1
|
Cammann C, Israel N, Frentzel S, Jeron A, Topfstedt E, Schüler T, Simeoni L, Zenker M, Fehling HJ, Schraven B, Bruder D, Seifert U. T cell-specific constitutive active SHP2 enhances T cell memory formation and reduces T cell activation. Front Immunol 2022; 13:958616. [PMID: 35983034 PMCID: PMC9379337 DOI: 10.3389/fimmu.2022.958616] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
Upon antigen recognition by the T cell receptor (TCR), a complex signaling network orchestrated by protein-tyrosine kinases (PTKs) and protein-tyrosine phosphatases (PTPs) regulates the transmission of the extracellular signal to the nucleus. The role of the PTPs Src-homology 2 (SH2) domain-containing phosphatase 1 (SHP1, Ptpn6) and Src-homology 2 (SH2) domain-containing phosphatase 2 (SHP2, Ptpn11) have been studied in various cell types including T cells. Whereas SHP1 acts as an essential negative regulator of the proximal steps in T cell signalling, the role of SHP2 in T cell activation is still a matter of debate. Here, we analyzed the role of the constitutively active SHP2-D61Y-mutant in T cell activation using knock-in mice expressing the mutant form Ptpn11D61Y in T cells. We observed reduced numbers of CD8+ and increased numbers of CD4+ T cells in the bone marrow and spleen of young and aged SHP2-D61Y-mutant mice as well as in Influenza A Virus (IAV)-infected mice compared to controls. In addition, we found elevated frequencies of effector memory CD8+ T cells and an upregulation of the programmed cell death protein 1 (PD-1)-receptor on both CD4+ and CD8+ T cells. Functional analysis of SHP2-D61Y-mutated T cells revealed an induction of late apoptosis/necrosis, a reduced proliferation and altered signaling upon TCR stimulation. However, the ability of D61Y-mutant mice to clear viral infection was not affected. In conclusion, our data indicate an important regulatory role of SHP2 in T cell function, where the effect is determined by the kinetics of SHP2 phosphatase activity and differs in the presence of the permanently active and the temporally regulated phosphatase. Due to interaction of SHP2 with the PD-1-receptor targeting the protein-tyrosine phosphatase might be a valuable tool to enhance T cell activities in immunotherapy.
Collapse
Affiliation(s)
- Clemens Cammann
- Friedrich Loeffler-Institute for Medical Microbiology-Virology, University Medicine Greifswald, Greifswald, Germany
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Nicole Israel
- Friedrich Loeffler-Institute for Medical Microbiology-Virology, University Medicine Greifswald, Greifswald, Germany
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Sarah Frentzel
- Institute of Medical Microbiology, Infection Prevention and Control, Infection Immunology Group, Health Campus Immunology, Infectiology and Inflammation, Ottovon-Guericke-University Magdeburg, Magdeburg, Germany
- Immune Regulation Group, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Andreas Jeron
- Institute of Medical Microbiology, Infection Prevention and Control, Infection Immunology Group, Health Campus Immunology, Infectiology and Inflammation, Ottovon-Guericke-University Magdeburg, Magdeburg, Germany
- Immune Regulation Group, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Eylin Topfstedt
- Friedrich Loeffler-Institute for Medical Microbiology-Virology, University Medicine Greifswald, Greifswald, Germany
| | - Thomas Schüler
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Luca Simeoni
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Martin Zenker
- Institute of Human Genetics, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | | | - Burkhart Schraven
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Dunja Bruder
- Institute of Medical Microbiology, Infection Prevention and Control, Infection Immunology Group, Health Campus Immunology, Infectiology and Inflammation, Ottovon-Guericke-University Magdeburg, Magdeburg, Germany
- Immune Regulation Group, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Ulrike Seifert
- Friedrich Loeffler-Institute for Medical Microbiology-Virology, University Medicine Greifswald, Greifswald, Germany
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- *Correspondence: Ulrike Seifert,
| |
Collapse
|
2
|
Duan H, Jing L, Jiang X, Ma Y, Wang D, Xiang J, Chen X, Wu Z, Yan H, Jia J, Liu Z, Feng J, Zhu M, Yan X. CD146 bound to LCK promotes T cell receptor signaling and antitumor immune responses in mice. J Clin Invest 2021; 131:e148568. [PMID: 34491908 DOI: 10.1172/jci148568] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 09/02/2021] [Indexed: 01/27/2023] Open
Abstract
Initiation of T cell receptor (TCR) signaling involves the activation of the tyrosine kinase LCK; however, it is currently unclear how LCK is recruited and activated. Here, we have identified the membrane protein CD146 as an essential member of the TCR network for LCK activation. CD146 deficiency in T cells substantially impaired thymocyte development and peripheral activation, both of which depend on TCR signaling. CD146 was found to directly interact with the SH3 domain of coreceptor-free LCK via its cytoplasmic domain. Interestingly, we found CD146 to be present in both monomeric and dimeric forms in T cells, with the dimerized form increasing after TCR ligation. Increased dimerized CD146 recruited LCK and promoted LCK autophosphorylation. In tumor models, CD146 deficiency dramatically impaired the antitumor response of T cells. Together, our data reveal an LCK activation mechanism for TCR initiation. We also underscore a rational intervention based on CD146 for tumor immunotherapy.
Collapse
Affiliation(s)
- Hongxia Duan
- Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Lin Jing
- Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoqing Jiang
- Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yanbin Ma
- Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Daji Wang
- Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jianquan Xiang
- Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xuehui Chen
- Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Zhenzhen Wu
- Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Huiwen Yan
- Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | | | - Zheng Liu
- Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jing Feng
- Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Mingzhao Zhu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xiyun Yan
- Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,Joint Laboratory of Nanozymes in Zhengzhou University, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
3
|
Jeljeli M, Chêne C, Chouzenoux S, Thomas M, Segain B, Doridot L, Nicco C, Batteux F. LPS low-Macrophages Alleviate the Outcome of Graft- Versus-Host Disease Without Aggravating Lymphoma Growth in Mice. Front Immunol 2021; 12:670776. [PMID: 34413847 PMCID: PMC8369416 DOI: 10.3389/fimmu.2021.670776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 07/07/2021] [Indexed: 02/06/2023] Open
Abstract
Despite significant therapeutic advances, graft-versus-host disease (GvHD) remains the main life-threatening complication following allogeneic hematopoietic stem cell transplantation. The pathogenesis of GvHD is dominated by a dysregulated allogeneic immune response that drives fibrosis and autoimmunity in chronic forms. A multitude of cell therapy approaches, including infusion of myeloid cells, has been proposed to prevent GvHD through tolerance induction but yielded variable results. Myeloid cells like macrophages can be reprogrammed to develop adaptive-like features following antigenic challenge to reinforce or inhibit a subsequent immune response; a phenomenon termed ‘trained immunity’. Here we report that, whereas LPSlow-trained macrophages elicit a suppressor effect on allogeneic T cell proliferation and function in vitro in an IL-10-dependent manner, Bacille Calmette et Guérin (BCG)-trained macrophages exert an opposite effect. In a murine model of sclerodermatous chronic GvHD, LPSlow-trained macrophages attenuate clinical signs of GvHD with significant effects on T cell phenotype and function, autoantibodies production, and tissue fibrosis. Furthermore, infusion of LPSlow-macrophages significantly improves survival in mice with acute GvHD. Importantly, we also provide evidence that LPSlow-macrophages do not accelerate A20-lymphoma tumor growth, which is significantly reduced upon transfer of BCG-macrophages. Collectively, these data indicate that macrophages can be trained to significantly inhibit in vitro and in vivo allo-reactive T cell proliferation without exhibiting pro-tumoral effect, thereby opening the way to promising clinical applications.
Collapse
Affiliation(s)
- Mohamed Jeljeli
- Département 3I «Infection, Immunité et Inflammation», Institut Cochin, INSERM U1016, Université de Paris, Paris, France.,Université de Paris, Faculté de Médecine, AP-HP-Centre Université de Paris, Hôpital Cochin, Service d'immunologie biologique, Paris, France
| | - Charlotte Chêne
- Département 3I «Infection, Immunité et Inflammation», Institut Cochin, INSERM U1016, Université de Paris, Paris, France
| | - Sandrine Chouzenoux
- Département 3I «Infection, Immunité et Inflammation», Institut Cochin, INSERM U1016, Université de Paris, Paris, France
| | - Marine Thomas
- Département 3I «Infection, Immunité et Inflammation», Institut Cochin, INSERM U1016, Université de Paris, Paris, France
| | - Benjamin Segain
- Département 3I «Infection, Immunité et Inflammation», Institut Cochin, INSERM U1016, Université de Paris, Paris, France
| | - Ludivine Doridot
- Département 3I «Infection, Immunité et Inflammation», Institut Cochin, INSERM U1016, Université de Paris, Paris, France
| | - Carole Nicco
- Département 3I «Infection, Immunité et Inflammation», Institut Cochin, INSERM U1016, Université de Paris, Paris, France
| | - Frédéric Batteux
- Département 3I «Infection, Immunité et Inflammation», Institut Cochin, INSERM U1016, Université de Paris, Paris, France.,Université de Paris, Faculté de Médecine, AP-HP-Centre Université de Paris, Hôpital Cochin, Service d'immunologie biologique, Paris, France
| |
Collapse
|
4
|
Dunsmore G, Rosero EP, Shahbaz S, Santer DM, Jovel J, Lacy P, Houston S, Elahi S. Neutrophils promote T-cell activation through the regulated release of CD44-bound Galectin-9 from the cell surface during HIV infection. PLoS Biol 2021; 19:e3001387. [PMID: 34411088 PMCID: PMC8407585 DOI: 10.1371/journal.pbio.3001387] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 08/31/2021] [Accepted: 08/04/2021] [Indexed: 12/14/2022] Open
Abstract
The interaction of neutrophils with T cells has been the subject of debate and controversies. Previous studies have suggested that neutrophils may suppress or activate T cells. Despite these studies, the interaction between neutrophils and T cells has remained a largely unexplored field. Here, based on our RNA sequencing (RNA-seq) analysis, we found that neutrophils have differential transcriptional and functional profiling depending on the CD4 T-cell count of the HIV-infected individual. In particular, we identified that neutrophils in healthy individuals express surface Galectin-9 (Gal-9), which is down-regulated upon activation, and is consistently down-regulated in HIV-infected individuals. However, down-regulation of Gal-9 was associated with CD4 T-cell count of patients. Unstimulated neutrophils express high levels of surface Gal-9 that is bound to CD44, and, upon stimulation, neutrophils depalmitoylate CD44 and induce its movement out of the lipid raft. This process causes the release of Gal-9 from the surface of neutrophils. In addition, we found that neutrophil-derived exogenous Gal-9 binds to cell surface CD44 on T cells, which promotes LCK activation and subsequently enhances T-cell activation. Furthermore, this process was regulated by glycolysis and can be inhibited by interleukin (IL)-10. Together, our data reveal a novel mechanism of Gal-9 shedding from the surface of neutrophils. This could explain elevated plasma Gal-9 levels in HIV-infected individuals as an underlying mechanism of the well-characterized chronic immune activation in HIV infection. This study provides a novel role for the Gal-9 shedding from neutrophils. We anticipate that our results will spark renewed investigation into the role of neutrophils in T-cell activation in other acute and chronic conditions, as well as improved strategies for modulating Gal-9 shedding. This study shows that HIV-infected individuals have different neutrophil profiles depending on their CD4 T cell count. In particular, neutrophils express high levels of surface Gal-9 but this is shed upon stimulation; this exogenous Gal-9 binds to CD44 on T cells, which promotes LCK activation and subsequently enhances T cell activation.
Collapse
Affiliation(s)
- Garett Dunsmore
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Eliana Perez Rosero
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Shima Shahbaz
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Deanna M. Santer
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
- Li Ka Shing Institute of Virology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Juan Jovel
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Paige Lacy
- Department of Medicine, Division of Pulmonary Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Stan Houston
- Department of Medicine, Division of Infectious Disease, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Shokrollah Elahi
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
- Li Ka Shing Institute of Virology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
- * E-mail:
| |
Collapse
|
5
|
Hickey JW, Dong Y, Chung JW, Salathe SF, Pruitt HC, Li X, Chang C, Fraser AK, Bessell CA, Ewald AJ, Gerecht S, Mao HQ, Schneck JP. Engineering an Artificial T-Cell Stimulating Matrix for Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1807359. [PMID: 30968468 PMCID: PMC8601018 DOI: 10.1002/adma.201807359] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 02/04/2019] [Indexed: 05/17/2023]
Abstract
T cell therapies require the removal and culture of T cells ex vivo to expand several thousand-fold. However, these cells often lose the phenotype and cytotoxic functionality for mediating effective therapeutic responses. The extracellular matrix (ECM) has been used to preserve and augment cell phenotype; however, it has not been applied to cellular immunotherapies. Here, a hyaluronic acid (HA)-based hydrogel is engineered to present the two stimulatory signals required for T-cell activation-termed an artificial T-cell stimulating matrix (aTM). It is found that biophysical properties of the aTM-stimulatory ligand density, stiffness, and ECM proteins-potentiate T cell signaling and skew phenotype of both murine and human T cells. Importantly, the combination of the ECM environment and mechanically sensitive TCR signaling from the aTM results in a rapid and robust expansion of rare, antigen-specific CD8+ T cells. Adoptive transfer of these tumor-specific cells significantly suppresses tumor growth and improves animal survival compared with T cells stimulated by traditional methods. Beyond immediate immunotherapeutic applications, demonstrating the environment influences the cellular therapeutic product delineates the importance of the ECM and provides a case study of how to engineer ECM-mimetic materials for therapeutic immune stimulation in the future.
Collapse
Affiliation(s)
- John W Hickey
- Department of Biomedical Engineering, School of Medicine, Baltimore, MD, 21218, USA
- Institute for Cell Engineering, School of Medicine, Baltimore, MD, 21205, USA
- Department of Pathology, School of Medicine, Baltimore, MD, 21287, USA
- Translational Tissue Engineering Center, Baltimore, MD, 21287, USA
- Institute for NanoBioTechnology, Baltimore, MD, 21218, USA
| | - Yi Dong
- Graduate Program in Immunology, School of Medicine, Baltimore, MD, 21205, USA
| | - Jae Wook Chung
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Baltimore, MD, 21218, USA
| | - Sebastian F Salathe
- Department of Biology, Krieger School of Arts and Sciences, Baltimore, MD, 21218, USA
| | - Hawley C Pruitt
- Institute for NanoBioTechnology, Baltimore, MD, 21218, USA
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Baltimore, MD, 21218, USA
| | - Xiaowei Li
- Translational Tissue Engineering Center, Baltimore, MD, 21287, USA
- Department of Materials Science and Engineering, Whiting School of Engineering, Baltimore, MD, 21218, USA
| | - Calvin Chang
- Department of Biomedical Engineering, School of Medicine, Baltimore, MD, 21218, USA
- Translational Tissue Engineering Center, Baltimore, MD, 21287, USA
| | - Andrew K Fraser
- Department of Biomedical Engineering, School of Medicine, Baltimore, MD, 21218, USA
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Baltimore, MD, 21205, USA
| | - Catherine A Bessell
- Graduate Program in Immunology, School of Medicine, Baltimore, MD, 21205, USA
| | - Andrew J Ewald
- Department of Biomedical Engineering, School of Medicine, Baltimore, MD, 21218, USA
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Baltimore, MD, 21205, USA
- Department of Oncology, School of Medicine, Baltimore, MD, 21205, USA
| | - Sharon Gerecht
- Department of Biomedical Engineering, School of Medicine, Baltimore, MD, 21218, USA
- Institute for NanoBioTechnology, Baltimore, MD, 21218, USA
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Baltimore, MD, 21218, USA
- Department of Materials Science and Engineering, Whiting School of Engineering, Baltimore, MD, 21218, USA
- Physical Sciences-Oncology Center, Baltimore, MD, 21218, USA
| | - Hai-Quan Mao
- Department of Biomedical Engineering, School of Medicine, Baltimore, MD, 21218, USA
- Translational Tissue Engineering Center, Baltimore, MD, 21287, USA
- Institute for NanoBioTechnology, Baltimore, MD, 21218, USA
- Department of Materials Science and Engineering, Whiting School of Engineering, Baltimore, MD, 21218, USA
| | - Jonathan P Schneck
- Institute for Cell Engineering, School of Medicine, Baltimore, MD, 21205, USA
- Department of Pathology, School of Medicine, Baltimore, MD, 21287, USA
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| |
Collapse
|
6
|
Vadillo E, Dorantes-Acosta E, Pelayo R, Schnoor M. T cell acute lymphoblastic leukemia (T-ALL): New insights into the cellular origins and infiltration mechanisms common and unique among hematologic malignancies. Blood Rev 2017; 32:36-51. [PMID: 28830639 DOI: 10.1016/j.blre.2017.08.006] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 08/08/2017] [Accepted: 08/12/2017] [Indexed: 02/06/2023]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) accounts for 15% and 25% of total childhood and adult ALL cases, respectively. During T-ALL, patients are at risk of organ infiltration by leukemic T-cells. Infiltration is a major consequence of disease relapse and correlates with poor prognosis. Transendothelial migration of leukemic cells is required to exit the blood stream into target organs. While mechanisms of normal T-cell transmigration are well known, the mechanisms of leukemic T-cell extravasation remain elusive; but involvement of chemokines, integrins and Notch signaling play critical roles. Here, we summarize current knowledge about molecular mechanisms of leukemic T-cell infiltration with special emphasis on the newly identified subtype early T-cell-progenitor (ETP)-ALL. Furthermore, we compare the extravasation potential of T-ALL cells with that of other hematologic malignancies such as B-ALL and acute myeloid leukemia (AML).
Collapse
Affiliation(s)
- Eduardo Vadillo
- Department for Molecular Biomedicine, Centre for Investigation and Advanced Studies of the National Polytechnic Institute (Cinvestav-IPN), 07360 Mexico City, Mexico.
| | - Elisa Dorantes-Acosta
- Leukemia Clinic, Children's Hospital of Mexico Federico Gómez, 06720 Mexico City, Mexico
| | - Rosana Pelayo
- Oncology Research Unit, National Medical Center, Mexican Institute for Social Security, 06720 Mexico City, Mexico
| | - Michael Schnoor
- Department for Molecular Biomedicine, Centre for Investigation and Advanced Studies of the National Polytechnic Institute (Cinvestav-IPN), 07360 Mexico City, Mexico.
| |
Collapse
|
7
|
Schumann J, Stanko K, Schliesser U, Appelt C, Sawitzki B. Differences in CD44 Surface Expression Levels and Function Discriminates IL-17 and IFN-γ Producing Helper T Cells. PLoS One 2015; 10:e0132479. [PMID: 26172046 PMCID: PMC4501817 DOI: 10.1371/journal.pone.0132479] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 06/15/2015] [Indexed: 11/24/2022] Open
Abstract
CD44 is a prominent activation marker which distinguishes memory and effector T cells from their naïve counterparts. It also plays a role in early T cell signaling events as it is bound to the lymphocyte-specific protein kinase and thereby enhances T cell receptor signalling. Here, we investigated whether IFN-γ and IL-17 producing T helper cells differ in their CD44 expression and their dependence of CD44 for differentiation. Stimulation of CD4+ T cells with allogeneic dendritic cells resulted in the formation of three distinguishable populations: CD44+, CD44++ and CD44+++. In vitro and in vivo generated allo-reactive IL-17 producing T helper cells were mainly CD44+++ as compared to IFN-γ+ T helper cells, which were CD44++. This effect was enhanced under polarizing conditions. T helper 17 polarization led to a shift towards the CD44+++ population, whereas T helper 1 polarization diminished this population. Furthermore, blocking CD44 decreased IL-17 secretion, while IFN-γ was barely affected. Titration experiments revealed that low T cell receptor and CD28 stimulation supported T helper 17 rather than T helper 1 development. Under these conditions CD44 could act as a co-stimulatory molecule and replace CD28. Indeed, rested CD44+++CD4+ T cells contained already more total and especially phosphorylated zeta-chain-associated protein kinase 70 as compared to CD44++ cells. Our results support the notion, that CD44 enhances T cell receptor signaling strength by delivering lymphocyte-specific protein kinase, which is required for induction of IL-17 producing T helper cells.
Collapse
Affiliation(s)
- Julia Schumann
- Institute of Medical Immunology, Charité University Medicine, Berlin, Germany
| | - Katarina Stanko
- Institute of Medical Immunology, Charité University Medicine, Berlin, Germany
| | - Ulrike Schliesser
- Institute of Medical Immunology, Charité University Medicine, Berlin, Germany
| | - Christine Appelt
- Institute of Medical Immunology, Charité University Medicine, Berlin, Germany
| | - Birgit Sawitzki
- Institute of Medical Immunology, Charité University Medicine, Berlin, Germany
- Berlin Brandenburg Center for Regenerative Therapies, Charité University Medicine, Berlin, Germany
| |
Collapse
|
8
|
Chiou E, Zennadi R. Gαs proteins activate p72(Syk) and p60-c-Src tyrosine kinases to mediate sickle red blood cell adhesion to endothelium via LW-αvβ3 and CD44-CD44 interactions. Int J Biochem Cell Biol 2015; 65:40-51. [PMID: 26007235 DOI: 10.1016/j.biocel.2015.05.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 04/16/2015] [Accepted: 05/14/2015] [Indexed: 12/13/2022]
Abstract
G protein-coupled receptors (GPCRs) have been suggested as new drug targets to treat a variety of diseases. In sickle cell disease (SCD), the LW erythrocyte adhesion receptor can be activated by stimulation of β2 adrenergic receptors (β2ARs), to mediate sickle erythrocyte (SSRBC) adhesion to endothelium. However, the involvement of tyrosine protein kinases in β2AR signaling to activate SSRBC adhesion to endothelium has not been thoroughly elucidated. Either direct activation with Cholera toxin of Gαs protein, which acts downstream of β2ARs, or inhibition with Pertussis toxin of Gαi, mediating suppression of adenylyl cyclase, increased SSRBC adhesion to endothelium over baseline adhesion. This effect involved the non-receptor tyrosine kinases, p72(Syk) and p60-c-Src, which were more abundant in SSRBCs than in normal erythrocytes. In contrast, Pertussis toxin and Cholera toxin failed to increase adhesion of normal erythrocytes. SSRBC Gαi inhibition also increased phosphorylation of p72(Syk) and p60-c-Src. Further, we investigated the relevance of activation of p72(Syk) and p60-c-Src, and identified LW (ICAM-4, CD242) and CD44 as the erythroid adhesion molecules both physically interacting with activated p60-c-Src. As a result, SSRBC LW underwent increased tyrosine phosphorylation, leading to SSRBC LW and CD44 binding to endothelial αvβ3 integrin and CD44, respectively. These data provide in vitro mechanistic evidence that p60-c-Src, which could act downstream of Gαs/p72(Syk), associates with LW and CD44 on SSRBCs leading to their interactions with endothelial αvβ3 and CD44, respectively. Thus, increased activation of these signaling mechanisms in SSRBCs could initiate or exacerbate vascular occlusion, the hallmark of SCD.
Collapse
Affiliation(s)
- Edward Chiou
- Division of Hematology, Department of Medicine, Duke University Medical Center, Durham, NC 27710, United States
| | - Rahima Zennadi
- Division of Hematology, Department of Medicine, Duke University Medical Center, Durham, NC 27710, United States.
| |
Collapse
|
9
|
Jokela T, Oikari S, Takabe P, Rilla K, Kärnä R, Tammi M, Tammi R. Interleukin-1β-induced Reduction of CD44 Ser-325 Phosphorylation in Human Epidermal Keratinocytes Promotes CD44 Homomeric Complexes, Binding to Ezrin, and Extended, Monocyte-adhesive Hyaluronan Coats. J Biol Chem 2015; 290:12379-93. [PMID: 25809479 DOI: 10.1074/jbc.m114.620864] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Indexed: 12/13/2022] Open
Abstract
The proinflammatory cytokine interleukin-1β (IL-1β) attracts leukocytes to sites of inflammation. One of the recruitment mechanisms involves the formation of extended, hyaluronan-rich pericellular coats on local fibroblasts, endothelial cells, and epithelial cells. In the present work, we studied how IL-1β turns on the monocyte adhesion of the hyaluronan coat on human keratinocytes. IL-1β did not influence hyaluronan synthesis or increase the amount of pericellular hyaluronan in these cells. Instead, we found that the increase in the hyaluronan-dependent monocyte binding was associated with the CD44 of the keratinocytes. Although IL-1β caused a small increase in the total amount of CD44, a more marked impact was the decrease of CD44 phosphorylation at serine 325. At the same time, IL-1β increased the association of CD44 with ezrin and complex formation of CD44 with itself. Treatment of keratinocyte cultures with KN93, an inhibitor of calmodulin kinase 2, known to phosphorylate Ser-325 in CD44, caused similar effects as IL-1β (i.e. homomerization of CD44 and its association with ezrin) and resulted in increased monocyte binding to keratinocytes in a hyaluronan-dependent way. Overexpression of wild type CD44 standard form, but not a corresponding CD44 mutant mimicking the Ser-325-phosphorylated form, was able to induce monocyte binding to keratinocytes. In conclusion, treatment of human keratinocytes with IL-1β changes the structure of their hyaluronan coat by influencing the amount, post-translational modification, and cytoskeletal association of CD44, thus enhancing monocyte retention on keratinocytes.
Collapse
Affiliation(s)
- Tiina Jokela
- From the Institute of Biomedicine, Department of Medicine, University of Eastern Finland, Yliopistonranta 1E, P.O. Box 1627, 70211 Kuopio, Finland
| | - Sanna Oikari
- From the Institute of Biomedicine, Department of Medicine, University of Eastern Finland, Yliopistonranta 1E, P.O. Box 1627, 70211 Kuopio, Finland
| | - Piia Takabe
- From the Institute of Biomedicine, Department of Medicine, University of Eastern Finland, Yliopistonranta 1E, P.O. Box 1627, 70211 Kuopio, Finland
| | - Kirsi Rilla
- From the Institute of Biomedicine, Department of Medicine, University of Eastern Finland, Yliopistonranta 1E, P.O. Box 1627, 70211 Kuopio, Finland
| | - Riikka Kärnä
- From the Institute of Biomedicine, Department of Medicine, University of Eastern Finland, Yliopistonranta 1E, P.O. Box 1627, 70211 Kuopio, Finland
| | - Markku Tammi
- From the Institute of Biomedicine, Department of Medicine, University of Eastern Finland, Yliopistonranta 1E, P.O. Box 1627, 70211 Kuopio, Finland
| | - Raija Tammi
- From the Institute of Biomedicine, Department of Medicine, University of Eastern Finland, Yliopistonranta 1E, P.O. Box 1627, 70211 Kuopio, Finland
| |
Collapse
|
10
|
Wang Y, Yago T, Zhang N, Abdisalaam S, Alexandrakis G, Rodgers W, McEver RP. Cytoskeletal regulation of CD44 membrane organization and interactions with E-selectin. J Biol Chem 2014; 289:35159-71. [PMID: 25359776 DOI: 10.1074/jbc.m114.600767] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Interactions of CD44 on neutrophils with E-selectin on activated endothelial cells mediate rolling under flow, a prerequisite for neutrophil arrest and migration into perivascular tissues. How CD44 functions as a rolling ligand despite its weak affinity for E-selectin is unknown. We examined the nanometer scale organization of CD44 on intact cells. CD44 on leukocytes and transfected K562 cells was cross-linked within a 1.14-nm spacer. Depolymerizing actin with latrunculin B reduced cross-linking. Fluorescence resonance energy transfer (FRET) revealed tight co-clustering between CD44 fused to yellow fluorescent protein (YFP) and CD44 fused to cyan fluorescent protein on K562 cells. Latrunculin B reduced FRET-reported co-clustering. Number and brightness analysis confirmed actin-dependent CD44-YFP clusters on living cells. CD44 lacking binding sites for ankyrin and for ezrin/radixin/moesin (ERM) proteins on its cytoplasmic domain (ΔANKΔERM) did not cluster. Unexpectedly, CD44 lacking only the ankyrin-binding site (ΔANK) formed larger but looser clusters. Fluorescence recovery after photobleaching demonstrated increased CD44 mobility by latrunculin B treatment or by deleting the cytoplasmic domain. ΔANKΔERM mobility increased only modestly, suggesting that the cytoplasmic domain engages the cytoskeleton by an additional mechanism. Ex vivo differentiated CD44-deficient neutrophils expressing exogenous CD44 rolled on E-selectin and activated Src kinases after binding anti-CD44 antibody. In contrast, differentiated neutrophils expressing ΔANK had impaired rolling and kinase activation. These data demonstrate that spectrin and actin networks regulate CD44 clustering and suggest that ankyrin enhances CD44-mediated neutrophil rolling and signaling.
Collapse
Affiliation(s)
- Ying Wang
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104 and
| | - Tadayuki Yago
- From the Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation and
| | - Nan Zhang
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104 and
| | - Salim Abdisalaam
- Department of Biomedical Engineering, University of Texas, Arlington, Texas 76010
| | - George Alexandrakis
- Department of Biomedical Engineering, University of Texas, Arlington, Texas 76010
| | - William Rodgers
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104 and
| | - Rodger P McEver
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104 and From the Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation and
| |
Collapse
|
11
|
Li CR, Mueller EE, Bradley LM. Targeting CD44 augments the efficacy of Tregs in autoimmune diabetes. Immunol Lett 2014; 163:199-205. [PMID: 25447401 DOI: 10.1016/j.imlet.2014.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 09/28/2014] [Accepted: 10/06/2014] [Indexed: 01/22/2023]
Abstract
Curing type 1 diabetes (T1D) will require lasting control of the autoimmune response that destroys insulin-producing islet β-cells. Re-establishing tolerance by restoring/replacing Tregs has significant potential for treatment of T1D but will require strategies to augment and maintain their efficacy. We previously showed that polyclonal in vitro-induced Tregs can reverse recent onset of T1D in ∼ 50% of NOD mice. Here we report that treatment of newly hyperglycemic animals with a short course of anti-CD44 at the time of Treg transfer improved diabetes reversal to >90%. Anti-CD44 treatment alone delayed diabetes onset and increased the frequencies of pancreatic CD4(+) T cells producing IL-2 or TGF-β, cytokines that support Treg function and survival, without altering production of IFN-γ. These anti-CD44 effects on endogenous T cells were also observed in the context of polyclonal Treg transfer, and the combination treatment also reduced pancreatic infiltrates. The results provide compelling evidence that approaches to modulate the pancreatic milieu to support Treg function and counteract inflammation in the pancreas can greatly enhance the efficacy of adoptively transferred Tregs, and suggest that approaches achieving these outcomes hold promise for long-term control of autoimmunity in T1D.
Collapse
Affiliation(s)
- Cheng-Rui Li
- Infectious and Inflammatory Diseases Center, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | - Erin E Mueller
- Infectious and Inflammatory Diseases Center, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | - Linda M Bradley
- Infectious and Inflammatory Diseases Center, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
12
|
Wigelsworth DJ, Ruthel G, Schnell L, Herrlich P, Blonder J, Veenstra TD, Carman RJ, Wilkins TD, Van Nhieu GT, Pauillac S, Gibert M, Sauvonnet N, Stiles BG, Popoff MR, Barth H. CD44 Promotes intoxication by the clostridial iota-family toxins. PLoS One 2012; 7:e51356. [PMID: 23236484 PMCID: PMC3517468 DOI: 10.1371/journal.pone.0051356] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 10/31/2012] [Indexed: 12/16/2022] Open
Abstract
Various pathogenic clostridia produce binary protein toxins associated with enteric diseases of humans and animals. Separate binding/translocation (B) components bind to a protein receptor on the cell surface, assemble with enzymatic (A) component(s), and mediate endocytosis of the toxin complex. Ultimately there is translocation of A component(s) from acidified endosomes into the cytosol, leading to destruction of the actin cytoskeleton. Our results revealed that CD44, a multifunctional surface protein of mammalian cells, facilitates intoxication by the iota family of clostridial binary toxins. Specific antibody against CD44 inhibited cytotoxicity of the prototypical Clostridium perfringens iota toxin. Versus CD44+ melanoma cells, those lacking CD44 bound less toxin and were dose-dependently resistant to C. perfringens iota, as well as Clostridium difficile and Clostridium spiroforme iota-like, toxins. Purified CD44 specifically interacted in vitro with iota and iota-like, but not related Clostridium botulinum C2, toxins. Furthermore, CD44 knockout mice were resistant to iota toxin lethality. Collective data reveal an important role for CD44 during intoxication by a family of clostridial binary toxins.
Collapse
Affiliation(s)
- Darran J. Wigelsworth
- Integrated Toxicology Division, Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Gordon Ruthel
- Core Imaging Facility, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - Leonie Schnell
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Ulm, Germany
| | - Peter Herrlich
- Leibniz Institute for Age Research, Fritz Lipmann Institute, Jena, Germany
| | - Josip Blonder
- Laboratory of Proteomics and Analytical Technologies, National Cancer Institute, Frederick, Maryland, United States of America
| | - Timothy D. Veenstra
- Laboratory of Proteomics and Analytical Technologies, National Cancer Institute, Frederick, Maryland, United States of America
| | | | | | - Guy Tran Van Nhieu
- Department of Intracellular Communications and Infectious Microorganisms, College of France, Paris, France
| | - Serge Pauillac
- Institut Pasteur, Unité des Bactéries anaérobies et Toxines, Paris, France
| | - Maryse Gibert
- Institut Pasteur, Unité des Bactéries anaérobies et Toxines, Paris, France
| | - Nathalie Sauvonnet
- Institut Pasteur, Unité de Biologie des Interactions Cellulaires, Paris, France
| | - Bradley G. Stiles
- Biology Department, Wilson College, Chambersburg, Pennsylvania, United States of America
- * E-mail: (BGS); (HB); (MRP)
| | - Michel R. Popoff
- Institut Pasteur, Unité des Bactéries anaérobies et Toxines, Paris, France
- * E-mail: (BGS); (HB); (MRP)
| | - Holger Barth
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Ulm, Germany
- * E-mail: (BGS); (HB); (MRP)
| |
Collapse
|
13
|
Baaten BJG, Tinoco R, Chen AT, Bradley LM. Regulation of Antigen-Experienced T Cells: Lessons from the Quintessential Memory Marker CD44. Front Immunol 2012; 3:23. [PMID: 22566907 PMCID: PMC3342067 DOI: 10.3389/fimmu.2012.00023] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 02/08/2012] [Indexed: 01/13/2023] Open
Abstract
Despite the widespread use of the cell-surface receptor CD44 as a marker for antigen (Ag)-experienced, effector and memory T cells, surprisingly little is known regarding its function on these cells. The best-established function of CD44 is the regulation of cell adhesion and migration. As such, the interactions of CD44, primarily with its major ligand, the extracellular matrix (ECM) component hyaluronic acid (HA), can be crucial for the recruitment and function of effector and memory T cells into/within inflamed tissues. However, little is known about the signaling events following engagement of CD44 on T cells and how cooperative interactions of CD44 with other surface receptors affect T cell responses. Recent evidence suggests that the CD44 signaling pathway(s) may be shared with those of other adhesion receptors, and that these provide contextual signals at different anatomical sites to ensure the correct T cell effector responses. Furthermore, CD44 ligation may augment T cell activation after Ag encounter and promote T cell survival, as well as contribute to regulation of the contraction phase of an immune response and the maintenance of tolerance. Once the memory phase is established, CD44 may have a role in ensuring the functional fitness of memory T cells. Thus, the summation of potential signals after CD44 ligation on T cells highlights that migration and adhesion to the ECM can critically impact the development and homeostasis of memory T cells, and may differentially affect subsets of T cells. These aspects of CD44 biology on T cells and how they might be modulated for translational purposes are discussed.
Collapse
Affiliation(s)
- Bas J G Baaten
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute La Jolla, CA, USA
| | | | | | | |
Collapse
|
14
|
Maret W. New perspectives of zinc coordination environments in proteins. J Inorg Biochem 2011; 111:110-6. [PMID: 22196021 DOI: 10.1016/j.jinorgbio.2011.11.018] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 10/21/2011] [Accepted: 11/08/2011] [Indexed: 11/24/2022]
Abstract
Zinc is more widely used as a cofactor in proteins than any other transition metal ion. In addition to catalytic and structural functions, zinc(II) ions have a role in information transfer and cellular control. They bind transiently when proteins regulate zinc concentrations and re-distribute zinc and when proteins are regulated by zinc. Transient zinc-binding sites employ the same donors of amino acid side chains as catalytic and structural sites but differ in their coordination chemistry that can modulate zinc affinities over at least ten orders of magnitude. Redox activity of the cysteine ligands, multiple binding modes of the oxygen, sulfur and nitrogen donors, and protein conformational changes induce coordination dynamics in zinc sites and zinc ion mobility. Functional annotations of the remarkable variation of coordination environments in zinc proteomes need to consider how the primary coordination spheres interact with protein structure and dynamics, and the adaptation of coordination properties to the biological context in extracellular, cellular, or subcellular locations.
Collapse
Affiliation(s)
- Wolfgang Maret
- Metal Metabolism Group, Diabetes and Nutritional Sciences Division, School of Medicine, King's College London, London, UK
| |
Collapse
|
15
|
Wong NK, Lai JC, Maeshima N, Johnson P. CD44-mediated elongated T cell spreading requires Pyk2 activation by Src family kinases, extracellular calcium, phospholipase C and phosphatidylinositol-3 kinase. Cell Signal 2011; 23:812-9. [DOI: 10.1016/j.cellsig.2011.01.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Revised: 12/16/2010] [Accepted: 01/05/2011] [Indexed: 10/18/2022]
|
16
|
Abstract
The CD44 protein family spans a large group of transmembrane glycoproteins acquired by alternative splicing and post-translational modifications. The great heterogeneity in molecular structure is reflected in its various important functions: CD44 mediates (1) interaction between cell and extracellular matrix, (2) signal submission, e.g., by acting as co-receptor for membrane-spanning receptor tyrosine kinases or by association with intracellular molecules initiating several signaling pathways, and (3) anchor function connecting to the cytoskeleton via the ezrin-radixin-moesin protein family. The expression pattern of the different CD44 isoforms display strong variations dependent on cell type, state of activation, and differentiation stage. In hematopoietic cells, CD44 mediates interaction of progenitor cells and bone marrow stroma during hematopoiesis, regulates maturation, and activation-induced cell death in T cells, influences neutrophil and macrophage migration as well as cytokine production, and participates in lymphocyte extravasation and migration. CD44 is involved in development and progress of hematological neoplasias by enhancement of apoptotic resistance, invasiveness, as well as regulation of bone marrow homing, and mobilization of leukemia-initiating cells into the peripheral blood. Thereby altered CD44 expression functions as marker for worse prognosis in most hematological malignancies. Additionally, CD44 expression levels can be used to distinguish between different hematological neoplasias and subtypes. Concerning new treatment strategies, CD44 displays promising potential either by direct targeting of CD44 expressed on the malignant cells or reversing an acquired resistance to primary treatment mediated through altered CD44 expression. The former can be achieved by antibody or hyaluronan-based immunotherapy.
Collapse
|
17
|
John E, Laskow TC, Buchser WJ, Pitt BR, Basse PH, Butterfield LH, Kalinski P, Lotze MT. Zinc in innate and adaptive tumor immunity. J Transl Med 2010; 8:118. [PMID: 21087493 PMCID: PMC3002329 DOI: 10.1186/1479-5876-8-118] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Accepted: 11/18/2010] [Indexed: 12/19/2022] Open
Abstract
Zinc is important. It is the second most abundant trace metal with 2-4 grams in humans. It is an essential trace element, critical for cell growth, development and differentiation, DNA synthesis, RNA transcription, cell division, and cell activation. Zinc deficiency has adverse consequences during embryogenesis and early childhood development, particularly on immune functioning. It is essential in members of all enzyme classes, including over 300 signaling molecules and transcription factors. Free zinc in immune and tumor cells is regulated by 14 distinct zinc importers (ZIP) and transporters (ZNT1-8). Zinc depletion induces cell death via apoptosis (or necrosis if apoptotic pathways are blocked) while sufficient zinc levels allows maintenance of autophagy. Cancer cells have upregulated zinc importers, and frequently increased zinc levels, which allow them to survive. Based on this novel synthesis, approaches which locally regulate zinc levels to promote survival of immune cells and/or induce tumor apoptosis are in order.
Collapse
Affiliation(s)
- Erica John
- Department of Surgery, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15213, USA
| | - Thomas C Laskow
- Department of Surgery, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15213, USA
| | - William J Buchser
- Department of Surgery, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15213, USA
| | - Bruce R Pitt
- Department of Occupational Health, University of Pittsburgh, 100 Technology Drive, Pittsburgh, PA 15219, USA
| | - Per H Basse
- Department of Immunology, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15213, USA
| | - Lisa H Butterfield
- Department of Medicine, University of Pittsburgh, 3550 Terrace Street, Pittsburgh, PA 15261, USA
| | - Pawel Kalinski
- Department of Surgery, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15213, USA
| | - Michael T Lotze
- Department of Surgery, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15213, USA
| |
Collapse
|