J Biol Chem 2010; 285:8711-8. [PMID: 20100830 DOI: 10.1074/jbc.m109.099788] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Endotoxins activate Toll-like receptors and reprogram cells to be refractory to secondary exposure. Here we found that activation of different Toll-like receptors elicited a time- and dose-dependent increase in the levels of the protein phosphatase 2A catalytic subunit (PP2Ac) but not its partner A subunit. We purified the lipopolysaccharide-induced form of PP2A by chromatography plus immunoprecipitation and used mass spectrometry to identify VCP/p97 as a novel partner for PP2Ac. Endogenous VCP/p97 and PP2Ac were co-immunoprecipitated from primary murine macrophages and human lymphocytes. GST-VCP/p97 bound purified PP2A in pulldown assays, showing direct protein-protein interaction. Endotoxin conditioning of macrophages induced formation of 3-nitrotyrosine in the PP2Ac associated with VCP/p97, a response severely reduced in macrophages from iNOS knock-out mice. The reaction of purified PP2A with peroxynitrite dissociated the A subunit, and 3-nitro-Tyr(284) was identified in PP2Ac by mass spectrometry. Myc-PP2Ac (Y284F) expressed in cells was resistant to peroxynitrite-induced nitration and reduction of A subunit binding. Transient expression of either VCP/p97 or PP2Ac was sufficient to elevate levels of the dual specificity phosphatase DUSP1, reduce p38 MAPK activation, and suppress tumor necrosis factor-alpha release. We propose that VCP/p97-mediated Tyr nitration of PP2A increases the levels of phosphatases PP2A and DUSP1 to contribute to the refractory response of conditioned cells.
Collapse
Affiliation(s)
- Takashi Ohama
- Department of Microbiology, University of Virginia School of Medicine, Center for Cell Signaling, Charlottesville, Virginia 22908, USA
| | | |
Collapse
|
14
|
Chodaczek G, Bacsi A, Dharajiya N, Sur S, Hazra TK, Boldogh I. Ragweed pollen-mediated IgE-independent release of biogenic amines from mast cells via induction of mitochondrial dysfunction. Mol Immunol 2009; 46:2505-14. [PMID: 19501909 DOI: 10.1016/j.molimm.2009.05.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Accepted: 05/18/2009] [Indexed: 11/16/2022]
Abstract
Normal functions of mitochondria are required for physiological dynamics of cells, while their dysfunction contributes to development of various disorders including those of immune system. Here we demonstrate that exposure of mast cells to ragweed pollen extract increases production of H(2)O(2) via mitochondrial respiratory complex III. These mitochondrial ROS (mtROS) enhance secretion of histamine and serotonin from mast cells, but not enzymes such as beta-hexosaminidase, independently from FcvarepsilonRI-generated stimuli. The release of biogenic amines is associated with inhibition of secretory granules' H(+)-ATPase activity, activation of PKC-delta and microtubule-dependent motility, and it is independent from intracellular free Ca(2+) levels. To asses differences from IgE-mediated mast cell degranulation we show that mtROS decrease antigen-triggered beta-hexosaminidase release, while they are synergistic with antigen-induced IL-4 production in sensitized cells. Taken together, these data indicate that mitochondrial dysfunction can act independently from adaptive immunity, as well as augments Th2-type responses. Pharmacological maintenance of physiological mitochondrial function could have clinical benefits in prevention and treatment of allergic diseases.
Collapse
Affiliation(s)
- Grzegorz Chodaczek
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, TX 77555, USA
| | | | | | | | | | | |
Collapse
|
15
|
Park SK, Qiao H, Beaven MA. Src-like adaptor protein (SLAP) is upregulated in antigen-stimulated mast cells and acts as a negative regulator. Mol Immunol 2009; 46:2133-9. [PMID: 19371953 DOI: 10.1016/j.molimm.2009.03.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Accepted: 03/16/2009] [Indexed: 12/28/2022]
Abstract
Our studies in the RBL-2H3 mast cell line suggest that responses to antigen (Ag) are negatively modulated through upregulation of Src-like adaptor protein (SLAP). Ag stimulation of RBL-2H3 cells leads to increased levels of SLAP (but not SLAP2) transcripts and protein over a period of several hours. The effects of pharmacologic inhibitors indicate that the upregulation of SLAP is dependent on multiple signaling pathways. Knockdown of SLAP with anti-SLAP siRNA is associated with enhanced phosphorylation of Syk, the linker for activation of T cells (LAT), phospholipase C gamma, MAP kinases, and various transcription factors. Production of IL-3 and MCP-1, but not degranulation, is also enhanced. The upregulation of SLAP may thus serve to limit the duration of cytokine production in Ag-stimulated cells.
Collapse
Affiliation(s)
- Seung-Kiel Park
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|