1
|
Franco-Mateos E, Souza-Egipsy V, García-Estévez L, Pérez-García J, Gion M, Garrigós L, Cortez P, Saavedra C, Gómez P, Ortiz C, Cruz VL, Ramos J, Cortés J, Vega JF. Exploring the Combined Action of Adding Pertuzumab to Branded Trastuzumab versus Trastuzumab Biosimilars for Treating HER2+ Breast Cancer. Int J Mol Sci 2024; 25:3940. [PMID: 38612751 PMCID: PMC11011846 DOI: 10.3390/ijms25073940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/18/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
The binding activity of various trastuzumab biosimilars versus the branded trastuzumab towards the glycosylated extracellular domain of the human epidermal growth factor receptor 2 (HER2) target in the presence of pertuzumab was investigated. We employed size exclusion chromatography with tetra-detection methodology to simultaneously determine absolute molecular weight, concentration, molecular size, and intrinsic viscosity. All trastuzumab molecules in solution exhibit analogous behavior in their binary action towards HER2 regardless of the order of addition of trastuzumab/pertuzumab. This analogous behavior of all trastuzumab molecules, including biosimilars, highlights the robustness and consistency of their binding activity towards HER2. Furthermore, the addition of HER2 to a mixture of trastuzumab and pertuzumab leads to increased formation of high-order HER2 complexes, up to concentrations of one order of magnitude higher than in the case of sequential addition. The observed increase suggests a potential synergistic effect between these antibodies, which could enhance their therapeutic efficacy in HER2-positive cancers. These findings underscore the importance of understanding the complex interplay between therapeutic antibodies and their target antigens, providing valuable insights for the development of more effective treatment strategies.
Collapse
Affiliation(s)
- Emma Franco-Mateos
- BIOPHYM, Department of Macromolecular Physics, Instituto de Estructura de la Materia, IEM-CSIC, C/Serrano 113 bis, 28006 Madrid, Spain; (E.F.-M.); (V.S.-E.); (V.L.C.); (J.R.)
| | - Virginia Souza-Egipsy
- BIOPHYM, Department of Macromolecular Physics, Instituto de Estructura de la Materia, IEM-CSIC, C/Serrano 113 bis, 28006 Madrid, Spain; (E.F.-M.); (V.S.-E.); (V.L.C.); (J.R.)
| | | | - José Pérez-García
- International Breast Cancer Center (IBCC), Pangaea Oncology, Quiron Hospital, 08017 Barcelona, Spain; (J.P.-G.); (L.G.); (P.G.); (C.O.); (J.C.)
- Medica Scientia Innovation Research (MedSIR), 08018 Barcelona, Spain
- Medica Scientia Innovation Research (MedSIR), Ridgewood, NJ 07450, USA
| | - María Gion
- Medical Oncology Department, Ramón y Cajal University Hospital, 28034 Madrid, Spain; (M.G.); (C.S.)
| | - Laia Garrigós
- International Breast Cancer Center (IBCC), Pangaea Oncology, Quiron Hospital, 08017 Barcelona, Spain; (J.P.-G.); (L.G.); (P.G.); (C.O.); (J.C.)
| | | | - Cristina Saavedra
- Medical Oncology Department, Ramón y Cajal University Hospital, 28034 Madrid, Spain; (M.G.); (C.S.)
| | - Patricia Gómez
- International Breast Cancer Center (IBCC), Pangaea Oncology, Quiron Hospital, 08017 Barcelona, Spain; (J.P.-G.); (L.G.); (P.G.); (C.O.); (J.C.)
| | - Carolina Ortiz
- International Breast Cancer Center (IBCC), Pangaea Oncology, Quiron Hospital, 08017 Barcelona, Spain; (J.P.-G.); (L.G.); (P.G.); (C.O.); (J.C.)
| | - Víctor L. Cruz
- BIOPHYM, Department of Macromolecular Physics, Instituto de Estructura de la Materia, IEM-CSIC, C/Serrano 113 bis, 28006 Madrid, Spain; (E.F.-M.); (V.S.-E.); (V.L.C.); (J.R.)
| | - Javier Ramos
- BIOPHYM, Department of Macromolecular Physics, Instituto de Estructura de la Materia, IEM-CSIC, C/Serrano 113 bis, 28006 Madrid, Spain; (E.F.-M.); (V.S.-E.); (V.L.C.); (J.R.)
| | - Javier Cortés
- International Breast Cancer Center (IBCC), Pangaea Oncology, Quiron Hospital, 08017 Barcelona, Spain; (J.P.-G.); (L.G.); (P.G.); (C.O.); (J.C.)
- Medica Scientia Innovation Research (MedSIR), 08018 Barcelona, Spain
- Faculty of Biomedical and Health Sciences, Department of Medicine, Universidad Europea de Madrid, 28670 Madrid, Spain
| | - Juan F. Vega
- BIOPHYM, Department of Macromolecular Physics, Instituto de Estructura de la Materia, IEM-CSIC, C/Serrano 113 bis, 28006 Madrid, Spain; (E.F.-M.); (V.S.-E.); (V.L.C.); (J.R.)
| |
Collapse
|
2
|
Cruz VL, Souza-Egipsy V, Gion M, Pérez-García J, Cortes J, Ramos J, Vega JF. Binding Affinity of Trastuzumab and Pertuzumab Monoclonal Antibodies to Extracellular HER2 Domain. Int J Mol Sci 2023; 24:12031. [PMID: 37569408 PMCID: PMC10418494 DOI: 10.3390/ijms241512031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/12/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
The binding affinity of trastuzumab and pertuzumab to HER2 has been studied using both experimental and in silico methods. The experiments were conducted using the antibodies in their complete IgG form, as used in clinical therapy, and the extracellular domain of the HER2 protein in solution. This approach provides a precise, reproducible, and reliable view of the interaction between them in physicochemical conditions similar to those found in the tumoral environment. Dynamic light scattering and size exclusion chromatography coupled with tetra detection were utilized to characterize the protein complexes, measure their concentrations, and calculate the equilibrium-free binding energy, ΔGbind. In addition, PRODIGY, a QSAR-like model with excellent predictive ability, was employed to obtain in silico ΔGbind estimations. The results obtained indicate that pertuzumab exhibits a slightly higher binding affinity to HER2 than trastuzumab. The difference in binding affinity was explained based on the contribution of the different interfacial contact (IC) descriptors to the ΔGbind value estimated by the PRODIGY model. Furthermore, experiments revealed that the pertuzumab IgG antibody binds preferentially to two HER2 proteins, one per Fab fragment, while trastuzumab mainly forms a monovalent complex. This finding was interpreted based on a geometrical model that identified steric crowding in the trastuzumab-HER2 complex as compared with the pertuzumab-HER2 complex.
Collapse
Affiliation(s)
- Victor L. Cruz
- BIOPHYM, Department of Macromolecular Physics, Instituto de Estructura de la Materia, IEM-CSIC, C/Serrano 113 bis, 28006 Madrid, Spain
| | - Virginia Souza-Egipsy
- BIOPHYM, Department of Macromolecular Physics, Instituto de Estructura de la Materia, IEM-CSIC, C/Serrano 113 bis, 28006 Madrid, Spain
| | - María Gion
- University Hospital Ramon y Cajal, 28304 Madrid, Spain
| | - José Pérez-García
- International Breast Cancer Center (IBCC), Pangaea Oncology, Quironsalud Group, 08017 Barcelona, Spain
- Medical Scientia Innovation Research (MedSIR), 08018 Barcelona, Spain
| | - Javier Cortes
- International Breast Cancer Center (IBCC), Pangaea Oncology, Quironsalud Group, 08017 Barcelona, Spain
- Medical Scientia Innovation Research (MedSIR), 08018 Barcelona, Spain
- Department of Medicine, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, 28108 Madrid, Spain
| | - Javier Ramos
- BIOPHYM, Department of Macromolecular Physics, Instituto de Estructura de la Materia, IEM-CSIC, C/Serrano 113 bis, 28006 Madrid, Spain
| | - Juan F. Vega
- BIOPHYM, Department of Macromolecular Physics, Instituto de Estructura de la Materia, IEM-CSIC, C/Serrano 113 bis, 28006 Madrid, Spain
| |
Collapse
|
3
|
Impact of anti-PEG antibody affinity on accelerated blood clearance of pegylated epoetin beta in mice. Biomed Pharmacother 2021; 146:112502. [PMID: 34891120 DOI: 10.1016/j.biopha.2021.112502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/22/2021] [Accepted: 12/02/2021] [Indexed: 11/24/2022] Open
Abstract
Antibodies that bind polyethylene glycol (PEG) can be induced by pegylated biomolecules and also exist in a significant fraction of healthy individuals who have never received pegylated medicines. The binding affinity of antibodies against PEG (anti-PEG antibodies) likely varies depending on if they are induced or naturally occurring. Anti-PEG antibodies can accelerate the clearance of pegylated medicines from the circulation, resulting in loss of drug efficacy, but it is unknown how accelerated blood clearance is affected by anti-PEG antibody affinity. We identified a panel of anti-PEG IgG and IgM antibodies with binding avidities ranging over several orders of magnitude to methoxy polyethylene glycol-epoetin beta (PEG-EPO), which is used to treat patients suffering from anemia. Formation of in vitro immune complexes between PEG-EPO and anti-PEG IgG or IgM antibodies was more obvious as antibody affinity increased. Likewise, high affinity anti-PEG antibodies produced greater accelerated blood clearance of PEG-EPO as compared to low affinity antibodies. The molar ratio of anti-PEG antibody to PEG-EPO that accelerates drug clearance in mice correlates with antibody binding avidity. Our study indicates that the bioactivity of PEG-EPO may be reduced due to rapid clearance in patients with either high concentrations of low affinity or low concentrations of high affinity anti-PEG IgG and IgM antibodies.
Collapse
|
4
|
Ch'ng ACW, Lam P, Alassiri M, Lim TS. Application of phage display for T-cell receptor discovery. Biotechnol Adv 2021; 54:107870. [PMID: 34801662 DOI: 10.1016/j.biotechadv.2021.107870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/23/2021] [Accepted: 11/15/2021] [Indexed: 12/13/2022]
Abstract
The immune system is tasked to keep our body unharmed and healthy. In the immune system, B- and T-lymphocytes are the two main components working together to stop and eliminate invading threats like virus particles, bacteria, fungi and parasite from attacking our healthy cells. The function of antibodies is relatively more direct in target recognition as compared to T-cell receptors (TCR) which recognizes antigenic peptides being presented on the major histocompatibility complex (MHC). Although phage display has been widely applied for antibody presentation, this is the opposite in the case of TCR. The cell surface TCR is a relatively large and complex molecule, making presentation on phage surfaces challenging. Even so, recombinant versions and modifications have been introduced to allow the growing development of TCR in phage display. In addition, the increasing application of TCR for immunotherapy has made it an important binding motif to be developed by phage display. This review will emphasize on the application of phage display for TCR discovery as well as the engineering aspect of TCR for improved characteristics.
Collapse
Affiliation(s)
- Angela Chiew Wen Ch'ng
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Paula Lam
- CellVec Private Limited, 118518, Singapore; National University of Singapore, Department of Physiology, 117597, Singapore; Duke-NUS Graduate Medical School, Cancer and Stem Cells Biology Program, 169857, Singapore
| | - Mohammed Alassiri
- Department of Basic Sciences, College of Science and Health Professions, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Saudi Arabia; King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia
| | - Theam Soon Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia; Analytical Biochemistry Research Centre, Universiti Sains Malaysia, 11800 Penang, Malaysia.
| |
Collapse
|
5
|
Tesfaye A, Rodríguez‐Nogales A, Benedé S, Fernández TD, Paris JL, Rodriguez MJ, Jiménez‐Sánchez IM, Bogas G, Mayorga C, Torres MJ, Montañez MI. Nanoarchitectures for efficient IgE cross-linking on effector cells to study amoxicillin allergy. Allergy 2021; 76:3183-3193. [PMID: 33784407 PMCID: PMC8518075 DOI: 10.1111/all.14834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/28/2021] [Accepted: 03/14/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND Amoxicillin (AX) is nowadays the β-lactam that more frequently induces immediate allergic reactions. Nevertheless, diagnosis of AX allergy is occasionally challenging due to risky in vivo tests and non-optimal sensitivity of in vitro tests. AX requires protein haptenation to form multivalent conjugates with increased size to be immunogenic. Knowing adduct structural features for promoting effector cell activation would help to improve in vitro tests. We aimed to identify the optimal structural requirement in specific cellular degranulation to AX using well-precised nanoarchitectures of different lengths. METHOD We constructed eight Bidendron Antigens (BiAns) based on polyethylene glycol (PEG) linkers of different lengths (600-12,000 Da), end-coupled with polyamidoamine dendrons that were terminally multi-functionalized with amoxicilloyl (AXO). In vitro IgE recognition was studied by competitive radioallergosorbent test (RAST) and antibody-nanoarchitecture complexes by transmission electron microscopy (TEM). Their allergenic activity was evaluated using bone marrow-derived mast cells (MCs) passively sensitized with mouse monoclonal IgE against AX and humanized RBL-2H3 cells sensitized with polyclonal antibodies from sera of AX-allergic patients. RESULTS All BiAns were recognized by AX-sIgE. Dose-dependent activation responses were observed in both cellular assays, only with longer structures, containing spacers in the range of PEG 6000-12,000 Da. Consistently, greater proportion of immunocomplexes and number of antibodies per complex for longer BiAns were visualized by TEM. CONCLUSIONS BiAns are valuable platforms to study the mechanism of effector cell activation. These nanomolecular tools have demonstrated the importance of the adduct size to promote effector cell activation in AX allergy, which will impact for improving in vitro diagnostics.
Collapse
Affiliation(s)
- Amene Tesfaye
- Andalusian Centre for Nanomedicine and Biotechnology‐BIONANDMálagaSpain
- Allergy Research GroupInstituto de Investigación Biomédica de Málaga‐IBIMAMálagaSpain
| | - Alba Rodríguez‐Nogales
- Andalusian Centre for Nanomedicine and Biotechnology‐BIONANDMálagaSpain
- Allergy Research GroupInstituto de Investigación Biomédica de Málaga‐IBIMAMálagaSpain
| | - Sara Benedé
- Instituto de Investigación en Ciencias de la Alimentación (CIALCSIC‐UAM)MadridSpain
| | - Tahía D. Fernández
- Allergy Research GroupInstituto de Investigación Biomédica de Málaga‐IBIMAMálagaSpain
- Departamento de Biología Celular Genética y FisiologíaFacultad de CienciasUniversidad de MálagaMálagaSpain
| | - Juan L. Paris
- Andalusian Centre for Nanomedicine and Biotechnology‐BIONANDMálagaSpain
- Allergy Research GroupInstituto de Investigación Biomédica de Málaga‐IBIMAMálagaSpain
| | - Maria J. Rodriguez
- Andalusian Centre for Nanomedicine and Biotechnology‐BIONANDMálagaSpain
- Allergy Research GroupInstituto de Investigación Biomédica de Málaga‐IBIMAMálagaSpain
| | - Isabel M. Jiménez‐Sánchez
- Andalusian Centre for Nanomedicine and Biotechnology‐BIONANDMálagaSpain
- Allergy Research GroupInstituto de Investigación Biomédica de Málaga‐IBIMAMálagaSpain
| | - Gador Bogas
- Allergy Research GroupInstituto de Investigación Biomédica de Málaga‐IBIMAMálagaSpain
- Allergy UnitHospital Regional Universitario de MálagaMálagaSpain
| | - Cristobalina Mayorga
- Andalusian Centre for Nanomedicine and Biotechnology‐BIONANDMálagaSpain
- Allergy Research GroupInstituto de Investigación Biomédica de Málaga‐IBIMAMálagaSpain
- Allergy UnitHospital Regional Universitario de MálagaMálagaSpain
| | - María J. Torres
- Andalusian Centre for Nanomedicine and Biotechnology‐BIONANDMálagaSpain
- Allergy Research GroupInstituto de Investigación Biomédica de Málaga‐IBIMAMálagaSpain
- Allergy UnitHospital Regional Universitario de MálagaMálagaSpain
- Departamento de MedicinaFacultad de MedicinaUniversidad de MálagaMálagaSpain
| | - María I. Montañez
- Andalusian Centre for Nanomedicine and Biotechnology‐BIONANDMálagaSpain
- Allergy Research GroupInstituto de Investigación Biomédica de Málaga‐IBIMAMálagaSpain
| |
Collapse
|
6
|
Native high-resolution mass spectrometry analysis of noncovalent protein complexes up to 450 kDa. Bioanalysis 2020; 12:1353-1362. [PMID: 32830519 DOI: 10.4155/bio-2020-0145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
7
|
Wang Y, Li Z, Barnych B, Huo J, Wan D, Vasylieva N, Xu J, Li P, Liu B, Zhang C, Hammock BD. Investigation of the Small Size of Nanobodies for a Sensitive Fluorescence Polarization Immunoassay for Small Molecules: 3-Phenoxybenzoic Acid, an Exposure Biomarker of Pyrethroid Insecticides as a Model. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:11536-11541. [PMID: 31589045 PMCID: PMC7134064 DOI: 10.1021/acs.jafc.9b04621] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Limited reports on the use of nanobodies (Nbs) in fluorescence polarization immunoassay (FPIA) aroused us to explore if the small size of Nbs is a drawback for the development of sensitive FPIA to small molecular compounds, particularly since FPIA is a technology strongly dependent on molecular weight. In the present work, three different molecular weight Nbs against 3-phenoxybenzoic acid (3-PBA), an exposure biomarker of pyrethroid insecticides, including bare Nbs (15 kDa), Nbs-Avidin (Nbs-AV, 60 kDa), and Nbs-Alkaline phosphatase (Nbs-AP, 130 kDa) were specifically generated to cover distinct regions on the polarization and molecular weight relationship curve for a fluorescein tracer. In competitive FPIA, similar half-maximal inhibitory concentrations (IC50) of 3-PBA of 16.4, 12.2, and 14.8 ng mL-1 were obtained for Nbs, Nbs-AV, and Nbs-AP, respectively, indicating that the size of Nbs in the range tested had no significant effect on the sensitivity of the resulting competitive FPIA. An IC50 of 20.2 ng mL-1 for an anti-3-PBA polyconal antibody based FPIA further demonstrated the performance of Nbs, which was comparable to that of traditional antibodies in FPIA. Spike-recovery studies showed good and reproducible recovery of 3-PBA in urine samples, demonstrating the applicability of Nb-based FPIA. Overall, our results show that Nb-based FPIA achieves sensitivity levels of FPIA based on conventional antibodies and further indicate that Nb absolutely meets the sensitivity requirement of FPIA.
Collapse
Affiliation(s)
- Yulong Wang
- Institute of Food safety and nutrition, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, California 95616, United States
| | - Zhenfeng Li
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, California 95616, United States
| | - Bogdan Barnych
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, California 95616, United States
| | - Jingqian Huo
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, California 95616, United States
- College of Plant Protection, Agricultural University of Hebei, Baoding 071001, China
| | - Debin Wan
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, California 95616, United States
| | - Natalia Vasylieva
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, California 95616, United States
| | - Junli Xu
- Institute of Food safety and nutrition, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China
| | - Pan Li
- Institute of Food safety and nutrition, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China
| | - Beibei Liu
- Institute of Food safety and nutrition, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China
| | - Cunzheng Zhang
- Institute of Food safety and nutrition, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
- Corresponding Author. &
| | - Bruce D. Hammock
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, California 95616, United States
- Corresponding Author. &
| |
Collapse
|
8
|
Bush DB, Knotts TA. The effects of antigen size, binding site valency, and flexibility on fab-antigen binding near solid surfaces. J Chem Phys 2018; 149:165102. [PMID: 30384722 DOI: 10.1063/1.5045356] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Next generation antibody microarray devices have the potential to outperform current molecular detection methods and realize new applications in medicine, scientific research, and national defense. However, antibody microarrays, or arrays of antibody fragments ("fabs"), continue to evade mainstream use in part due to persistent reliability problems despite improvements to substrate design and protein immobilization strategies. Other factors could be disrupting microarray performance, including effects resulting from antigen characteristics. Target molecules embody a wide range of sizes, shapes, number of epitopes, epitope accessibility, and other physical and chemical properties. As a result, it may not be ideal for microarray designs to utilize the same substrate or immobilization strategy for all of the capture molecules. This study investigates how three antigen properties, such as size, binding site valency, and molecular flexibility, affect fab binding. The work uses an advanced, experimentally validated, coarse-grain model and umbrella sampling to calculate the free energy of ligand binding and how this energy landscape is different on the surface compared to in the bulk. The results confirm that large antigens interact differently with immobilized fabs compared to smaller antigens. Analysis of the results shows that despite these differences, tethering fabs in an upright orientation on hydrophilic surfaces is the best configuration for antibody microarrays.
Collapse
Affiliation(s)
- Derek B Bush
- Department of Chemical Engineering, Brigham Young University Provo, Provo, Utah 84602, USA
| | - Thomas A Knotts
- Department of Chemical Engineering, Brigham Young University Provo, Provo, Utah 84602, USA
| |
Collapse
|
9
|
Establishment and evaluation of a general dissociation technique for antibodies in circulating immune complexes. Clin Exp Med 2018; 19:65-75. [PMID: 30120614 PMCID: PMC6394588 DOI: 10.1007/s10238-018-0523-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/08/2018] [Indexed: 11/06/2022]
Abstract
This study aimed to establish a general and efficient dissociation technique for detecting antibodies in circulating immune complexes (CICs) in serum and to evaluate its clinical application. CICs were efficiently separated from specimens using polyethylene glycol double-precipitation. The best conditions for anti-HBs dissociation from HBsAg-ICs were a pH of 1.80, incubation at 15 °C for 5–10 min, and detection within 10 min after neutralization. The mean dissociation rate, reproducibility, mean dissociation recovery rate and specificity of the new technique were 64.3%, < 5.97, 95.4 and 100%, respectively. They had a favourable linear relationship (r = 0.9932), and the stability of the reagents exceeded 24 months, except the CIC antibody dissociation reagent (> 12 months). Conditions for the dissociation of other CICs tested were similar, but there were differences in the rate of antibody dissociation. Different HBV-M patterns had significantly different levels and rates of antibody dissociation from HBsAg-IC (P < 0.05), and the detection rates of the corresponding antibodies in HCV, core-anti-HCV core antibody (HCV-ICs), HIV P24-anti-HIV P24 antibody (HIV-ICs), insulin-anti-insulin antibody (INS-ICs) and thyroid globulin-anti-thyroid globulin antibody CICs (TG-ICs) were 34.8, 66.7, 20 and 14.3%, respectively. These data suggest that our CIC antibody dissociation technique is a good general pretreatment technique for the detection of antibodies after the precipitation, separation and dissociation of multiple CICs.
Collapse
|
10
|
MS-based conformation analysis of recombinant proteins in design, optimization and development of biopharmaceuticals. Methods 2018; 144:134-151. [PMID: 29678586 DOI: 10.1016/j.ymeth.2018.04.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/10/2018] [Accepted: 04/12/2018] [Indexed: 01/18/2023] Open
Abstract
Mass spectrometry (MS)-based methods for analyzing protein higher order structures have gained increasing application in the field of biopharmaceutical development. The predominant methods used in this area include native MS, hydrogen deuterium exchange-MS, covalent labeling, cross-linking and limited proteolysis. These MS-based methods will be briefly described in this article, followed by a discussion on how these methods contribute at different stages of discovery and development of protein therapeutics.
Collapse
|
11
|
Ruhe L, Ickert S, Hochkirch U, Hofmann J, Beck S, Thomale J, Linscheid MW. Comprehensive Molecular Characterization of a Cisplatin-Specific Monoclonal Antibody. Mol Pharm 2017; 14:4454-4461. [PMID: 29129076 DOI: 10.1021/acs.molpharmaceut.7b00575] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Despite their immense and rapidly increasing importance as analytical tools or therapeutic drugs, the detailed structural features of particular monoclonal antibodies are widely unknown. Here, an antibody already in use for diagnostic purposes and for molecular dosimetry studies in cancer therapy with very high affinity and specificity for cisplatin-induced DNA modifications was studied extensively. The molecular structure and modifications as well as the antigen specificity were investigated mainly by mass spectrometry. Using nano electrospray ionization mass spectrometry, it was possible to characterize the antibody in its native state. Tandem-MS experiments not only revealed specific fragments but also gave information on the molecular structure. The detailed primary structure was further elucidated by proteolytic treatment with a selection of enzymes and high resolution tandem-MS. The data were validated by comparison with known antibody sequences. Then, the complex glycan structures bound to the antibody were characterized in all detail. The Fc-bound oligosaccharides were released enzymatically and studied by matrix-assisted laser desorption/ionization mass spectrometry. Overall 16 different major glycan structures were identified. The binding specificity of the antibody was investigated by applying synthetic single and double stranded DNA oligomers harboring distinct Pt adducts. The antibody-antigen complexes were analyzed by mass spectrometry under native conditions. The stability of the complex with double stranded DNA was also investigated.
Collapse
Affiliation(s)
- Lena Ruhe
- Department of Chemistry, Humboldt-Universitaet zu Berlin , Brook-Taylor-Strasse 2, 12489 Berlin, Germany
| | - Stefanie Ickert
- Department of Chemistry, Humboldt-Universitaet zu Berlin , Brook-Taylor-Strasse 2, 12489 Berlin, Germany.,Federal Institute for Materials Research and Testing , Richard-Willstaetter-Strasse 11, 12489 Berlin, Germany
| | - Ulrike Hochkirch
- Department of Chemistry, Humboldt-Universitaet zu Berlin , Brook-Taylor-Strasse 2, 12489 Berlin, Germany
| | - Johanna Hofmann
- Fritz Haber Institute of the Max Planck Society , Faradayweg 4-6, 14195 Berlin, Germany
| | - Sebastian Beck
- Department of Chemistry, Humboldt-Universitaet zu Berlin , Brook-Taylor-Strasse 2, 12489 Berlin, Germany
| | - Jürgen Thomale
- Department of Cell Biology, Universitaetsklinikum Essen , Hufelandstrasse 55, 45122 Essen, Germany
| | - Michael W Linscheid
- Department of Chemistry, Humboldt-Universitaet zu Berlin , Brook-Taylor-Strasse 2, 12489 Berlin, Germany
| |
Collapse
|
12
|
Dai Y, Hu Z, Chen Y, Lou B, Cui D, Xu A, Rao Y, He J, Yang J, Zeng X, Xu X, Wang G, Xu J, Zhou T, Sun C, Cheng J. A novel general and efficient technique for dissociating antigen in circulating immune complexes. Electrophoresis 2017; 39:406-416. [PMID: 28972666 DOI: 10.1002/elps.201700246] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 09/20/2017] [Accepted: 09/25/2017] [Indexed: 02/05/2023]
Abstract
Circulating immune complexes (CICs) are produced during the immune response. It is more clinically important to establish a general and efficient CICs dissociation technique for the detection of antigens for CICs other than the detection of free antigens in the serum. Polyethylene glycol (PEG) two-precipitation separation and glycine-HCl as a buffer system were employed to develop a general and efficient buffer dissociation technique to separate CICs from serum and dissociate antigens from CICs. The measurement value of new PEG two-precipitation separation technique was higher than traditional PEG precipitation separation technique. There were slight differences in the dissociation conditions of HCV Core-IC, HIV P24-IC, Ins-IC and TG-IC as compared to HBsAg-IC. The detection of antigens in HBsAg-IC, HCV Core-IC, HIV P24-IC, Ins-IC and TG-IC with this technique was superior to that with HCl Dissociation, Trypsin Digestion or Immune Complex Transfer technique. PEG two-precipitation dissociation technique may reduce macromolecular protein and the adhesion of free antigens during the co-precipitation, which increases the efficiency of separation and precipitation of CICs. This technique also avoids the damage of reagents to antigens, assuring the repeatability, reliability and validity. Thus, this technique is application in samples negative or positive for free antigens.
Collapse
Affiliation(s)
- Yuzhu Dai
- Department of Clinical Laboratory, The 117th Hospital of PLA, Hangzhou, P. R. China
| | - Zhengjun Hu
- Department of Clinical Laboratory, First Affiliated Hospital, Zhejiang University of Traditional Chinese Medicine, Hangzhou, P. R. China
| | - Yu Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, P. R. China
| | - Bin Lou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, P. R. China
| | - Dawei Cui
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, P. R. China
| | - Aifang Xu
- Department of Clinical Laboratory Science, Hangzhou Xixi Hospital, Hangzhou, P. R. China
| | - Yueli Rao
- Department of Clinical Laboratory, The 117th Hospital of PLA, Hangzhou, P. R. China
| | - Jiahui He
- Department of Clinical Laboratory Science, Hangzhou Xixi Hospital, Hangzhou, P. R. China
| | - Jiezuan Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, P. R. China
| | - Xianming Zeng
- Department of Clinical Laboratory, The 117th Hospital of PLA, Hangzhou, P. R. China
| | - Xujian Xu
- Department of Biotechnology, The University of Tokyo, Tokyo, Japan
| | - Guozheng Wang
- Department of Clinical Laboratory, The 117th Hospital of PLA, Hangzhou, P. R. China
| | - Jian Xu
- Medical Technology College, Zhejiang University of Traditional Chinese Medicine, Hangzhou, P. R. China
| | - Tieli Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, P. R. China
| | - Changgui Sun
- Department of Clinical Laboratory, The 117th Hospital of PLA, Hangzhou, P. R. China
| | - Jun Cheng
- Department of Clinical Laboratory, The 117th Hospital of PLA, Hangzhou, P. R. China.,Medical Technology College, Zhejiang University of Traditional Chinese Medicine, Hangzhou, P. R. China.,Faculty of Graduate Studies, Wenzhou Medical University, Wenzhou, P. R. China
| |
Collapse
|
13
|
Ishii K, Zhou M, Uchiyama S. Native mass spectrometry for understanding dynamic protein complex. Biochim Biophys Acta Gen Subj 2017; 1862:275-286. [PMID: 28965879 DOI: 10.1016/j.bbagen.2017.09.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/17/2017] [Accepted: 09/19/2017] [Indexed: 12/13/2022]
Abstract
Biomolecules have evolved to perform specific and sophisticated activities in a highly coordinated manner organizing into multi-component complexes consisting of proteins, nucleic acids, cofactors or ligands. Understanding such complexes represents a task in earnest for modern bioscience. Traditional structural techniques when extrapolating to macromolecules of ever increasing sizes are confronted with limitations posed by the difficulty in enrichment, solubility, stability as well as lack of homogeneity of these complexes. Alternative approaches are therefore prompted to bridge the gap, one of which is native mass spectrometry. Here we demonstrate the strength of native mass spectrometry, used alone or in combination with other biophysical methods such as analytical ultracentrifugation, small-angle neutron scattering, and small-angle X-ray scattering etc., in addressing dynamic aspects of protein complexes including structural reorganization, subunit exchange, as well as the assembly/disassembly processes in solution that are dictated by transient non-covalent interactions. We review recent studies from our laboratories and others applying native mass spectrometry to both soluble and membrane-embedded assemblies. This article is part of a Special Issue entitled "Biophysical Exploration of Dynamical Ordering of Biomolecular Systems" edited by Dr. Koichi Kato.
Collapse
Affiliation(s)
- Kentaro Ishii
- Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
| | - Min Zhou
- Institute of Bio-analytical Chemistry, School of Chemical Engineering, Nanjing University of Science and Technology, No. 200 Xiaolingwei Street, Nanjing 210094, China.
| | - Susumu Uchiyama
- Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan; Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
14
|
Krayukhina E, Noda M, Ishii K, Maruno T, Wakabayashi H, Tada M, Suzuki T, Ishii-Watabe A, Kato M, Uchiyama S. Analytical ultracentrifugation with fluorescence detection system reveals differences in complex formation between recombinant human TNF and different biological TNF antagonists in various environments. MAbs 2017; 9:664-679. [PMID: 28387583 PMCID: PMC5419078 DOI: 10.1080/19420862.2017.1297909] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
A number of studies have attempted to elucidate the binding mechanism between tumor necrosis factor (TNF) and clinically relevant antagonists. None of these studies, however, have been conducted as close as possible to physiologic conditions, and so the relationship between the size distribution of TNF-antagonist complexes and the antagonists' biological activity or adverse effects remains elusive. Here, we characterized the binding stoichiometry and sizes of soluble TNF-antagonist complexes for adalimumab, infliximab, and etanercept that were formed in human serum and in phosphate-buffered saline (PBS). Fluorescence-detected sedimentation velocity analytical ultracentrifugation analyses revealed that adalimumab and infliximab formed a range of complexes with TNF, with the major complexes consisting of 3 molcules of the respective antagonist and one or 2 molcules of TNF. Considerably greater amounts of high-molecular-weight complexes were detected for infliximab in human serum. The emergence of peaks with higher sedimentation coefficients than the adalimumab monomer as a function of added human serum albumin (HSA) concentration in PBS suggested weak reversible interactions between HSA and immunoglobulins. Etanerept exclusively formed 1:1 complexes with TNF in PBS, and a small amount of complexes with higher stoichiometry was detected in human serum. Consistent with these biophysical characterizations, a reporter assay showed that adalimumab and infliximab, but not etanercept, exerted FcγRIIa- and FcγRIIIa-mediated cell signaling in the presence of TNF and that infliximab exhibited higher potency than adalimumab. This study shows that assessing distribution profiles in serum will contribute to a more comprehensive understanding of the in vivo behavior of therapeutic proteins.
Collapse
Affiliation(s)
- Elena Krayukhina
- a Graduate School of Engineering, Osaka University , Yamadaoka, Suita , Osaka , Japan.,b U-Medico Inc. , Yamadaoka, Suita , Osaka , Japan
| | - Masanori Noda
- a Graduate School of Engineering, Osaka University , Yamadaoka, Suita , Osaka , Japan.,b U-Medico Inc. , Yamadaoka, Suita , Osaka , Japan
| | - Kentaro Ishii
- c Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences , Higashiyama, Myodaiji, Okazaki , Aichi , Japan
| | - Takahiro Maruno
- a Graduate School of Engineering, Osaka University , Yamadaoka, Suita , Osaka , Japan.,b U-Medico Inc. , Yamadaoka, Suita , Osaka , Japan
| | - Hirotsugu Wakabayashi
- a Graduate School of Engineering, Osaka University , Yamadaoka, Suita , Osaka , Japan
| | - Minoru Tada
- d Division of Biological Chemistry and Biologicals , National Institute of Health Sciences , Kamiyoga, Setagaya-ku , Tokyo , Japan
| | - Takuo Suzuki
- d Division of Biological Chemistry and Biologicals , National Institute of Health Sciences , Kamiyoga, Setagaya-ku , Tokyo , Japan
| | - Akiko Ishii-Watabe
- d Division of Biological Chemistry and Biologicals , National Institute of Health Sciences , Kamiyoga, Setagaya-ku , Tokyo , Japan
| | - Masahiko Kato
- e Sysmex Corporation , Murotani, Nishi-ku, Kobe-shi , Hyogo , Japan
| | - Susumu Uchiyama
- a Graduate School of Engineering, Osaka University , Yamadaoka, Suita , Osaka , Japan.,b U-Medico Inc. , Yamadaoka, Suita , Osaka , Japan.,c Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences , Higashiyama, Myodaiji, Okazaki , Aichi , Japan
| |
Collapse
|
15
|
Characteristics of Lipoprotein(a)-Containing Circulating Immune Complexes as Markers of Coronary Heart Disease. Bull Exp Biol Med 2016; 162:231-236. [PMID: 27905032 DOI: 10.1007/s10517-016-3583-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Indexed: 11/27/2022]
Abstract
We studied the composition of circulating immune complexes precipitated in the presence of various concentrations of polyethylene glycol in patients with coronary heart disease (CHD) and high concentration of lipoprotein(a) - Lp(a). Precipitation of highly purified Lp(a) preparation with polyethylene glycol was evaluated. The contents of Lp(a), autoantibodies to Lp(a), IgG, and IgM in circulating immune complexes isolated from the sera of donors and CHD patients with normal and high levels of Lp(a) were measured. Circulating immune complexes containing Lp(a) were detected in the plasma of CHD patients with high Lp(a) concentrations. The presence of high concentrations of Lp(a), autoantibodies to Lp(a), and circulating immune complexes in CHD patients suggests that immunological factor contributes to high atherothrombogenicity of Lp(a).
Collapse
|
16
|
Terral G, Beck A, Cianférani S. Insights from native mass spectrometry and ion mobility-mass spectrometry for antibody and antibody-based product characterization. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1032:79-90. [DOI: 10.1016/j.jchromb.2016.03.044] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/28/2016] [Accepted: 03/30/2016] [Indexed: 10/22/2022]
|
17
|
Antigenic cross-reactivity and species-specific identification of Pseudocerastes persicus fieldi snake venom. Toxicon 2016; 119:194-202. [DOI: 10.1016/j.toxicon.2016.06.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 06/11/2016] [Accepted: 06/15/2016] [Indexed: 11/22/2022]
|
18
|
Oda M, Tanabe Y, Noda M, Inaba S, Krayukhina E, Fukada H, Uchiyama S. Structural and binding properties of laminarin revealed by analytical ultracentrifugation and calorimetric analyses. Carbohydr Res 2016; 431:33-8. [PMID: 27267066 DOI: 10.1016/j.carres.2016.05.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 05/18/2016] [Accepted: 05/23/2016] [Indexed: 10/21/2022]
Abstract
One of the β-1,3-glucans, laminarin, has been widely used as a substrate for enzymes including endo-1,3-β-glucanase. To obtain quantitative information about the molecular interaction between laminarin and endo-1,3-β-glucanase, the structural properties of laminarin should be determined. The results from pioneering work using analytical ultracentrifugation for carbohydrate analysis showed that laminarin from Laminaria digitata predominantly exists as a single-chain species with approximately 5% of triple-helical species. Differential scanning calorimetry experiments did not show a peak assignable to the transition from triple-helix to single-chain, supporting the notion that a large proportion of laminarin is the single-chain species. The interaction of laminarin with an inactive variant of endo-1,3-β-glucanase from Cellulosimicrobium cellulans, E119A, was quantitatively analyzed using isothermal titration calorimetry. The binding was enthalpically driven and the binding affinity was approximately 10(6) M(-1). The results from binding stoichiometric analysis indicated that on average, E119A binds to laminarin in a 2:1 ratio. This seems to be reasonable, because laminarin mainly exists as a monomer, the apparent molecular mass of laminarin is 3.6 kDa, and E119A would have substrate-binding subsites corresponding to 6 glucose units. The analytical ultracentrifugation experiments could detect different complex species of laminarin and endo-1,3-β-glucanase.
Collapse
Affiliation(s)
- Masayuki Oda
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5, Hangi-cho, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan.
| | - Yoichi Tanabe
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5, Hangi-cho, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan
| | - Masanori Noda
- U-Medico Inc., 1-1, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Satomi Inaba
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5, Hangi-cho, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan
| | | | - Harumi Fukada
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Susumu Uchiyama
- U-Medico Inc., 1-1, Yamadaoka, Suita, Osaka 565-0871, Japan; Graduate School of Engineering, Osaka University, 1-1, Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
19
|
Jefferis R. Posttranslational Modifications and the Immunogenicity of Biotherapeutics. J Immunol Res 2016; 2016:5358272. [PMID: 27191002 PMCID: PMC4848426 DOI: 10.1155/2016/5358272] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 03/20/2016] [Indexed: 12/23/2022] Open
Abstract
Whilst the amino acid sequence of a protein is determined by its gene sequence, the final structure and function are determined by posttranslational modifications (PTMs), including quality control (QC) in the endoplasmic reticulum (ER) and during passage through the Golgi apparatus. These processes are species and cell specific and challenge the biopharmaceutical industry when developing a production platform for the generation of recombinant biologic therapeutics. Proteins and glycoproteins are also subject to chemical modifications (CMs) both in vivo and in vitro. The individual is naturally tolerant to molecular forms of self-molecules but nonself variants can provoke an immune response with the generation of anti-drug antibodies (ADA); aggregated forms can exhibit enhanced immunogenicity and QC procedures are developed to avoid or remove them. Monoclonal antibody therapeutics (mAbs) are a special case because their purpose is to bind the target, with the formation of immune complexes (ICs), a particular form of aggregate. Such ICs may be removed by phagocytic cells that have antigen presenting capacity. These considerations may frustrate the possibility of ameliorating the immunogenicity of mAbs by rigorous exclusion of aggregates from drug product. Alternate strategies for inducing immunosuppression or tolerance are discussed.
Collapse
Affiliation(s)
- Roy Jefferis
- Institute of Immunology & Immunotherapy, College of Medical & Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
20
|
Quintyn RS, Zhou M, Yan J, Wysocki VH. Surface-Induced Dissociation Mass Spectra as a Tool for Distinguishing Different Structural Forms of Gas-Phase Multimeric Protein Complexes. Anal Chem 2015; 87:11879-86. [PMID: 26499904 DOI: 10.1021/acs.analchem.5b03441] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Royston S. Quintyn
- Department of Chemistry and
Biochemistry, The Ohio State University, 484 West 12th Avenue, Columbus, Ohio 43210, United States
| | - Mowei Zhou
- Department of Chemistry and
Biochemistry, The Ohio State University, 484 West 12th Avenue, Columbus, Ohio 43210, United States
| | - Jing Yan
- Department of Chemistry and
Biochemistry, The Ohio State University, 484 West 12th Avenue, Columbus, Ohio 43210, United States
| | - Vicki H. Wysocki
- Department of Chemistry and
Biochemistry, The Ohio State University, 484 West 12th Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
21
|
Abstract
Abstract
This work compiles information on the principles of diagnostic immunochemical methods and the recent advances in this field. It presents an overview of modern techniques for the production of diagnostic antibodies, their modification with the aim of improving their diagnostic potency, the different types of immunochemical detection systems, and the increasing diagnostic applications for human health that include specific disease markers, individualized diagnosis of cancer subtypes, therapeutic and addictive drugs, food residues, and environmental contaminants. A special focus lies in novel developments of immunosensor techniques, promising approaches to miniaturized detection units and the associated microfluidic systems. The trends towards high-throughput systems, multiplexed analysis, and miniaturization of the diagnostic tools are discussed. It is also made evident that progress in the last few years has largely relied on novel chemical approaches.
Collapse
|
22
|
Thompson NJ, Rosati S, Heck AJR. Performing native mass spectrometry analysis on therapeutic antibodies. Methods 2013; 65:11-7. [PMID: 23688935 DOI: 10.1016/j.ymeth.2013.05.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 04/29/2013] [Accepted: 05/01/2013] [Indexed: 12/11/2022] Open
Abstract
Since the introduction of "soft" ionization techniques, the role of mass spectrometry (MS) in the field of structural biology has increasingly expanded. With the incorporation of volatile buffers as electrospray ionization (ESI) solvents, non-covalent protein complexes could be efficiently transferred to the gas phase for mass analysis. While native MS has not become a technique used for standard characterization of therapeutic proteins in an industrial setting, it is increasingly used to probe the structural heterogeneity of these complex biomolecules. Here, we describe a detailed sample protocol for the analysis of monoclonal antibodies (mAbs) by native MS and highlight some recent applications of native MS in the analysis of intact mAbs and mAb-based therapeutics.
Collapse
Affiliation(s)
- Natalie J Thompson
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; Netherlands Proteomics Centre, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Sara Rosati
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; Netherlands Proteomics Centre, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; Netherlands Proteomics Centre, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| |
Collapse
|
23
|
McCulloch L, Brown KL, Mabbott NA. Ablation of the cellular prion protein, PrPC, specifically on follicular dendritic cells has no effect on their maturation or function. Immunol Suppl 2013; 138:246-57. [PMID: 23121447 PMCID: PMC3573278 DOI: 10.1111/imm.12031] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 10/19/2012] [Accepted: 10/22/2012] [Indexed: 01/09/2023]
Abstract
Follicular dendritic cells (FDC) are situated in the primary follicles of lymphoid tissues where they maintain the structural integrity of the B-lymphocyte follicle, and help to drive immunoglobulin class-switch recombination, somatic hypermutation and affinity maturation during the germinal centre response. FDC can also provide a reservoir for pathogens that infect germinal centres including HIV and prions. FDC express high levels of the normal cellular form of the prion protein (PrP(C) ), which makes them susceptible to prion infection. The function of PrP(C) is uncertain and it is not known why FDC require such high levels of expression of a protein that is found mainly on cells of the central nervous system. In this study, the function of FDC was assessed in mice that had PrP(C) ablated specifically in their FDC. In mice with FDC-specific PrP(C) ablation, our analysis revealed no observable deficits in lymphoid follicle microarchitecture and FDC status. No effects on FDC ability to trap immune complexes or drive antigen-specific antibody responses and affinity maturation in B lymphocytes were observed. These data clearly demonstrate that PrP(C) expression is dispensable for the functional maturation of FDC and their ability to maintain antigen-specific antibody responses and affinity maturation.
Collapse
Affiliation(s)
- Laura McCulloch
- The Roslin Institute and Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Midlothian, UK
| | | | | |
Collapse
|
24
|
Characterization of the novel Trypanosoma brucei inosine 5'-monophosphate dehydrogenase. Parasitology 2013; 140:735-45. [PMID: 23369253 DOI: 10.1017/s0031182012002090] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
There is an alarming rate of human African trypanosomiasis recrudescence in many parts of sub-Saharan Africa. Yet, the disease has no successful chemotherapy. Trypanosoma lacks the enzymatic machinery for the de novo synthesis of purine nucleotides, and is critically dependent on salvage mechanisms. Inosine 5'-monophosphate dehydrogenase (IMPDH) is responsible for the rate-limiting step in guanine nucleotide metabolism. Here, we characterize recombinant Trypanosoma brucei IMPDH (TbIMPDH) to investigate the enzymatic differences between TbIMPDH and host IMPDH. Size-exclusion chromatography and analytical ultracentrifugation sedimentation velocity experiments reveal that TbIMPDH forms a heptamer, different from type 1 and 2 mammalian tetrameric IMPDHs. Kinetic analysis reveals calculated K m values of 30 and 1300 μ m for IMP and NAD, respectively. The obtained K m value of TbIMPDH for NAD is approximately 20-200-fold higher than that of mammalian enzymes and indicative of a different NAD binding mode between trypanosomal and mammalian IMPDHs. Inhibition studies show K i values of 3·2 μ m, 21 nM and 3·3 nM for ribavirin 5'-monophosphate, mycophenolic acid and mizoribine 5'-monophosphate, respectively. Our results show that TbIMPDH is different from its mammalian counterpart and thus may be a good target for further studies on anti-trypanosomal drugs.
Collapse
|
25
|
Atmanene C, Wagner-Rousset E, Corvaïa N, Van Dorsselaer A, Beck A, Sanglier-Cianférani S. Noncovalent mass spectrometry for the characterization of antibody/antigen complexes. Methods Mol Biol 2013; 988:243-268. [PMID: 23475725 DOI: 10.1007/978-1-62703-327-5_16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Monoclonal antibodies (mAbs) have taken on an increasing importance for the treatment of various diseases including cancers, immunological disorders, and other pathologies. These large biomolecules display specific structural features, which affect their efficiency and need therefore to be extensively characterized using sensitive and orthogonal analytical techniques. Among them, mass spectrometry (MS) has become the method of choice to study mAb amino acid sequences as well as their posttranslational modifications with the aim of reducing their chemistry, manufacturing, and control liabilities. This chapter will provide the reader with a description of the general approach allowing antibody/antigen systems to be characterized by noncovalent MS. In the present chapter, we describe how recent noncovalent MS technologies are used to characterize immune complexes involving both murine and humanized mAb 6F4 directed against human JAM-A, a newly identified antigenic protein (Ag) over-expressed in tumor cells. We will detail experimental conditions (sample preparation, optimization of instrumental parameters, etc.) required for the detection of noncovalent antibody/antigen complexes by MS. We will then focus on the type and the reliability of the information that we get from noncovalent MS data, with emphasis on the determination of the stoichiometry of antibody/antigen systems. Noncovalent MS appears as an additional supporting technique for therapeutic mAbs lead characterization and development.
Collapse
Affiliation(s)
- Cédric Atmanene
- Laboratoire de Spectrométrie de Masse Bio-Organique, IPHC, CNRS, UMR7178, Université de Strasbourg, Strasbourg, France
| | | | | | | | | | | |
Collapse
|
26
|
Rosati S, Rose RJ, Thompson NJ, van Duijn E, Damoc E, Denisov E, Makarov A, Heck AJR. Etablierung eines Orbitrap-Analysators zur Charakterisierung von intakten Antikörpern mittels nativer Massenspektrometrie. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201206745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
27
|
Thompson NJ, Rosati S, Rose RJ, Heck AJR. The impact of mass spectrometry on the study of intact antibodies: from post-translational modifications to structural analysis. Chem Commun (Camb) 2012. [PMID: 23183499 DOI: 10.1039/c2cc36755f] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Monoclonal antibodies (mAbs) are important therapeutics, targeting a variety of diseases ranging from cancers to neurodegenerative disorders. In developmental stages and prior to clinical use, these molecules require thorough structural characterisation, but their large size and heterogeneity present challenges for most analytical techniques. Over the past 20 years, mass spectrometry (MS) has transformed from a tool for small molecule analysis to a technique that can be used to study large intact proteins and non-covalent protein complexes. Here, we review several MS-based techniques that have emerged for the analysis of intact mAbs and discuss the prospects of using these technologies for the analysis of biopharmaceuticals.
Collapse
Affiliation(s)
- Natalie J Thompson
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | | | | | |
Collapse
|
28
|
Rosati S, Rose RJ, Thompson NJ, van Duijn E, Damoc E, Denisov E, Makarov A, Heck AJR. Exploring an orbitrap analyzer for the characterization of intact antibodies by native mass spectrometry. Angew Chem Int Ed Engl 2012; 51:12992-6. [PMID: 23172610 DOI: 10.1002/anie.201206745] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 10/02/2012] [Indexed: 11/06/2022]
Abstract
Antibody profiling: native mass spectrometry analysis of intact antibodies can be achieved with improved speed, sensitivity, and mass resolution by using a modified orbitrap instrument. Complex mixtures of monoclonal antibodies can be resolved and their glycan "fingerprints" can be profiled. Noncovalent interactions are maintained, thus allowing antibody-antigen binding to be measured.
Collapse
Affiliation(s)
- Sara Rosati
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Centre and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Safenkova I, Zherdev A, Dzantiev B. Factors influencing the detection limit of the lateral-flow sandwich immunoassay: a case study with potato virus X. Anal Bioanal Chem 2012; 403:1595-605. [DOI: 10.1007/s00216-012-5985-8] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 03/07/2012] [Accepted: 03/27/2012] [Indexed: 11/29/2022]
|
30
|
Fukuhara A, Nakajima H, Miyamoto Y, Inoue K, Kume S, Lee YH, Noda M, Uchiyama S, Shimamoto S, Nishimura S, Ohkubo T, Goto Y, Takeuchi T, Inui T. Drug delivery system for poorly water-soluble compounds using lipocalin-type prostaglandin D synthase. J Control Release 2011; 159:143-50. [PMID: 22226778 DOI: 10.1016/j.jconrel.2011.12.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2011] [Revised: 11/15/2011] [Accepted: 12/19/2011] [Indexed: 10/14/2022]
Abstract
Lipocalin-type prostaglandin D synthase (L-PGDS) is a member of the lipocalin superfamily and a secretory lipid-transporter protein, which binds a wide variety of hydrophobic small molecules. Here we show the feasibility of a novel drug delivery system (DDS), utilizing L-PGDS, for poorly water-soluble compounds such as diazepam (DZP), a major benzodiazepine anxiolytic drug, and 6-nitro-7-sulfamoylbenzo[f]quinoxaline-2,3-dione (NBQX), an α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor antagonist and anticonvulsant. Calorimetric experiments revealed for both compounds that each L-PGDS held three molecules with high binding affinities. By mass spectrometry, the 1:3 complex of L-PGDS and NBQX was observed. L-PGDS of 500μM increased the solubility of DZP and NBQX 7- and 2-fold, respectively, compared to PBS alone. To validate the potential of L-PGDS as a drug delivery vehicle in vivo, we have proved the prospective effects of these compounds via two separate delivery strategies. First, the oral administration of a DZP/L-PGDS complex in mice revealed an increased duration of pentobarbital-induced loss of righting reflex. Second, the intravenous treatment of ischemic gerbils with NBQX/L-PGDS complex showed a protective effect on delayed neuronal cell death at the hippocampal CA1 region. We propose that our novel DDS could facilitate pharmaceutical development and clinical usage of various water-insoluble compounds.
Collapse
Affiliation(s)
- Ayano Fukuhara
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Kükrer B, Filipe V, van Duijn E, Kasper PT, Vreeken RJ, Heck AJR, Jiskoot W. Mass spectrometric analysis of intact human monoclonal antibody aggregates fractionated by size-exclusion chromatography. Pharm Res 2010; 27:2197-204. [PMID: 20680668 PMCID: PMC2939344 DOI: 10.1007/s11095-010-0224-5] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Accepted: 07/19/2010] [Indexed: 11/26/2022]
Abstract
Purpose The aim of this study was to develop a method to characterize intact soluble monoclonal IgG1 antibody (IgG) oligomers by mass spectrometry. Methods IgG aggregates (dimers, trimers, tetramers and high-molecular-weight oligomers) were created by subjecting an IgG formulation to several pH jumps. Protein oligomer fractions were isolated by high performance size exclusion chromatography (HP-SEC), dialyzed against ammonium acetate pH 6.0 (a mass spectrometry-compatible volatile buffer), and analyzed by native electrospray ionization time-of-flight mass spectrometry (ESI-TOF MS). Results Monomeric and aggregated IgG fractions in the stressed IgG formulation were successfully isolated by HP-SEC. ESI-TOF MS analysis enabled us to determine the molecular weight of the monomeric IgG as well as the aggregates, including dimers, trimers and tetramers. HP-SEC separation and sample preparation proved to be necessary for good quality signal in ESI-TOF MS. Both the HP-SEC protocol and the ESI-TOF mass spectrometric technique were shown to leave the IgG oligomers largely intact. Conclusions ESI-TOF MS is a useful tool complementary to HP-SEC to identify and characterize small oligomeric protein aggregates.
Collapse
Affiliation(s)
- Başak Kükrer
- Division of Drug Delivery Technology Leiden/Amsterdam Center for Drug Research, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Vasco Filipe
- Division of Drug Delivery Technology Leiden/Amsterdam Center for Drug Research, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Esther van Duijn
- Biomolecular Mass Spectrometry and Proteomics Group and Netherlands Proteomics Center, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Piotr T. Kasper
- Netherlands Metabolomics Center, Einsteinweg 55, 2333 CC Leiden, The Netherlands
- Division of Analytical Biosciences Leiden/Amsterdam Center for Drug Research, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Rob J. Vreeken
- Netherlands Metabolomics Center, Einsteinweg 55, 2333 CC Leiden, The Netherlands
- Division of Analytical Biosciences Leiden/Amsterdam Center for Drug Research, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Albert J. R. Heck
- Biomolecular Mass Spectrometry and Proteomics Group and Netherlands Proteomics Center, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Wim Jiskoot
- Division of Drug Delivery Technology Leiden/Amsterdam Center for Drug Research, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| |
Collapse
|